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MOTIVATIONS

Higher-spin gravity is a system of intermediate complexity between the full
String Theory and SUGRA + higher-derivative corrections:

» contains infinitely many gauge fields of all spins on equal footing

» expected to contain non-local interactions (of physical spin-s fields)

Remarkable that one can still control many features of the theory, essentially

due to the infinite-dimensional symmetry + compact form of the non-linear egs.
[non-linear HS egs. as a deformation of a classical algebra of differential forms = master
fields , containing fields of all spins (and descendants) ]

As locality is not imposed, some issues (allowed field redefinitions, large vs small
gauge transformations, ...) seem out of reach, at least by standard means.

There are however indications that much insight is to be gained about current
open questions by addressing them within the natural framework of the egs. —
in terms of their natural variables and observables.



MOTIVATIONS

* Some guiding principle may come from the study of exact solutions. Surprisingly,
making use of the large gauge symmetry, constructing solutions spaces is easier
than one may think. Recently found many potentially interesting solutions (e.g.,
4D HS black-hole-like solutions) and an effective scheme for superposing
fluctuations.

* However, their interpretation requires a better understanding of observables
and global issues:

» enlarging the set of relevant classical observables and assess their physical
meaning: proper HS/stringy generalization of geometry?

» understanding how to impose boundary conditions on master fields on NC
space ;

» distinguishing small/large gauge transformations

» master fields are functions of NC variables, so changes of orderings are a
delicate issue. To what extent can one consider changes of ordering
admissible?



MOTIVATIONS

The natural language and mathematical tools that the egs. suggest in general
blur the identification of the typical ingredients of standard field theories. The
language of component fields is in general not the most appropriate one to
address the previous questions.

Learning to address global issues with the variables and observables that are
most natural to the egs. would be important to understand HS geometry, as
suggested from the study of exact solutions.

[note that the concepts of the standard Riemannian geometry lose meaning as they are
not HS invariant]

Interesting to assess the status of HS gravity wrt GR and stringy completion:
Find and study the analogues of problematic solutions of GR, such as black

holes and cosmologies, and see if the coupling with HS fields solves
singularities already at the classical level.



KINEMATICS

=  Master-fields living on correspondence space, locally Xx Zx ).

gauge fields of all spins + auxiliary

U = dz"U,(Y, Z|x)
¢ = Y, Z|x) Weyl tensors and their derivatives = local dof
S = dz*S,(Y, Z|x) + dz*Ss (Y, Z|x) Z-space connection, no extra local dof

= Commutingoscillators Y, = (Yo,%a), Za = (2as—2a) 2 SP(4,R) quartets

w0 |
[Yg,Yﬁ]*:2iCa5:2i(805 %)’ Zas Z5)s = =2iCas ,  [Yas Zs)s = 0

= Star-product:

R T

= Inner kleinian operator x:

Kk = W e kx f(z,y) = f(—2,—y)xk, kxk = 1
K = Kyxkz, Kyxf(z,y) = f(2,—y)*Ky, Kyxky = 1,
5
ky = 2m6° (y) = 276(y1)d(y2)



4D BOSONIC VASILIEV EQUATIONS

= Full equations: dU+UxU = 0
dP+UxP—P*x7w(U) = 0
dS., + [U, Sa]* — 0 (Vasiliev, ‘92)
SaxP+Px7(Sy) = 0
[Sa, Spls = —2i€qp(l — 0P x K)
[Savgﬁ']* = 0,

SO/, — ZOé _ ZZV(X [Saaf(Z7 Y)] — [Zocaf] - QZ[VOMf]* X g?f; _|_ [VOHf]*

= Z-oscillators = auxiliary, non-commutative coordinates. Equations fix the evolution
along Zin such a way that it gives rise to consistent interactions to all orders among
physical fields, contained in the (Z-independent) initial conditions

W(I,Y) = U|Z:07 C(J},Y) = (I)|Z:0 .

= 1st order differential eqs impose a relation between spacetime and twistor space
behaviour of their solutions = the physical information can be encoded to a great

extent in the twistor-space dependence. §



ADS VACUUM SOLUTION

D
S, = S — ., . S, =89 =3z
U = U0 = 0 =L (0O yys + 0% g5, + 2000y, )

I
&
S
|
S

b _ _dx“(aa)o‘ﬁ Lob 20dx®(oqp) P
(0) 1—a2 (0) 1 — a2
4dx?

—— iy =

= Ujs aflat connection, can be represented via a gauge function L(x|Y) = AdS, coset
element

U9 = Q = L7 xdL

SO(3,2)
SO(3,1)

M ()0 P,
L(.SU;y, :lj) _ eix (x)d, : R3’1 ,




STANDARD PERTURBATIVE ANALYSIS

= The eqgs. with at least one component on Z lend themselves to be integrated
(supplemented with gauge choices) with initial conditions C(x,Y) and W(x,Y)

¢®+ [V, 8, = 0 — ¢ =C(z,Y)+q" (—[V, ®],)
QV+VxV4+dxJ = 0 — V=qet+q (-VxV—-0xJ)
qU +dV + [U, V], 0 — U=W(z,Y)+ ¢ (=[U, V], —dV)
dU+UxU = 0
dd + [U,®], = 0
o 9 i
q::dZ_aZﬁ’ J = —Zdz k — h.c.

iteratively in an expansion in curvatures (contained in C)

o = Y o, o) =C(2Y)
n>1
Vo = Y v
n>1
U = Y ™, U9 =0q=L"«dL

n>0



STANDARD PERTURBATIVE ANALYSIS

= The egs. with at least one component on Z can be integrated to give the Z-dependent
fields iteratively in terms of non-linear couplings involving the original dof in ®,,_:

n—1 1
B = )=z 3 [y, eV, s +he,
k=170
1 i n—1 . n—1 1
v = g, ™ 4o, / dt t (5@") e I AL VOS"’“)) +27%° / tdt [V, V]
0 k=1 k=10
z—tz
i n—1 1
) — W(”)(Y) + §zo‘ Z/o dt[WlSk), VOS”"")]*,th —h.c.
k=0

On-shell the infinitely many Z-contractions turn into an infinite expansion
in derivatives of arbitrarily high order = in a generic frame, one has a non-local,
Born-Infeld-like tail at every fixed order in weak fields.

[This depends on the solution scheme for the Z-space egs.: a different scheme, connected
to this one by a non-local field redefinition, cuts the infinite tail to the quasi-local
expansion expected via Noether procedure. (Didenko, Gelfond, Korybut, Vasiliev)

Spacetime nonlocalities are expected beyond cubic level. ]



STANDARD PERTURBATIVE ANALYSIS

= |nserting the perturbative solutions for U and @ of the Z-space egs. into the pure
spacetime eqs. and setting Z=0, one gets

AW = W(W,0) = W«W+VWWWw,w,c)+ VP w,w,c,c) +..
dC = Vi(W,C) = W,Cl, + VP W,C,0)+ ..

» writing down vertices gets harder and harder
» ambiguities introduced by the Z-dependence resolution scheme at every
order.

On-shell the infinitely many Z-contractions turn into an infinite expansion in derivatives
of arbitrarily high order = in a generic frame, one has a non-local, Born-Infeld-like tail
at every fixed order in weak fields.

= A condition for the interpretation of the W and C as generating functions of gauge fields
and Weyl tensors of all spins is that they be real-analyticin Y.
In the standard perturbative analysis this is ensured by the requirement that
all master fields be (formal) polynomials in Y and Z everywhere on spacetime.

Interesting solutions will force us to considerably soften this condition. 10



EXACT SOLUTIONS

Surprisingly, constructing exact solutions is simpler than one would think!

Working in the full (x,Y,Z)-space enables one to keep into account all non-linearities
in @ manageable, algebraic form, and use to one’s advantage the formal
simpicity of the equations
(The difficulty one encounters, however, is then at the level of interpretation: what

is an admissible gauge? Proper class of functions of NC variables? Physical
Interpretation of the solution? Meaning of invariants?...)

In general, one can use all the traditional methods employed for solving complicated
differential equations: using some convenient gauge, imposing symmetries, using
an algebraically special Ansatz, separating variables...

Then one usually selects a physical subspace of the possible solutions encoded by

the initial choices via physical requirements/global conditions: finiteness of
inner product, finiteness and conservation of asymptotic charges...
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FACTORIZED EXPANSION SCHEME

A different organization of the perturbative expansion around AdS is much more
amenable at solving to all orders.

New perturbative scheme based on two observations:

1. At first order, the equations for @ are

¢®P = 0 — oM = C(z,Y)
pYe™M = o0 —  C@Y) = L %@ () xn(L)

2. The source term that triggers the non-linear corrections can be rewritten as
OPrxk = Prryxk, = Vkk,, U = P xky

— Organizing the perturbative expansion in powers of W and keeping the Y and
Z dependence factorized, one can solve for the Z dependence universally.

Insert V., = (z,Y, 2) Z T B (2

in the equation OV +Viax Vs = —i €ag bV % K .



FACTORIZED EXPANSION SCHEME

= First order in W: dy U%) _ _EE 5br
(8% 4 (67 z

solved by a distributional z-space element

1 .
SO Z:l:/ dr __ izstete ilim(l—e‘éﬁ'z_) ~ 0(z7)6(=7T)
. (7_ n 1)2 zF e—0
. . . 1 iyt
2 i=uT %y, w, = 2t~ , [z_,Z+]* = —21 9 all—rf(l) ge ) -

with basis spinors u*, (u**u", = 1) entering to achieve an integral realization of a
delta function in a Gaussian basis (one could have equally well used a plane wave basis, in which

case an auxiliary spinor, the momentum associated to z, would have played that role).

n ngher orders: 8[(11)2]@ + % Z {U((lp)7véqq — 0, k>2
p+q=k *
k k ! dT 2 . —1
9 Va = ZU&>*\I]* — / mlFl*(1/2,2,b10gT \I’)*zaezT—_sz
1 \7T

E>1
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FACTORIZED EXPANSION SCHEME

= Fixing gauges, one can show that a solution of the form

U = U9 = Q(z,Y) = L' +dL
® = Cz,Y) = L'« (Y)*n(L)
Vo = Va(Yiz) = > 0 uo{P(z)
k=1
is actually exact. (C.L, P. Sundell, “17;

D.De Filippi, C.I, P. Sundell, ‘19)

= Alarge space of interesting solutions (including HS black holes, HSbh + massless scalar,
FLRW-like solutions,...) has been constructed this way.

=  While the ordinary perturbative analysis is organized in powers of ®x £ and normal
order, this can be considered an expansion in W and Weyl order (no contractions
between Y and 2).

= Different solutions are singled out by different basis functions (or distributions) of Y
on which one expands C (i.e., ¥) .

14



COMMENTS AND OBSERVATIONS

= The factorized expansion encodes a (formal) solution space in which @ is first-order
exact, and the Z-dependence is solved in a universal way
—> gives a systematic procedure to non-linearly deform solutions of the KG and
Bargmann-Wigner egs. into solutions of the full Vasiliev egs.

= Actual solutions must satisfy:
1. The star-products (W)** (and (W) ** % v(z) ) must be finite = conditions on
the fiber algebra A(Y)

2. Observables should be finite (e.g., well-defined inner product)
In the case that all W*k can be expanded over a common basis of functions,

one can actually write down the full solution in closed form immediately.

= Further constraints placed by requiring the solution to correspond to an asymptotic
configuration of Fronsdal fields (over AdS) = V,should be at least real-analytic in Z.

15



PARTICLE AND HS BLACK-HOLE MODES

Which solutions of the linearized equations can be dressed into full ones? Which
linear sectors can simultaneously be dressed into full sectors of the moduli space?

Factorized scheme already used to nonlinearly deform massless scalar modes
+ spherically symmetric HS black holes.

Massless particle modes build up unitary $0(3,2) LW modules. In D=4 there are two
unitary scalars, distinguished by Neumann/Dirichlet b.c., with ground states

e—it e—%t

P(10) ~ 1+ r2)1/2 P20 ~ T2

1
Type-D, static scalar consists of the solution singular in the origin  ¥(0,0) ~ -

Generalization to arbitrary spin: type-D spin-s Weyl tensors of the form

M
+
(I)a(QS) ~ m(u

u - )3(2 s) (Didenko, Vasiliev)

= The spin-2 element coincides with the full AdS-Schwarzschild Weyl tensor.
This follows from the Kerr-Schild property of bhs in gravity: they solve both the
linearized and the nonlinear eqgs. In gravity, the above are local hallmark of bhs.



MASSLESS PARTICLE MODES

= Massless particle modes build up unitary $0(3,2) LW modules.
Unfolded Weyl O-form equations, i.e., reformulation of the Bargmann-Wigner eqgs. via
a covariant constancy condition on the twisted adjoint module,

C(z]Y) = L™ H2,Y) «C'(Y) » m(L)(z,Y)
show that particle modes can be encoded into specific algebraic elements:

operators on singleton Fock space, non-polynomial functions of Y with definite
eigenvalues under the Cartan subalgebra (E,J) of $0(3,2),

C'(Y) € M = @PCS Pym

Pn|n’*Pm|m’ = 5n’,mpn|m’ ) Pn|m’ ~ ‘Il >< I’Il| ) n,m= (nla n2)7 (mlamQ)
E*Pn|m - nl—;n2pn|m7 J*Pn|m - nz;nlpn|m
ni + ng +mi + mo Ng — N1 + My — My
[Ea Pn|m]7r - 9 Pn|m ) [Jv Pn|m]7r - 9 Pn|m

" Modules built by solving LW conditions [L,P =0 and then acting with L*..

nlm]rt

= This offers a simple way of solving for all the AdS-massless particle modes. -



MASSLESS SCALAR PARTICLE MODES

= For example, the rotationally-invariant scalar field modes are encoded by projectors
P, = P,(E)= In/2,n/2> <n/2,n/2],

1 n
Po(E) = 2N, e *ELW (8E) = N, & (”+ > e~4nE
C’(z—:) 271 n— 1

" |ndeed, using the simple AdS gauge function L we reconstruct exactly the
Breitenlohner-Freedman scalar modes,

C'(Y) = Cip(Y) = Zﬁnpn(E)v ()" = ven

ZyOLM P (55,77)2?5

Coeo(z|Y) = L7Hz) x C'_y * 7(L)(x) Z 0,0

d 1
C(e) 271 77—1

"1 — 2inxg + n2x?

= Forinstance, the LW element n=1 (C’ = 4eF) gives rise to the ground state of the
f)(l,O) scalar, as expected:

~ 1 —a? ~ e (C.1., P. Sundell)
4V1 - ~ 1 I
1 — 2izg + 2 (1+7r2)1/2
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TWISTED PROJECTORS AND HSBH

= Star-multiplication with x, induces a change of sign of the right E-eigenvalue, so the

twisted projectors

~

Pu = Pukry = [n/20)(—n/20] € Do®D;

(C.I, P. Sundell)

realize, via twisted-adjoint action, states with zero energy, static = soliton-like

solutions (y-space Fourier duals of particle states).

= Such states are outside the class of formal polynomials = delta functions of (shifted)

Y oscillators,

~

Pn = 73n * Ry = 2T On 62(y _ “700??)

= Yet, they are well-behaved under star product, and in fact form a star product

subalgebra together with particle state projectors,

~ ~

7)'n‘k,]im — 5nm73n7 Pn*Pm — 5n,—m7)n

~ ~

7D’n‘k’Pm — 5nmpn7 Pn*Pm — 5n —mpn

19



TWISTED PROJECTORS AND HSBH

* |ndeed, dressing with the gauge function the spacetime behaviour of individual fields

shows that the twisted projectors are the fibre, local data of spherically-symmetric
HS black holes!

If C'(Y) is expanded in twisted projectors,

C'(Y) = Cl,(Y) = Z Vn P Vp = 1"y,

the Weyl O-form becomes a gaussian in Y, for generic spacetime point

J 1
Conel¥) = £7*aChyen(h) = 3O (=g we o Jo)

Coeffs. of the Y-expansion = a tower of type-D Weyl tensors of all spins (+ derivatives):

20



CURVATURE SINGULARITIES

Each individual Weyl tensor has a curvature singularity in r=0. At the master-field
level, this converts into the statement that in the r 2 0 limit the Weyl zero-form

becomes a delta function in Y,

L i )
Opp(z|Y) ~ Op — expi ey On210°(7y)
nr r r—0
Yo = Yo — in(vg)oz 3 g = 'ga‘r:() = Yo — 'in(JOg)oz

HS symmetry forces such static solutions of all spins to appear together in a infinite-dim.
multiplet, packed into the Y expansion of the Weyl zero-form. At this level the spacetime
singularities have a more readable meaning: r appears as the parameter of a delta
sequence in Y, so effectively unfolding trades the spacetime singularities for a
distributional behaviourin Y.

This is a more tractable problem: a delta function of non-commutative variables can be
considered smooth, in the sense that it is well-behaved under star product (and is in fact

part of the associative algebra that governs such solutions, so the limitr =2 0 is
uneventful). 21



CURVATURE SINGULARITIES

= Another way of seeing the smoothness at r = 0 at the level of master fields is
that a change of ordering prescription (e.g., from Weyl ordering to
normal ordering in Y) turns the delta function into a real-analytic function,

52(9) =: e 20797

and the gauge-invariant classical observables of the theory are (formally) invariant
under change of orderings.

= Vasiliev’s HS gravity is then a theory in which HS geometries are described on
"X x Zx Y via master fields:

» At generic points on the base manifold, they are real-analytic in fibre coordinates,
and the coefficients of their power series expansion in Y are bounded component
fields. In weak-field regions, they satisfy Fronsdal’s equations.

» At special surfaces they can approach non-analytic functions (and distributions)
but remain well-defined as star product algebra elements. Only their interpretation
in terms of component Fronsdal fields breaks down.

22



DEGENERATE METRICS

= Vasiliev's HSG is formulated by means of unfolded equations, encoding non-trivial
dynamics into zero-curvature / covariant constancy conditions.

» the background is introduced via a gauge function (and the corresponding flat connection)
» the inverse background vielbein never appears in the eqgs. describing fluctuations.

= Possible to construct extensions of gravitational manifold by gluing them across
surfaces where the metric degenerates.

= BTZ black hole: the natural geometry resulting from identifications along KVF K = 9/0¢
in the embedding flat spacetime is

- 1 2 4da” 2 742
Cl\/[lnkg X¢ SK , dSEBTZ = m -+ f d¢
1 2
e=VI—Z 50

1—2

» The singularity in € =0 is matched by a singular behaviour (divergent frequency) of
fluctuation fields.

23



DEGENERATE METRICS

= However, in the unfolded approach, one can naturally solve for the flat background
connection with a gauge function such that

4dx? :
ExtEBTZ = AdS, x¢ Sk . (1_% +&%de?, €20

i.e., the resulting manifolld is the gluing of two EBTZ across the singularity ¢ = 0.
= This is not unnatural, since fluctuations, packed into mater fields, indeed experience
¢ = 0 as a smooth surface in terms of their behaviour as star product elements

(and inverse vielbein are never involved in defining the dynamics).

* The resulting manifold is obtained NOT from identifications, but intrinsecally -2
does not suffer from being non-Hausdorff around ¢ =0 in the spinless case.
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CONCLUSIONS AND OUTLOOK

®* The construction of exact solutions to the Vasiliev equations offers many insights into
several open questions and challenges related to HS gravity (allowed class of functions,
field redefinitions, role of ordering prescriptions, boundary conditions...).

Several indications that HS gravity requires to go beyond the standard field theoretic
interpretation (at the level of component fields), which only makes sense in
special regimes.

Resolution of classical GR singularities relies not only on its embedding into HS gravity,
But also on its implementation via unfolded formulation and master fields.

Many interesting open questions to investigate:

» HS bhs or bh microstates?

» proper formulation of boundary value problem?
» multi-soliton solutions?

» HS geometry

> ..
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