Formulation of Category Including Several Noncommutative Geometries

Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

Tokyo University of $\mathsf{Science}^1$, $\mathsf{Azabu}\ \mathsf{University}^2$

September 20, 2019

arXiv:190708665

Contents

1 Motivation

- 2 Preparation for Category Theory
- 3 Definition of Quantization Category
- 4 Matrix Regularization
- 5 Equivalent of Categories
- 6 Conclusions and Discussions

Motivation	Preparation for Category Theory		
•			

Motivation

- Several ways of quantization of classical mechanics or classical field theory are well known.
 - Canonical Quantization,
 - Path Integral,
 - Matrix Regularization, etc.
- However, in quantization of classical gravity, objects that seem unrelated to quantization at first glance appear and they are related to each other.
 - String,
 - Matrix, etc.

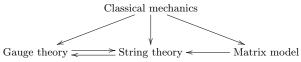
 How can we generalize these quantizations? To describe such map, we think category is the most natural tool.

Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

Motivation	Preparation for Category Theory	Definition of Quantization Category	Matrix Regularization Equi	valent of Categories Conclusion
•				

Motivation

- Several ways of quantization of classical mechanics or classical field theory are well known.
 - Canonical Quantization,
 - Path Integral,
 - Matrix Regularization, etc.
- However, in quantization of classical gravity, objects that seem unrelated to quantization at first glance appear and they are related to each other.
 - String,
 - Matrix, etc.



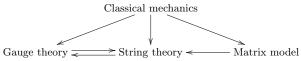
 How can we generalize these quantizations? To describe such map, we think category is the most natural tool.

Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

Motivation	Preparation for Category Theory	Definition of Quantization Category	Matrix Regularization Equi	valent of Categories Conclusion
•				

Motivation

- Several ways of quantization of classical mechanics or classical field theory are well known.
 - Canonical Quantization,
 - Path Integral,
 - Matrix Regularization, etc.
- However, in quantization of classical gravity, objects that seem unrelated to quantization at first glance appear and they are related to each other.
 - String,
 - Matrix, etc.



 How can we generalize these quantizations? To describe such map, we think category is the most natural tool.

Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

Preparation for Category Theory

Definition (Category)

A category \mathscr{C} consists of a set of objects $ob(\mathscr{C})$ and a set of morphisms $Mor(\mathscr{C})$. The morphisms satisfy the following conditions:

- There exists identity map.
- There exists composition.
- For all morphisms, these compositions are associative.

Example: Category of Multiplication

(Identity maps $\times 1$ are omitted.)

Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

Definition (Functor)

A functor is a map between two categories. That is, a functor $F: \mathscr{A} \to \mathscr{B}$ define the following maps:

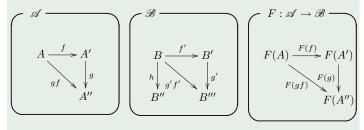
 $\bullet \ ob(\mathscr{A}) \to ob(\mathscr{B}),$

$$Mor(\mathscr{A}) \to Mor(\mathscr{B}).$$

The functor $F : \mathscr{A} \to \mathscr{B}$ keeps the structure of \mathscr{A} .

Example: Simple categories

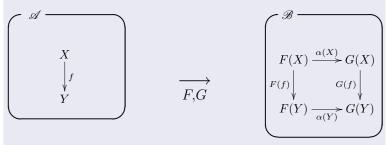
In other words, a functor F gives a subcategory which is the same shape as \mathscr{A} in $\mathscr{B}.$



Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Definition (Natural Transformation)

Let F and G be functors from \mathscr{A} to \mathscr{B} . For all objects $A \in ob(\mathscr{A})$, a natural transfomation $\alpha: F \to G$ is a set of morphisms $\{\alpha(A)\}$ between F(A) and G(A).



For all object $X, Y \in ob(\mathscr{A})$ and morphisms $f : X \to Y$, the natural transformation α satisfy the condition:

$$G(f)\circ\alpha(X)=\alpha(Y)\circ F(f).$$

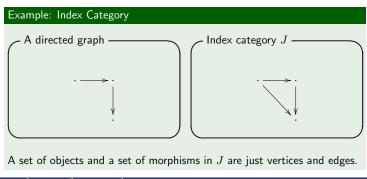
Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Categorical limit

A categorical limit is the end of a sequence of objects which have some conditions.

Definition (Index Category)

An index category J is a category which does not have structures. That is, J is regarded as a directed graph equipped with composition maps.



Jumpei Gohara 1 , Yuji Hirota 2 , Akifumi Sako 1

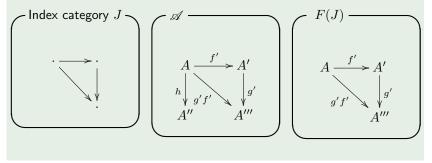
Tokyo University of Science¹, Azabu University²

Definition (Diagram)

A diagram F of index category J in a category \mathscr{A} is a functor from an index category J to $\mathscr{A}.$

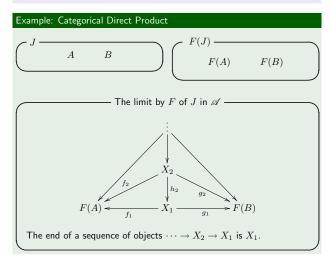
Example: Diagram F of J

Recall that a functor determines a subcategory.



Definition (Categorical Limit)

Categorical limit by F of J is the end of a sequence of objects which have morphisms to all objects in ob(F(J)).



Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Definition of Quantization Category

Definition (Pre- \mathscr{Q} category \mathscr{C})

Let $\mathcal{A}(M)$ be a Poisson algebra $(C^\infty(M),\cdot\,,\{\,\,,\,\,\})$ and $R\mathsf{Mod}$ be a category of R-module. Pre- \mathscr{Q} category \mathscr{C} is a subcategory of $R\mathsf{Mod}$ that satisfies the following conditions:

- $\mathcal{A}(M) \in ob(\mathscr{C}).$
- All objects $M_i \in ob(\mathscr{C})$ are Lie algebras.
- There exist morphisms T_k from $\mathcal{A}(M)$ to M_i such that

 $[T_k(f), T_k(g)]_k = i\hbar(T_k)T_k(\{f, g\}) + O(\hbar^{1+\epsilon}(T_k)).$

Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Definition (Noncommutative Character χ)

For all objects $M_i \in ob(\mathscr{C})$, A noncommutatve character $\chi : ob(\mathscr{C}) \to \mathbb{R}$ is defined as

$$\chi(M_i) = \max_{T_i \in \mathscr{C}((A)(M), M_i)} \hbar(T_i).$$

Definition

We define an index category J^{\bullet} and a diagram F^{\bullet} for pre- \mathscr{Q} category \mathscr{C} . For all objects $M_i \in ob(\mathscr{C})$ up to $\mathcal{A}(M)$, there exists J^{\bullet} such that

$$\exists T_{ij} \in \mathscr{C}(M_i, M_j), \ \chi(M_i) \le \chi(M_j) \Leftrightarrow \exists (i, j) \in J^{\bullet}(i, j).$$

Then diagram $F^{\bullet}: J^{\bullet} \to \mathscr{C}$ is defined by

$$ob(\mathscr{C}) \ni i \mapsto F^{\bullet}(i) = M_i, \quad J^{\bullet}(i,j) \ni (i,j) \mapsto T_{ij}.$$

These definitions mean that all objects M_i are ordered by F^{\bullet} of J^{\bullet} and

 χ .

Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Tokyo University of Science¹, Azabu University²

Proposition

The pre- \mathscr{Q} category \mathscr{C} has a limit M_{∞} for F^{\bullet} of J^{\bullet} .

Recall that categorical limit by F of J is the end of a sequence of objects which have morphisms to all objects in ob(F(J)). In this case, objects in $F^{\bullet}(J^{\bullet})$ are all objects in $ob(\mathscr{C})$ up to $\mathcal{A}(M)$. From the definition of \mathscr{C} , $\mathcal{A}(M)$ has morphisms from $\mathcal{A}(M)$ to $\forall M_i \in ob(\mathscr{C})$. So $\mathcal{A}(M)$ is a candidate of a limit always.

Definition (Quantization Category \mathcal{Q})

A quantization category $\mathscr{Q}(\mathscr{C},J^\bullet,F^\bullet,\chi)$ is defined by satisfying the following conditions:

For all $f,g \in \mathcal{A}(M)$ and a morphism T from $\mathcal{A}(M)$ to limit M_{∞} ,

$$Q1 T(fg) - T(f)T(g) = 0$$

Q2
$$[T(f), T(g)] - i\hbar(T)T(\{f, g\}) = 0$$

Q1 and Q2 are similar conditions with them in Berezin-Toeplitz quantization or Matrix regularization.

Matrix Regularization

Definition (J. Arnlind, J. Hoppe and G. Huisken (2012))

Let N_1, N_2, \cdots be a strictly increasing sequence of positive integers and \hbar be a real value strictly positive decreasing function such that $\lim_{N\to\infty} N\hbar(N)$ converges. Let T_k be a linear map from $C^{\infty}(M) \to N_k \times N_k$ Hermitian matrices for $k = 1, 2, \cdots$. If the following conditions are satisfied, then we call this a matrix regularization of (M, ω) .

$$\begin{split} &\lim_{k \to \infty} \|T_k(f)\| < \infty, \\ &2 \lim_{k \to \infty} \|T_k(fg) - T_k(f)T_k(g)\| = 0, \\ &3 \lim_{k \to \infty} \|\frac{1}{i\hbar(N_k)}[T_k(f), T_k(g)] - T_k(\{f, g\})\| = 0 \\ &4 \lim_{k \to \infty} 2\pi\hbar(N_k) \mathrm{Tr}T_k(f) = \int_M f\omega, \end{split}$$

Definition (pre- \mathcal{Q} category for Matrix regularization)

Let $\{N_i\}$ be a strictly increasing sequence of \mathbb{Z}^+ and Let \hbar be a strictly decreasing function such that $\lim_{i\to\infty} N_i \hbar(N_i)$ converges. A pre- \mathscr{Q} category for Matrix regularization \mathscr{C}_{MR} is defined as follows:

Set of objects:

$$ob(\mathscr{C}_{MR}) = \{\mathcal{A}(M), Mat_{N_k} \ (k = 1, 2, \cdots), Mat_{\infty}\},\$$

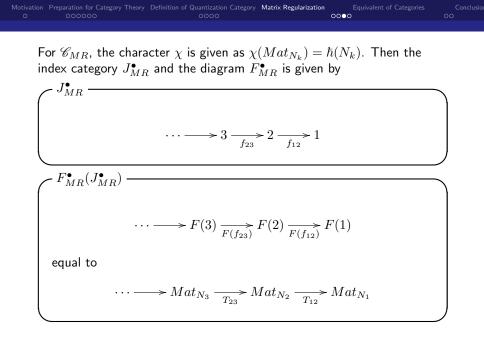
where Mat_{N_k} is a $N_k \times N_k$ matrix algebra and Mat_{∞} is the limit of $k \to \infty$.

Set of morphisms:

 $\exists ! T_i : \mathcal{A}(M) \to Mat_{N_i}, \quad \text{if } N_i \leq N_j, \ \exists ! T_{ij} : Mat_{N_j} \to Mat_{N_i}$ such that

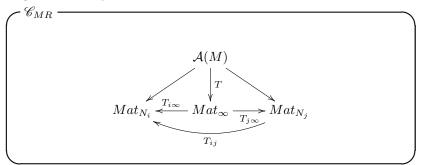
$$T_i = T_{ij} \circ T_j.$$

Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹



Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Since morphisms T_{ij} is oriented from the larger N_j to the smaller N_i , the limit by F_{MR}^{\bullet} of J_{MR}^{\bullet} is Mat_{∞} or $\mathcal{A}(M)$. \mathscr{C}_{MR} is given by the following diagram for all i, j. Thus the limit is Mat_{∞} .



Theorem

 $\mathcal{Q}_{MR} = (\mathscr{C}_{MR}, J^{\bullet}_{MR}, F^{\bullet}_{MR}, \chi)$ is a quantization category for Matrix regularization.

Jumpei Gohara¹ , Yuji Hirota² , Akifumi Sako¹

Tokyo University of Science¹, Azabu University²

Equivalence of Categories

Quantization categories for Deformation quantization and Pre-quantization can be constructed in analogy with \mathcal{Q}_{MR} . We discuss these quantization categories relationships.

Definition (Equivalent Categories)

Recall that the natural transformation $\alpha: F \to G$.

$$\begin{array}{c|c} F(X) \xrightarrow{\alpha(X)} G(X) \\ \hline F(f) & & \\ F(f) & & \\ & & \\ F(Y) \xrightarrow{\alpha(Y)} G(Y) \end{array}$$

If all $\alpha(\cdot)$ are isomorphisms, a natural transformation α is called natural isomorphism. Let $F_1: \mathscr{A} \to \mathscr{B}$ and $F_2: \mathscr{B} \to \mathscr{A}$ be functors. If natural transfromations $\alpha_1: F_2 \circ F_1 \to I_{\mathscr{A}}$ and $\alpha_2: F_1 \circ F_2 \to I_{\mathscr{B}}$ are isomorphisms, then \mathscr{A} and \mathscr{B} are called equivalent categories.

Theorem

Let \mathscr{Q}_{MR} and \mathscr{Q}_{DQ} be a quantization category for Matrix regularization and Deformation quantization, respectively. For the limit M_{∞} , if $\mathcal{A}(M) \simeq M_{\infty}$ then \mathscr{Q}_{MR} and \mathscr{Q}_{DQ} are equivalent categories.

Theorem

Let \mathscr{Q}_{PQ} be a quantization category for Pre-quantization. Under some conditions, \mathscr{Q}_{PQ} and \mathscr{Q}_{MR} and \mathscr{Q}_{DQ} are equivalent categories.

That is,

$$\mathscr{Q}_{PQ} \simeq \mathscr{Q}_{MR} \simeq \mathscr{Q}_{DQ}.$$

under some conditions.

Conclusions and Discussions

 \blacksquare We define the category ${\mathcal Q}$ as a generalization of some quantizations.

• We show the equivalence of sevaral quantization.

 However, the quantization category has almost not physical structure. (Not enough to describe physical phenomena.)

Conclusions and Discussions

 \blacksquare We define the category $\mathcal Q$ as a generalization of some quantizations.

• We show the equivalence of sevaral quantization.

 However, the quantization category has almost not physical structure. (Not enough to describe physical phenomena.)

Conclusions and Discussions

 \blacksquare We define the category ${\mathcal Q}$ as a generalization of some quantizations.

• We show the equivalence of sevaral quantization.

 However, the quantization category has almost not physical structure. (Not enough to describe physical phenomena.)

μ

Thank you for listening.