# Anisotropic RG Flows and Strongly Coupled Systems

Dimitrios Giataganas

University of Athens, Greece

Based on works with: C.S. Chu(NTHU,NCTS), J-P. Derendinger(Bern), U. Gursoy(Utrecht), J. Pedraza(Amsterdam), H. Soltanpanahi(IPM, S.China Normal).

Talk given for: EISA, Corfu Workshop, September 11, 2019

Dimitris Giataganas

Strongly-coupled Anisotropic Theories

| Introduction | Anisotropic Theories | Phase Transitions | Universal Properties | Monotonic functions along the RG | Conclusions |
|--------------|----------------------|-------------------|----------------------|----------------------------------|-------------|
| Outlin       | е                    |                   |                      |                                  |             |



- 2 Anisotropic Theories
- Phase Transitions
- ④ Universal Properties
- 5 Monotonic functions along the RG

#### 6 Conclusions

#### Briefly on AdS/CFT

• Gauge/Gravity duality: A way to map quantum questions to gravity geometric questions and answer them.



• The initial AdS/CFT correspondence:  $\mathcal{N} = 4$  sYM on flat space  $\Leftrightarrow AdS_5 \times S^5$ , is the harmonic oscillator of the gauge/gravity dualities.



| Introduction | Anisotropic Theories | Phase Transitions | Universal Properties | Monotonic functions along the RG | Conclusions |
|--------------|----------------------|-------------------|----------------------|----------------------------------|-------------|
|              |                      |                   |                      |                                  |             |
|              |                      |                   |                      |                                  |             |

• Since the discovery of the initial correspondence, there is an extensive research aiming to construct more realistic gauge/gravity dualities (confinement, no susy, temperature, quarks...).

✓ This talk: Theories with Broken Rotational Symmetry in Gauge/Gravity correspondence.

## Why? Existence of Natural Systems.

The existence of strongly coupled anisotropic systems.

- The expansion of the Quark-Gluon plasma at the earliest times after the collision, momentum anisotropic plasmas.
- Strong Magnetic Fields in strongly coupled theories.
- New interesting phenomena in presence on such fiels, i.e. inverse magnetic catalysis.

eg: (Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg et al. 2011)

• Anisotropic low dimensional materials in condensed matter.

| Introduction | Anisotropic Theories | Phase Transitions | Universal Properties | Monotonic functions along the RG | Conclusions |
|--------------|----------------------|-------------------|----------------------|----------------------------------|-------------|
| Why?         | More:                |                   |                      |                                  |             |

• Weakly coupled vs strongly coupled anisotropic theories.

(Dumitru, Strickland, Romatschke, Baier,...)

• Properties of top-down supergravity Black hole solutions that are AdS in UV flowing to Lifshitz-like in IR :

\* Fixed scaling parameter z for such anisotropic solutions or even isotropic flows?

(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011;...) \* New flows to alternative IR fixed points?

Striking Features! Several Universality Relations for the isotropic theories are violated in aniso!
 Shear viscosity η over entropy density s: takes parametrically low values wrt degree of anisotropy <sup>η</sup>/<sub>s</sub> < <sup>1</sup>/<sub>4π</sub>! (Rebhan, Steineder 2011; D.G. 2012; Jain, Samanta, Trivedy 2015; D.G., Gursoy, Pedraza, 2017)

## Reminding Slide:

• The anisotropic hyperscaling violation metric

$$ds^{2} = u^{-rac{2 heta}{d}} \left( -u^{2z} \left( dt^{2} + dy_{i}^{2} 
ight) + u^{2} dx_{i}^{2} + rac{du^{2}}{u^{2}} 
ight)$$

exhibits a critical exponent z and a hyperscaling violation exponent  $\theta$ .



- $\theta = 0, \ z = 1 \Rightarrow AdS.$
- $\theta = 0 \Rightarrow$  scale invariant theory.
- In general no scale invariance.

$$t \to \lambda^z t, \qquad y \to \lambda^z y, \qquad \mathbf{x} \to \lambda \mathbf{x}, \qquad u \to \frac{u}{\lambda} \ , \qquad ds \to \lambda^{\frac{\theta}{d}} ds \ .$$

#### How is Anisotropy introduced? A Pictorial Representation:

- For the Lifshitz-like IIB Supergravity solutions
  - $ds^{2} = u^{2z}(dx_{0}^{2} + dx_{i}^{2}) + u^{2}dx_{3}^{2} + \frac{du^{2}}{u^{2}} + ds_{S^{5}}^{2}.$

Introduction of additional branes:

(Azeyanagi, Li, Takayanagi, 2009)



• Which equivalently leads to the following AdS/CFT deformation.



• $dC_8 \sim \star d\chi$  with the non-zero component  $C_{x_0x_1x_2S^5}$ .

#### A Theory with Phase Transitions in One Page:

- How the Field Theory looks like?
  - $\checkmark$  4d *SU*(*N*) Strongly coupled anisotropic gauge theory.
  - $\checkmark$  Its dynamics are affected by a scalar operator  $\mathcal{O}_{\Delta}$ .
  - ✓ Anisotropy is introduced by another operator  $\tilde{\mathcal{O}} \sim \theta(x_3) TrF \wedge F$  with a space dependent coupling.
- The gravity dual theory is an Einstein-Axion-Dilaton theory in 5 dimensions with a non-trivial potential.
  - ✓ A "backreacting" scalar field depending on spatial directions, the axion; and a non-trivial dilaton.
  - ✓ Solutions are non-trivial RG flows: Conformal fixed point in the UV ⇒ Anisotropic (Hyperscaling Lifshitz-like) in IR.
- The vacuum state confines color and there exists a phase transition at finite  $T_c$  above which a deconfined plasma state arises.

(D.G., Gursoy, Pedraza, 2017)

#### An Anisotropic Theory

The generalized Einstein-Axion-Dilaton action with a potential for the dilaton and an arbitrary coupling between the axion and the dilaton:

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left[ R - \frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi) (\partial \chi)^2 \right].$$

The eoms read

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} R g_{\mu\nu} = \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} Z(\phi) \partial_{\mu} \chi \partial_{\nu} \chi - \frac{1}{4} g_{\mu\nu} (\partial \phi)^2 - \frac{1}{4} g_{\mu\nu} Z(\partial \chi)^2 + \frac{1}{2} g_{\mu\nu} V(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} \left( \sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right) &= \frac{1}{2} \partial_{\phi} Z(\phi) (\partial \chi)^2 - V'(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} \left( \sqrt{-g} g^{\mu\nu} \partial_{\nu} \chi \right) &= 0 . \end{split}$$

Where

$$V(\phi) = 12\cosh(\sigma\phi) + \left(rac{m(\Delta)^2}{2} - 6\sigma^2
ight)\phi^2, \qquad Z(\phi) = e^{2\gamma\phi} \;.$$

((Gubser, Nellore), Pufu, Rocha 2008a,b) Remark: For  $\sigma = 0, \gamma = 1, m(\Delta) = 0$  the action and the solution of eoms, are reduced of IIB supergravity.

Dimitris Giataganas

#### A Solution : The RG Flow



# We have obtained the theories, are they physical and stable?

✓ Energy Conditions Analysis:

$$\overset{\Psi}{T}_{\mu\nu} N^{\mu} N^{\nu} \geq 0 \ , \quad N^{\mu} N_{\mu} = 0 \ .$$

AND

₩

✓ Local Thermodynamical Stability Analysis: Specific Heat... ↓ ↓ YES!



#### The blue region is the acceptable for the theory parameters.







- Competition for dominance between different gravitational backgrounds.
- The Critical Temperature of the theories vs the anisotropy gives:



• The *T<sub>c</sub>* is reduced in presence of anisotropies of the theory. (D.G., Gursoy, Pedraza, 2017)

| Introduction | Anisotropic Theories | Phase Transitions | Universal Properties | Monotonic functions along the RG | Conclusions |
|--------------|----------------------|-------------------|----------------------|----------------------------------|-------------|
| A Pro        | posal                |                   |                      |                                  |             |

- The  $Tc(\alpha)$  decrease with anisotropy  $\alpha$ .
- No charged fermionic degrees of freedom in our case; our plasma is neutral.
- Anisotropy causes lower  $T_c =$  "Inverse Anisotropic Catalysis".

Anisotropic Theories

Phase Transitions

Universal Properties

### Universal Results: $\eta/s$ in Theories with Broken Symmetry

Consider a finite T theory in the deconfined phase:

 $ds^{2} = g_{tt}(u)dt^{2} + g_{11}(u)(dx_{1}^{2} + dx_{2}^{2}) + g_{33}(u)dx_{3}^{2} + g_{uu}(u)du^{2}$ 

 The anisotropic shear viscosity violates the isotropic "bound" of  $1/4\pi$  : 1

$$\eta_{ij,kl} = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \int dt dx e^{i\omega t} \langle T_{ij}(t,x), T_{kl}(0,0) \rangle$$





#### Langevin Dynamics and Brownian Motion



A Universal Inequality for Isotropic Theory:  $\kappa_{\parallel} \ge \kappa_{\perp}$  for any isotropic strongly coupled plasma! Can be inverted in the anisotropic theories:  $\kappa_{\parallel} \ge <\kappa_{\perp}$ .

(Gursoy, Kiritsis, Mazzanti, Nitti, 2010; D.G, Soltanpanahi, 2013a,b; D.G. 2018)

Dimitris Giataganas

#### Anisotropic candidate of *c*-function

• A proposed the *c*-function is

(Chu, Giataganas, 2019;(2d) Casini, Huerta 2006; (iso 2d+) Ryu, Takayanagi 2006; Myers, Singh 2012; (nrcft) Cremonini, Dong 2014)

$$c_x := \beta_x \frac{l_x^{d_x - 1}}{H_x^{d_1 - 1} H_y^{d_2}} \frac{\partial S_x}{\partial \ln l_x} , \qquad d_x := d_1 + d_2 \frac{n_2}{n_1}$$

where H is the infrared regulator, the dimensions  $n_1$ ,  $n_2$  are defined at the fixed point

$$[t] = L^{n_t}, \quad [x_i] = L^{n_1}, \quad [y_j] = L^{n_2},$$

• A relativistic "*c*-theorem" is guaranteed as long as the NEC:  $T_0^0 - T_r^r \le 0$  is satisfied!

$$rac{dc}{dr} \propto -\int_0^l dx A'^{-2} ig(T_0^0 - T_r^rig) \geq 0 \; .$$

• How about the Anisotropic theories?



- Not a one-to-one correspondence between NEC (g'<sub>i</sub>(r) > 0) and c-function monotonicity, but not surprising!
- Interesting observation: For an anisotropic theory with  $d_1 = d_2$ , the boundary condition

$$g_{i \ UV} \leq 0$$
 ,

with a conformal UV fixed point guarantees the right monotonicity the c-functions along the RG flow.

Are there any other observables that form functions, to have monotonic behavior along the RG flow?

(Chu, Derendinger, Giataganas, in progress)

- ✓ Observation: In strongly coupled theories many phenomena are more sensitive to the presence of the anisotropy than the source that triggers it.
- ✓ Strongly Coupled Confining Anisotropic theories with confinement /deconfinement phase transition.
- ✓ The phase transitions occur at lower critical Temperature as the anisotropy is increased = Inverse Anisotropic Catalysis!
- ✓ Several Universal Isotropic relations are anisotropically violated.
- ✓ Holographic monotonic functions and conditions of monotonicity for (anisotropic) RG flows.

