Dark Matter with an ultralight axion
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Variants of the usual Peccei-Quinn axion theory for the solution of the strong CP
problem allow to generate more general axion-like terms in an effective
Lagrangean beyond the Standard Model (with a string completion).

One of these extensions involves Stuckelberg axions and (gauged) anomalous
abelian symmetries.

Similar interactions are generated by other methodes,
for instance by a decoupling of chiral fermions
from the low energy spectrum in an anomaly-free theory.



First realizations of these models involve
a field-theory version of the Green-Schwarz mechanism of
anomaly cancelation (2005).

A similar action can be generated by the decoupling of a fermion
from a high scale.

The fact that this mechanism is "generic’ shows that anomaly actions,
which are not unique, may well serve the purpose of describing
the relevant physics at a certain, specific, scale.
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The breaking of the PQ symmetry
takes place at a large scale f_a, but
The wiggling of the PQ potential
Occurs much later, at the QCD phase
transition

For a PQ axion a: m=C/f, whilethe aFF interaction is
also suppressed by : a/f, FF with f = 10"9 GeV




Compared to a Peccei-Quinn axion, the new axion is gauged

For a PQ axion a: m=C/f,, whilethe aFF interaction is
also suppressed by : a/f, FF with f = 1079 GeV

In the case of these models, the mass of the axion and
its gauge interactions are unrelated

the mass is generated by the combination of the Higgs and
the Stuckelberg mechanisms combined
The interaction is controlled by the Stuckelberg mass (M, )

The axion shares the properties of a CP odd scalar

(A) (B)
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with 65 = arccos(M;/Mp) = arcsin(qgzggv/Mp). The axion b can be expressed as linear
combination of the rotated fields x5,G 5 as

qggpv M1
My KB

b=ai1xg+ aGg = —Gp, (41)
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at this stage nothing special. We are just describing
a model in which the scalar CP odd sector has been
extended with a real pseudoscalar that contributes to

SSB thanks to its mixing with the ordinary Higgs
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from effective string int.
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The Standard Model with 1 extra anomalous U(1) and an axion

f Q UR dR L ER
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The effective action has the structure given by
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The gauge symmetry under which this Lagrangian is invariant is

SU(3)e x SU(2)w x G1. Gy=[JU)

Gauge kinetic i=1
Stuckeberg mass terms
Chern Simons abelian interactions SU3) x SU(2) x U(1)y x U(1)y X U(1), x U(1)g-

Stuckelberg axions
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Higgs sector
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Typical mass terms for the gauge bosons are generated both from
the Higgs and the Stuckleberg contributions
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There will be bilinear mixings in the broken (electroweak) phase
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We can extract the NG modes by a rotation, identifying 1 single physical axion
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The scalar potential has an ordinary 2-Higgs doublet part and an extra contribution
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Axionic contributions
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With a single anomalous U(1) these terms care not essential.
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suppressed by the
Stueckelberg scale M
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it Is possible to describe the physical axion
by looking at the phases of the periodic potential




we have a phase that sets the periodicity
of the potential
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gg=0.1, M;=1TeV, MLSOM charge assignment = f(-1,-1,4)
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Total decay rate of the axi-Higgs for several mass values. Here, for the PQ axion, we have chosen

fa =100 GeV.
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The PQ axion feels the QCD vacuum via the a Gé

) PQ axion.

k Vacuum misalighment
1077 ~ 1075V at the QCD phase
- transition

If an axion has charges both
under SU(3) and SU(2)
——— e we could consider the
possibility of sequential
misalignments. The dominant
misalignment clearly comes
from the largest potential



Stepping P e S ()

! i“A{ ,CV\A eur Vo L‘Wlﬂ’ =
S 6w C —
" S | P . 0 O r\"v *\’\4{ P’Q’O"""bk o

LM \On\'fﬂc"\” (Y e

L4

(}to.nes ,\’\“a)r S*uqckeuﬂﬂ N l.n.j/-«wsu

We ot o\l.SC“’”u\

{M"'A.op St




L= EEG + »CSt + L"anom + EWZa

27x, 27x, 27x,

3 3
Z XE — O, Z Xz = 0.
1=1 i=1

351

A,(jb) _ 67;4914/(}1/) A,(fu) _ 67:914,(3,) U, — 6_(%i9)‘I’u-



M5 4 e s (b (AL A2 + by AR AL AL AT

v

Vo = MGyrpAG)A®" e

+ hy A gy AD AD AR AT

o

+ hy AT dy o dy s AD AD AR AR

+ h5 duyadaﬂfydgnﬂd)\a’yA;(ic) A,(}T)A@)&AZQ)UT
+ h ddT g g Edeyedppy AD AP AQ) Afz)"p} +he

T

(351) = (1,3%3)+ (1,3 6%) +(1,6,3) + (3,3,1) + (3,6, 1) + (3,3,8) +
(3*,1,3%) + (3*,1,6) + (3*,8,3%) + (6%,3,1) + (6,1,3") + (8,3, 3)



12 o 19 | b
' jik=1

dgp L
+)\3(H]£2)TH]£2))(HJ(I)TH]S?)e—?AgB Mg )] +h.c., (95)

Vp ~v1v9 ()\zvg - )\37}% - A_OM(%UT) CcoS (i> - )\1?)1712 CcoS (2l> :
Ox

Ox

) _
U1v2 ()\Q’Ul + )\2’02 + )\3’01 -+ 4)\1?}1’02) \v?

()

Jx

Ox ™~ Mgut + O(MéUT/MI%lanck)a mi ™~ )‘OM(2}UT7



Ao ~ e 2m/Mgur) 1/33 < agyr < 1/32,

6_201 ~ 10—91 S )‘0 S 6_205 ~ 10—88,



Stueckelberg models predict
ultralight axions if the Stueckelberg scale is sufficiently large.

In general we face a large (representation-wise)

scalar sector which would be interesting to simplify
In some way



Axions and the Strong CP Problem

Axions have appeared in physics in an attempt to solve the strong
CP problem of QCD.

Why is the 6GG term so small?
Consider an SU(2) gauge theory

G2, = 0uA] — 0, A% + g™ AL AS,

G = A, — O AL+ [AA)] G = G2, T?
A, — UA U™ + U8, U!
G — UG, U™t




We look for minima of the Euclidean action

1
S — 2gz/dA'XTrGWGW

In a nonabelian theory a vanishing field strength is possible with
A, = Ud,U "

(pure gauge). Solutions of this condition are instanton
configurations, characterised by a topological number.

2

~16m%Q(x) = Tr[Guy Guw] = Trl€unas[20,(AL0.As §A,,AQA[3)],
.1 o8 1 2
G = ieuyaﬁG ; Q(X) — au../'u, J'u — 8> EuyaﬁAV(aaAﬁ—FgAaAﬁ)

For an SU(3) gauge theory such as QCD, similarly, the Lagrangean
then allows a total derivative term G G which is a boundary term,
but cannot be neglected. For instantons

G =G, /d4XGG(X) = 327°n,




Therefore — There is a dimension-4 operator that we can write
down in the Standard Model (SM)

0oG G

(violates Parity and Time reversal, CP is broken)
It Is a total derivative term and as such it does not contribute in

perturbation theory

Adding a total derivative term gives a zero momentum vertex in
perturbation theory, but it contributes non-perturbatively

How?




If we consider an instanton (Euclidean) configuration, then the
contribution to the path integral is

2
_ S, L [d*xFF %%

~ @ :e_g — e &

» These configurations, at small coupling, give a negligible
contribution

» They are solutions of the classical eq. of motion of QCD,
which is scale invariant at classical level
However, the solution of the equation G = G involves an
integration constant, the size of the instanton.

» The solution breaks scale invariance, because of the
integration constant, which remains arbitrary.
It tells us where the energy of the configuration is localized.
At tree level g is constant, but at 1-loop it runs. Scale
invariance is broken by renormalization.



In the functional integral we need to sum over all these
configurations.
Small instantons (R)

> — large scale A ~ 1/R
» — small coupling g(\) < 1

. g2
» — large suppression in e &°®) . The contribution is

perturbative, since g is small, but it is negligible.

The instanton contribution to the QCD action is dominated
by large instantons (g(\) large). Unfortunately the
contribution Is non-perturbative.




» The running is controlled by the size of the instanton,
g =g(})

In the functional integral we need to sum over all these
configurations.
Small instantons (R)

» — large scale A ~ 1/R
» — small coupling g(\) < 1

. g2
» — large suppression in e &™) . The contribution is

perturbative, since g is small, but it is negligible.

The instanton contribution to the QCD action is dominated
by large instantons (g(\) large). Unfortunately the
contribution is non-perturbative.

» The saddle point approximation is not valid any more since
the action is O(1).



The partition function can be written in the form

o—872/g2(N)—ifo

Y

and summing over instantons/anti instantons

Z ~ e 8m/8°(N) cos Bo
I
0o is not directly observable. One expects the energy density to

dependen on 6y Notice, however, that QCD has a U(1)4 anomaly,
due to fermions. There is an axial symmetry

g — ge'”s™

and the integration measure is not invariant

DgDg — DqDge iz FFd'x

Therefore 6y is not physical because it can be shifted by a field
redefinition
0o — Oy + 2



But also the quark mass term gets a phase under the chiral
transformation

g, Mgr + h.c. — cy'LMqRe2iO‘ + h.c.
therefore

argM — argM + 2«

and
0 = 90 — arg/\/l

Is invariant under field redefinitions. If we have fermions in

complex representations of the gauge group, 0y is affected by field
redefinitions and is not physical, but 0 is physical. This can be
generalized to ns fermions.

6o — 0o + 2nra, ArgdetM — ArgdetM + 2nfcx

0 = 6y — ArgdetM
Is physical.



Experimentally 6 is very small. We can set this value to zero
assuming a cancellation between
> 0y ( reated to gluon dynamics )
> ArgDetM ( related to the electroweak sector, Yukawas and
Higgs )
We can easily derive some properties of the vacuum energy as a
function of 6.

e—VE(H) _ ‘/D¢e—5[¢]—32;29fFI:_d4x‘

< /D¢|e—5[¢]—32;26’f/:ﬁd4x| _ e—VE(Q:O)

E(0) = E(0)
It is also even in 6: E(0) = E(—@). Periodic of period 27.




























