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Motivations

•  Higher-spin	gravity	is	a	system	of	intermediate	complexity	between	the	full	
String	Theory	and	SUGRA	+	higher-derivaAve	correcAons:	
Ø  contains	infinitely	many	gauge	fields	of	all	spins	on	equal	fooAng	
Ø  expected	to	contain	non-local	interacAons	(of	physical	spin-s	fields)		

•  Remarkable	that	one	can	sAll	control	many	features	of	the	theory,	essenAally	
due	to	the	infinite-dimensional	symmetry	+	compact	form	of	the	non-linear	eqs.	
[non-linear	HS	eqs.	as	a	deformaAon	of	a	classical	algebra	of	differenAal	forms	à	master	
fields	,	containing	fields	of	all	spins	(and	descendants)	]	

•  As	locality	is	not	imposed,	some	issues	(allowed	field	redefiniAons,	large	vs	small	
gauge	transformaAons,	...)	seem	out	of	reach,	at	least	by	standard	means.		

•  There	are	however	indicaAons	that	much	insight	is	to	be	gained	about	current	
open	quesAons	by	addressing	them	within	the	natural	framework	of	the	eqs.	–	
in	terms	of	their	natural	variables	and	observables.	
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Motivations

•  Some	guiding	principle	may	come	from	the	study	of	exact	soluAons.	Surprisingly,	
making	use	of	the	large	gauge	symmetry,	construcAng		soluAons	spaces	is	easier	
than	one	may	think.		Recently	found	many	potenAally	interesAng	soluAons	(e.g.,		
4D	HS	black-hole-like	soluAons)	and	an	effecAve	scheme	for	superposing	
fluctuaAons.	

•  However,	their	interpretaAon	requires	a	beQer	understanding	of	observables	
and	global	issues:	

	
Ø  enlarging	the	set	of	relevant	classical	observables	and	assess	their	physical	

meaning:	proper	HS/stringy	generalizaAon	of	geometry?	
Ø  understanding	how	to	impose	boundary	condiAons	on	master	fields	on	NC	

space	;		
Ø  	disAnguishing	small/large	gauge	transformaAons	
Ø  master	fields	are	funcAons	of	NC	variables,	so	changes	of	orderings	are	a	

delicate	issue.	To	what	extent	can	one	consider	changes	of	ordering	
admissible?		



4 

Motivations

	
•  The	natural	language	and	mathemaAcal	tools	that	the	eqs.	suggest	in	general	

blur	the	idenAficaAon	of	the	typical	ingredients	of	standard	field	theories.	The	
language	of	component	fields	is	in	general	not	the	most	appropriate	one	to	
address	the	previous	quesAons.	

•  Learning	to	address	global	issues	with	the	variables	and	observables	that	are	
most	natural	to	the	eqs.	would	be	important	to	understand	HS	geometry,	as	
suggested	from	the	study	of	exact	soluAons.	
[note	that	the	concepts	of	the	standard	Riemannian	geometry	lose	meaning	as	they	are	
not	HS	invariant]	

•  InteresAng	to	assess	the	status	of	HS	gravity	wrt	GR	and	stringy	compleAon:		
	

Find	and	study	the	analogues	of	problemaAc	soluAons	of	GR,	such	as	black	
holes	and	cosmologies,	and	see	if	the	coupling	with	HS	fields	solves	
singulariAes	already	at	the	classical	level.		



5 

Kinematics

§  CommuAng	oscillators																																																																												à		sp(4,R)	quartets	

§  Star-product:		

§  Inner	kleinian	operator	κ:	

§  Master-fields	living	on	correspondence	space,	locally X x Z x Y :

gauge	fields	of	all	spins	+	auxiliary	
Weyl	tensors	and	their	derivaAves	à	local	dof	

Z-space	connecAon,	no	extra	local	dof	



6 

§  Full	equaAons:	

	
§  	Z-oscillators	à	auxiliary,	non-commutaAve	coordinates.	EquaAons	fix	the	evoluAon		

along	Z	in	such	a	way	that	it	gives	rise	to	consistent	interacAons	to	all	orders	among		
physical	fields,	contained	in	the	(Z-independent)	iniAal	condiAons	
	
	

§  1st	order	differenAal	eqs	impose	a	relaAon	between	spaceAme	and	twistor	space		
behaviour	of	their	soluAons	à	the	physical	informaAon	can	be	encoded	to	a	great		
extent	in	the	twistor-space	dependence.	

4D bosonic Vasiliev equations

(Vasiliev, ‘92) 
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AdS vacuum solution

	

§  U(0)	is	a	flat	connecAon,	can	be	represented	via	a	gauge	funcAon	L(x|Y)	=	AdS4	coset	
	element	
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§  The	eqs.	with	at	least	one	component	on	Z	lend	themselves	to	be	integrated		

(supplemented	with	gauge	choices)	with	iniAal	condiAons	C	(x,Y)	and	W(x,Y)	

	

	
	
iteraAvely	in	an	expansion	in	curvatures	(contained	in	C	)	

	

Standard perturbative analysis
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§  The	eqs.	with	at	least	one	component	on	Z	can	be	integrated	to	give	the	Z-dependent		
fields	iteraAvely	in	terms	of	non-linear	couplings	involving	the	original	dof	in	Φ|Z=0:	
	
	
	
	
		
	
	
	
	
On-shell	the	infinitely	many	Z-contracAons	turn	into	an	infinite	expansion		
in	derivaAves	of	arbitrarily	high	order	à	in	a	generic	frame,	one	has	a	non-local,		
Born-Infeld-like	tail	at	every	fixed	order	in	weak	fields.		
	
[This	depends	on	the	soluAon	scheme	for	the	Z-space	eqs.:	a	different	scheme,	connected	
to		this	one	by	a	non-local	field	redefiniAon,	cuts	the	infinite	tail	to	the	quasi-local	
expansion	expected	via	Noether	procedure.			(Didenko,	Gelfond,	Korybut,	Vasiliev)	
SpaceAme	nonlocaliAes	are	expected	beyond	cubic	level.	]	
	

Standard perturbative analysis
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§  InserAng	the	perturbaAve	soluAons	for	U	and	Φ	of	the	Z-space	eqs.		into	the	pure		
spaceAme	eqs.		and	segng	Z=0,	one	gets	

	

	

Ø  wriAng	down	verAces	gets	harder	and	harder		
Ø  ambiguiAes	introduced	by	the	Z-dependence	resoluAon	scheme	at	every		

order.	
	
On-shell	the	infinitely	many	Z-contracAons	turn	into	an	infinite	expansion	in	derivaAves		
of	arbitrarily	high	order	à	in	a	generic	frame,	one	has	a	non-local,	Born-Infeld-like	tail		
at	every	fixed	order	in	weak	fields.		
	

§  A	condiAon	for	the	interpretaAon	of	the	W	and	C	as	generaAng	funcAons	of	gauge	fields	
	and	Weyl	tensors	of	all	spins	is	that	they	be	real-analyAc	in	Y.		
In	the	standard	perturbaAve	analysis	this	is	ensured	by	the	requirement	that		
all	master	fields	be	(formal)	polynomials	in	Y	and	Z	everywhere	on	spaceAme.	
		
InteresAng	soluAons	will	force	us	to	considerably	sohen	this	condiAon.	
	

Standard perturbative analysis
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§  Surprisingly,	construcAng	exact	soluAons	is	simpler	than	one	would	think!		

§  Working	in	the	full	(x,Y,Z)-space	enables	one	to	keep	into	account	all	non-lineariAes	
in	a	manageable,	algebraic	form,	and	use	to	one’s	advantage	the	formal	
simpicity	of	the	equaAons	
(The	difficulty	one	encounters,	however,	is	then	at	the	level	of	interpretaAon:	what	
is	an	admissible	gauge?	Proper	class	of	funcAons	of	NC	variables?	Physical	
InterpretaAon	of	the	soluAon?	Meaning	of	invariants?...)	
	

§  In	general,	one	can	use	all	the	tradiAonal	methods	employed	for	solving	complicated	
differenAal	equaAons:	using	some	convenient	gauge,	imposing	symmetries,	using		
an	algebraically	special	Ansatz,	separaAng	variables…		
	

§  Then	one	usually	selects	a	physical	subspace	of	the	possible	soluAons	encoded	by		
the	iniAal	choices	via	physical	requirements/global	condiAons:	finiteness	of		
inner	product,	finiteness	and	conservaAon	of	asymptoAc	charges...	
	

Exact solutions
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§  A	different	organizaAon	of	the	perturbaAve	expansion	around	AdS	is	much	more		
amenable	at	solving	to	all	orders.			
	

§  New	perturbaAve	scheme	based	on	two	observaAons:		

1.  At	first	order,	the	equaAons	for	Φ	are	

2.  The	source	term	that	triggers	the	non-linear	correcAons	can	be	rewriQen	as			

à	Organizing	the	perturbaAve	expansion	in	powers	of		Ψ	and	keeping	the	Y	and	
Z	dependence	factorized,	one	can	solve	for	the	Z	dependence	universally.	
	

§  Insert	
	

in	the	equaAon	

Factorized expansion scheme
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§  First	order	in	Ψ:		
	

solved	by	a	distribuAonal	z-space	element	

§  Higher	orders:			

with	basis	spinors	u±α		(u+αu-α	=	1)	entering	to	achieve	an	integral	realizaAon	of	a		
delta	funcAon	in	a	Gaussian	basis		(one	could	have	equally	well	used	a	plane	wave	basis,	in	which		
case	an	auxiliary	spinor,	the	momentum	associated	to	z,	would	have	played	that	role).	

à  

Factorized expansion scheme

à  
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§  Fixing	gauges,	one	can	show	that	a	soluAon	of	the	form	
	
	
	
	
	
	
is	actually	exact.	
	

§  A	large	space	of	interesAng	soluAons	(including	HS	black	holes,	HSbh	+	massless	scalar,		
FLRW-like	soluAons,…)	has	been	constructed	this	way.	
	

§  While	the	ordinary	perturbaAve	analysis	is	organized	in	powers	of	Φ★κ	and	normal		
order,	this	can	be	considered	an	expansion	in	Ψ		and	Weyl	order	(no	contracAons	
	between	Y	and	Z).	
	

§  Different	soluAons	are	singled	out	by	different	basis	funcAons	(or	distribuAons)	of	Y		
on	which	one	expands	C	(i.e.,	Ψ)	.		
	

Factorized expansion scheme

(C.I., P. Sundell, ‘17;  
D.De Filippi, C.I., P. Sundell, ‘19) 
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Comments and observations

§  The	factorized	expansion	encodes	a	(formal)	soluAon	space	in	which	Φ	is	first-order		
exact,	and	the	Z-dependence	is	solved	in	a	universal	way		
à gives	a	systemaAc	procedure	to	non-linearly	deform	soluAons	of	the	KG	and		

Bargmann-Wigner	eqs.	into	soluAons	of	the	full	Vasiliev	eqs.		
	

	

§  Actual	soluAons	must	saAsfy:		
1.  The	star-products	(Ψ)★k		(and	(Ψ) ★k	★ v(z)	)	must	be	finite	à	condiAons	on	

	the	fiber	algebra	A(Y)	
2.  Observables	should	be	finite	(e.g.,	well-defined	inner	product)	
	
In	the	case	that	all	Ψ★k		can	be	expanded	over	a	common	basis	of	funcAons,		
	one	can	actually	write	down	the	full	soluAon	in	closed	form	immediately.	
	
	

§  Further	constraints	placed	by	requiring	the	soluAon	to	correspond	to	an	asymptoAc	
configuraAon	of	Fronsdal	fields	(over	AdS)	à	Vα	should	be	at	least	real-analyAc	in	Z.	
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§  Which	soluAons	of	the	linearized	equaAons	can	be	dressed	into	full	ones?	Which	
linear	sectors	can	simultaneously	be	dressed	into	full	sectors	of	the	moduli	space?	

§  Factorized	scheme	already	used	to	nonlinearly	deform	massless	scalar	modes		
+	spherically	symmetric	HS	black	holes.			
	

§  Massless	parAcle	modes	build	up	unitary	so(3,2)	LW	modules.	In	D=4	there	are	two		
unitary	scalars,	disAnguished	by	Neumann/Dirichlet	b.c.,	with	ground	states	
	
	
	

§  Type-D,	staAc	scalar	consists	of	the	soluAon	singular	in	the	origin	
		GeneralizaAon	to	arbitrary	spin:		type-D	spin-s	Weyl	tensors	of	the	form		
	
	

	
§  The	spin-2	element	coincides	with	the	full	AdS-Schwarzschild	Weyl	tensor.		
This	follows	from	the	Kerr-Schild	property	of		bhs	in	gravity:		they	solve	both	the		
linearized	and	the	nonlinear	eqs.	In	gravity,	the	above	are	local	hallmark	of	bhs.	

Particle and HS black-hole modes

(Didenko,  Vasiliev) 
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§  Massless	parAcle	modes	build	up	unitary	so(3,2)	LW	modules.		
Unfolded	Weyl	0-form	equaAons,	i.e.,	reformulaAon	of	the	Bargmann-Wigner	eqs.	via	
a	covariant	constancy	condiAon		on	the	twisted	adjoint	module,		
	
	
show	that	parAcle	modes	can	be	encoded	into	specific	algebraic	elements:		
operators	on	singleton	Fock	space,		non-polynomial	funcAons	of	Y	with	definite		
eigenvalues	under	the	Cartan	subalgebra	(E,J)	of	so(3,2),	
	
	
	

	
	
	
	
§  Modules	built	by	solving	LW	condiAons	[L--r,Pn|m]π	=	0	and	then	acAng	with	L+r.	

§  This	offers	a	simple	way	of	solving	for	all	the	AdS-massless	parAcle	modes.	

Massless particle modes
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§  	For	example,	the	rotaAonally-invariant	scalar	field	modes	are	encoded	by	projectors		
Pn	=	Pn(E)	=	|n/2,n/2>	<n/2,n/2|,	
	
	
	

§  Indeed,	using	the	simple	AdS	gauge	funcAon	L		we	reconstruct	exactly	the		
Breitenlohner-Freedman	scalar	modes,	
	
	
	
	

§  For	instance,	the	LW	element	n=1	(C’	=	4e-4E)		gives	rise	to	the	ground	state	of	the		
D(1,0)	scalar,	as	expected:	
	

Massless scalar particle modes

(C.I., P. Sundell) 
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§  Star-mulAplicaAon	with	κy	induces	a	change	of	sign	of	the	right	E-eigenvalue,	so	the	
	twisted	projectors		

	
	
realize,	via	twisted-adjoint	acAon,	states	with	zero	energy,	staQc	à soliton-like		
soluAons		(y-space	Fourier	duals	of	parAcle	states).		
	

§  Such	states	are	outside	the	class	of	formal	polynomials	à	delta	funcAons	of	(shihed)		
Y	oscillators,		

§  Yet,	they	are	well-behaved	under	star	product,	and	in	fact	form	a	star	product		
subalgebra	together	with	parAcle	state	projectors,	

Twisted projectors and HSBH

(C.I., P. Sundell) 
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§  Indeed,	dressing	with	the	gauge	funcAon	the	spaceAme	behaviour	of	individual	fields		

shows	that	the	twisted	projectors	are	the	fibre,	local	data	of	spherically-symmetric		
HS	black	holes!	
If	C’(Y)	is		expanded	in	twisted	projectors,  
 
 
 
the	Weyl	0-form	becomes	a	gaussian	in	Y,	for	generic	spaceAme	point	
	

Twisted projectors and HSBH

Coeffs.	of	the	Y-expansion	à	 a	tower	of		type-D	Weyl	tensors	of	all	spins	(+	derivaAves):	
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§  	Each	individual	Weyl	tensor	has	a	curvature	singularity	in	r=0.		At	the	master-field	
level,	this	converts	into	the	statement	that	in	the	r	à	0	limit	the	Weyl	zero-form		
becomes	a	delta	funcQon	in	Y,	
	
	
	
	
	
	

§  HS	symmetry	forces	such	staAc	soluAons	of	all	spins	to	appear	together	in	a	infinite-dim.		
mulAplet,	packed	into	the	Y	expansion	of	the	Weyl	zero-form.	At	this	level	the	spaceAme	
singulariAes	have	a	more	readable	meaning:		r	appears	as	the	parameter	of	a	delta		
sequence	in	Y,	so	effecAvely	unfolding	trades	the	spaceAme	singulariAes	for	a		
distribuAonal	behaviour	in	Y.	
	

§  This	is	a	more	tractable	problem:	a	delta	funcAon	of	non-commutaAve	variables	can	be	
	considered	smooth,	in	the	sense	that	it	is	well-behaved	under	star	product	(and	is	in	fact	
		part	of	the	associaAve	algebra	that	governs	such	soluAons,	so	the	limit	r	à	0		is		
		unevenxul).		

Curvature singularities
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§  	Another	way	of	seeing	the	smoothness	at	r	=	0	at	the	level	of	master	fields	is	
that	a	change	of	ordering	prescripAon	(e.g.,	from	Weyl	ordering	to		
normal	ordering	in	Y)	turns	the	delta	funcAon	into	a	real-analyAc	funcAon,	
	

	
and	the	gauge-invariant	classical	observables	of	the	theory	are	(formally)	invariant		
under	change	of	orderings.	

	
§  Vasiliev’s	HS	gravity	is	then	a	theory	in	which	HS	geometries	are	described	on		
X x	Z x	Y		via	master	fields:		

	
Ø  At	generic	points	on	the	base	manifold,	they	are	real-analyAc	in	fibre	coordinates,	
	and	the	coefficients	of	their	power	series	expansion	in	Y	are	bounded	component		
fields.	In	weak-field	regions,	they	saAsfy	Fronsdal’s	equaAons.	
	
Ø  At	special	surfaces	they	can	approach	non-analyAc	funcAons	(and	distribuAons)		
but	remain	well-defined	as	star	product	algebra	elements.	Only	their	interpretaAon	
in	terms	of	component	Fronsdal	fields	breaks	down.	

Curvature singularities
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§  	Vasiliev’s	HSG	is	formulated	by	means	of	unfolded	equaAons,	encoding	non-trivial	
dynamics	into	zero-curvature	/	covariant	constancy	condiAons.		
	
Ø  the	background	is	introduced	via	a	gauge	funcAon	(and	the	corresponding	flat	connecAon)		
Ø  the	inverse	background	vielbein	never	appears	in	the	eqs.	describing	fluctuaAons.		

	
§  Possible	to	construct	extensions	of	gravitaAonal	manifold	by	gluing	them	across	

surfaces	where	the	metric	degenerates.	
	

§  BTZ	black	hole:		the	natural	geometry	resulAng	from	idenAficaAons	along	KVF	K	=	∂/∂ϕ		
in	the	embedding	flat	spaceAme	is	
	
	
	
	
	

§  The	singularity	in		ξ	=	0	is	matched	by	a	singular	behaviour	(divergent	frequency)	of		
fluctuaAon	fields.	

Degenerate metrics
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§  	However,	in	the	unfolded	approach,	one	can	naturally	solve	for	the	flat	background		
connecAon	with	a	gauge	funcAon	such	that	
	
	
	
i.e.,	the	resulAng	manifolld	is	the	gluing	of	two	EBTZ	across	the	singularity	ξ	=	0.	

§  	This	is	not	unnatural,	since	fluctuaAons,	packed	into	mater	fields,	indeed	experience	
	ξ	=	0	as	a	smooth	surface	in	terms	of	their	behaviour	as	star	product	elements	
(and	inverse	vielbein	are	never	involved	in	defining	the	dynamics).	

§  	The	resulAng	manifold	is	obtained	NOT	from	idenAficaAons,	but	intrinsecally	à		
does	not	suffer	from	being	non-Hausdorff	around		ξ	=	0		in	the	spinless	case.	

Degenerate metrics
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•   The	construcAon	of	exact	soluAons	to	the	Vasiliev	equaAons	offers	many	insights	into		
several	open	quesAons	and	challenges	related	to	HS	gravity	(allowed	class	of	funcAons,	
field	redefiniAons,	role	of	ordering	prescripAons,	boundary	condiAons…).	
	

•  Several	indicaAons	that	HS	gravity	requires	to	go	beyond	the	standard	field	theoreAc	
interpretaAon	(at	the	level	of	component	fields),	which	only	makes	sense	in		
special	regimes.		
	

•  ResoluAon	of	classical	GR	singulariAes	relies	not	only	on	its	embedding	into	HS	gravity,		
But	also	on	its	implementaAon	via	unfolded	formulaAon	and	master	fields.	

•  Many	interesAng	open	quesAons	to	invesAgate:			

Ø  	HS	bhs	or	bh	microstates?	
Ø  proper	formulaAon	of	boundary	value	problem?	
Ø  	mulA-soliton	soluAons?		
Ø  HS	geometry	
Ø  …	

Conclusions and outlook


