

Corfu Summer Institute 2017 9 September 2017

Hidden sector explanation

 of
B-decay \& cosmic-ray anomalies 1702.00395 / Phys.Rev.D95, 095015

Ryoutaro Watanabe (U. Montréal)
with David London (U. Montréal), James Cline, Jonathan Cornell (McGill U.)

[What I will explain today]

Z^{\prime} can simultaneously explain

SM/data deviations in $b \rightarrow s \mu^{+} \mu^{-}$
2. Cosmic ray anomaly

AMS anti-proton excess interpreted as Dark Matter annihilation

[Content]

$$
\text { constraint/prospect }: p p \rightarrow \mu^{+} \mu^{-}
$$

LHC bound

correlations

B physics

DM issue

anomaly : $b \rightarrow s \mu^{+} \mu^{-}$
constraint : $\bar{B}_{s}-B_{s}$ mixing $\boldsymbol{\nu} \boldsymbol{N} \rightarrow \boldsymbol{\nu} \boldsymbol{N} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
anomaly : antiproton excess
consistency : relic density
prospect : direct detections

[B anomaly]

Deviations from SM in $b \rightarrow s \mu^{+} \mu^{-}$
Obs. $1 \quad R_{K}=\Gamma\left(\bar{B} \rightarrow K \mu^{+} \mu^{-}\right) / \Gamma\left(\bar{B} \rightarrow K e^{+} e^{-}\right)$
SM : $1 \pm \mathcal{O}(0.01)$
$\mathrm{LHCb}: 0.745_{-0.074}^{+0.090} \pm 0.036$
$\sim 2.6 \sigma \quad 1406.6482$ (LHCb)

Obs. 2 Angular analyses of $\bar{B} \rightarrow K^{*} \ell^{+} \ell^{-}$

~100 observables.
Including all,
1308.1707 (LHCb) 1512.04442 (LHCb) 1604.04042 (Belle)

Obs. 3 Angular analyses of $\bar{B}_{s} \rightarrow \phi \ell^{+} \ell^{-}$

[B anomaly : a solution]

The deviations can be explained by
New Physics in $b \rightarrow s \mu^{+} \mu^{-}$with the form of

$$
H_{\mathrm{eff}}^{\mathrm{NP}}=-\frac{\alpha G_{F}}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\bar{\mu} \gamma^{\mu}\left(C_{V}+C_{A} \gamma^{5}\right) \mu\right]
$$

Global fit to data suggests existence of NP [1510.04239]

Point 1: with V-A current $C_{V}=-C_{A} \sim-0.65$ (best fit)

Point 2: only in muon sector

Point $3:$ comparable with $\mathrm{SM} \quad\left(C_{V}^{\mathrm{SM}} \simeq-C_{A}^{\mathrm{SM}} \simeq 0.94\right)$

[B anomaly : a model]

The simplest thought $=Z^{\prime}$ with left-handed current

$$
\mathcal{L}_{Z^{\prime}}=g_{b s}\left(\bar{s} \gamma^{\mu} P_{L} b\right) Z_{\mu}^{\prime}+g_{\mu \mu}\left(\bar{\mu} \gamma^{\mu} P_{L} \mu\right) Z_{\mu}^{\prime}
$$

[B anomaly : a model]

The simplest thought $=Z^{\prime}$ with left-handed current

$$
\mathcal{L}_{Z^{\prime}}=g_{b s}\left(\bar{s} \gamma^{\mu} P_{L} b\right) Z_{\mu}^{\prime}+g_{\mu \mu}\left(\bar{\mu} \gamma^{\mu} P_{L} \mu\right) Z_{\mu}^{\prime}
$$

To implement this interaction in a realistic model

- Z^{\prime} should be a new gauge boson (will get mass after symmetry broken)
- Interactions should respect the SM gauge invariance

This work = $\mathbf{U}(1)^{\text {' }}$ gauge

[B anomaly : $U(1)^{\prime}$ model]

This work $=\mathbf{U}(1)^{\prime}$ gauge (coupling $=g^{\prime}$, charge $=\mathbf{Q}$)

$$
\begin{gathered}
\mathcal{L}_{U(1)^{\prime}}=g^{\prime} Q_{q}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right) Z_{\mu}^{\prime}+g^{\prime} Q_{\ell}\left(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}\right) Z_{\mu}^{\prime} \\
q_{L}=\binom{u_{L}}{d_{L}}, \quad \ell_{L}=\binom{\nu_{L}}{e_{L}} \text { are charged under } U(1)^{\prime}
\end{gathered}
$$

[B anomaly : $U(1)^{\prime}$ model]

This work $=\mathbf{U}(1)^{\prime}$ gauge (coupling $=g^{\prime}$, charge $=\mathbf{Q}$)

$$
\begin{gathered}
\mathcal{L}_{U(1)^{\prime}}=g^{\prime} Q_{q}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right) Z_{\mu}^{\prime}+g^{\prime} Q_{\ell}\left(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}\right) Z_{\mu}^{\prime} \\
q_{L}=\binom{u_{L}}{d_{L}}, \quad \ell_{L}=\binom{\nu_{L}}{e_{L}} \text { are charged under } U(1)^{\prime}
\end{gathered}
$$

Structure of the couplings

- 3rd gene. quarks (tt, bb) and 2nd gene. leptons ($\mu \mu, \mathrm{vv}$) are charged
- b-s-Z' coupling is generated by a mixing of the quark field

[B anomaly : $U(1)^{\prime}$ model]

The minimum form to address the issues:

- In the gauge basis

$$
\begin{gathered}
\mathcal{L}_{U(1)^{\prime}}=g_{q}\left(\bar{q}_{L}^{3} \gamma^{\mu} q_{L}^{3}\right) Z_{\mu}^{\prime}+g_{\ell}\left(\bar{\ell}_{L}^{2} \gamma^{\mu} \ell_{L}^{2}\right) Z_{\mu}^{\prime} \\
q_{L}^{3}=\binom{t_{L}}{b_{L}}, \quad \ell_{L}^{2}=\binom{\nu_{\mu L}}{\mu_{L}}, \quad\left(g_{f}=g^{\prime} Q_{f}\right)
\end{gathered}
$$

[B anomaly : $U(1)^{\prime}$ model]

The minimum form to address the issues:

- In the gauge basis

$$
\begin{gathered}
\mathcal{L}_{U(1)^{\prime}}=g_{q}\left(\bar{q}_{L}^{3} \gamma^{\mu} q_{L}^{3}\right) Z_{\mu}^{\prime}+g_{\ell}\left(\bar{\ell}_{L}^{2} \gamma^{\mu} \ell_{L}^{2}\right) Z_{\mu}^{\prime} \\
q_{L}^{3}=\binom{t_{L}}{b_{L}}, \quad \ell_{L}^{2}=\binom{\nu_{\mu L}}{\mu_{L}}, \quad\left(g_{f}=g^{\prime} Q_{f}\right)
\end{gathered}
$$

- b-s coupling is obtained from a mixing in the mass eigen basis

$$
\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)_{\text {gauge }}=D\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)_{\text {mass }} \quad, D \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{D} & \sin \theta_{D} \\
0 & -\sin \theta_{D} & \cos \theta_{D}
\end{array}\right)
$$

- For the other fermion fields, gauge eigenstates = mass eigenstates

[$U(1)^{\prime}$ model : processes]

Allowed parameter space :

- parameters

$$
g_{q}, \quad g_{\ell}, \quad \theta_{D}, \quad \text { and mass }\left(m_{Z^{\prime}}\right)
$$

- relevant flavor constraints

[$U(1)^{\prime}$ model : processes]

Allowed parameter space :

- parameters

$$
g_{q}, \quad g_{\ell}, \quad \theta_{D}, \quad \text { and } \operatorname{mass}\left(m_{Z^{\prime}}\right)
$$

- relevant flavor constraints

Process	Observable	Constraint on
$b \rightarrow s \mu^{+} \mu^{-}$	global fit (~ 100 observables)	$g_{q} g_{\ell} \sin \theta_{D} \cos \theta_{D} m_{Z^{\prime}}^{-2}$
$b \rightarrow s \nu \bar{\nu}$	branching ratio (upper limit)	$g_{q} g_{\ell} \sin \theta_{D} \cos \theta_{D} m_{Z^{\prime}}^{-2}$
$\bar{B}_{s}^{0}-B_{s}^{0}$ mixing	mass difference $\left(\Delta M_{s}\right)$	$g_{q}^{2} \sin \theta_{D} \cos \theta_{D} m_{Z^{\prime}}^{-2}$
$\nu N \rightarrow \nu N \mu^{+} \mu^{-}$	production cross section	$g_{\ell}^{2} m_{Z^{\prime}}^{-2}$

- we define ratio of the couplings: "hierarchy of the couplings"

$$
n_{q} \equiv \frac{g_{q}}{g_{\ell}}
$$

$$
\text { (ex) } n_{q}>1 \Rightarrow g_{q}>g_{\ell}
$$

[$U(1)^{\prime}$ model : constraints]

Space on $\left(g_{q} g_{\ell} m_{Z^{\prime}}^{-2}, \theta_{D}\right)$ for several choices of $n_{q} \equiv \frac{g_{q}}{g_{\ell}}$

- Region in \square explains the $b \rightarrow s \mu^{+} \mu^{-}$anomaly
- A small mixing in limited range is only allowed

[$U(1)^{\prime}$ model : constraints]

Space on $\left(g_{q} g_{\ell} m_{Z^{\prime}}^{-2}, \theta_{D}\right)$ for several choices of $n_{q} \equiv \frac{g_{q}}{g_{\ell}}$

- Region in \square explains the $b \rightarrow s \mu^{+} \mu^{-}$anomaly
- Region in
 satisfies all the flavor constraints
- The reference point (\star)

$$
\begin{aligned}
& \theta_{D}=0.005 \\
& g_{q} g_{\ell} / m_{Z^{\prime}}^{2}=0.12 / \mathrm{TeV}^{2}
\end{aligned}
$$

- A small mixing in limited range is only allowed

[$U(1)^{\prime}$ model : summary]

Reference point

$$
g_{q} \equiv n_{\ell} g_{\ell} \simeq 0.35 \sqrt{n_{\ell}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

(Just keep this in mind)

Next point

- introduction of Dark Matter to our model
- DM solution to Cosmic Ray anomaly
- Correlation between B and CR anomalies

[$U(1)^{\prime}$ model : dark matter]

Z^{\prime} as a mediator of Dark Matter :

- We can easily introduce (Dirac) DM into our model

$$
\begin{aligned}
\mathcal{L}_{U(1)^{\prime}}= & g_{q}\left(\bar{q}_{L}^{3} \gamma^{\mu} q_{L}^{3}\right) Z_{\mu}^{\prime}+g_{\ell}\left(\bar{\ell}_{L}^{2} \gamma^{\mu} \ell_{L}^{2}\right) Z_{\mu}^{\prime} \\
& +g_{\chi}\left(\bar{\chi} \gamma^{\mu} \chi\right) Z_{\mu}^{\prime}
\end{aligned}
$$

- DM annihilation channel

$$
\langle\sigma v\rangle=\frac{g_{\chi}^{2}\left(3 g_{q}^{2}+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{m_{\chi}^{2}}{m_{Z^{\prime}}^{4}}\right)
$$

So, what can we play with this?

[CR anomaly]

AMS-02 antiproton observation

- Precise measurement of antiproton flux in cosmic rays at ISS

Phys. Rev. Lett. 117.091103

[CR anomaly : DM interpretation]

AMS-02 antiproton observation

- Recent studies for re-fit to AMS data taking DM into account suggest $\chi \bar{\chi} \rightarrow b \bar{b}$ is favored when $m_{\chi} \sim 70 \mathrm{GeV}$ and $\langle\sigma v\rangle \sim$ Relic density

Phys.Rev.Lett. 118.191102

Phys.Rev.Lett.118.191101

[CR anomaly : DM solution]

Implication with respect to our model

- [Relic density] + [DM favored by AMS-02 data]

$$
\langle\sigma v\rangle=\frac{g_{\chi}^{2}\left(3 g_{q}^{2}+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{(70 \mathrm{GeV})^{2}}{m_{Z^{\prime}}^{4}}\right) \simeq 4.4 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}
$$

- DM solution in our model

$$
g_{\chi} \equiv n_{\chi} g_{q} \simeq 1.09 \sqrt{n_{\chi}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

[CR anomaly : DM solution]

Implication with respect to our model

- [Relic density] + [DM favored by AMS-02 data]

$$
\begin{aligned}
& \langle\sigma v\rangle=\frac{g_{\chi}^{2}\left(3 g_{q}^{2}+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{(70 \mathrm{GeV})^{2}}{m_{Z^{\prime}}^{4}}\right) \simeq 4.4 \times 10^{-26} \mathrm{~cm}^{3} / s \\
& (\chi \bar{\chi} \rightarrow b \bar{b} \text { dominated })
\end{aligned}
$$

- DM solution in our model

$$
g_{\chi} \equiv n_{\chi} g_{q} \simeq 1.09 \sqrt{n_{\chi}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

[CR anomaly : DM solution]

Implication with respect to our model

- [Relic density] + [DM favored by AMS-02 data]

$$
\begin{gathered}
\langle\sigma v\rangle=\frac{g_{\chi}^{2}\left(3 g_{q}^{2}+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{(70 \mathrm{GeV})^{2}}{m_{Z^{\prime}}^{4}}\right) \simeq 4.4 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s} \\
(\chi \bar{\chi} \rightarrow b \bar{b} \text { dominated) } \quad \text { (AMS-02 data favored) }
\end{gathered}
$$

- DM solution in our model

$$
g_{\chi} \equiv n_{\chi} g_{q} \simeq 1.09 \sqrt{n_{\chi}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

[CR anomaly : DM solution]

Implication with respect to our model

- [Relic density] + [DM favored by AMS-02 data]

$$
\begin{gathered}
\langle\sigma v\rangle=\frac{g_{\chi}^{2}\left(3 g_{q}^{2}+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{(70 \mathrm{GeV})^{2}}{m_{Z^{\prime}}^{4}}\right) \simeq 4.4 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s} \\
(\chi \bar{\chi} \rightarrow b \bar{b} \text { dominated) } \\
\text { (AMS-02 data favored) } \\
\text { (Relic density) }
\end{gathered}
$$

- DM solution in our model

$$
g_{\chi} \equiv n_{\chi} g_{q} \simeq 1.09 \sqrt{n_{\chi}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

[CR anomaly : DM solution]

Implication with respect to our model

- [Relic density] + [DM favored by AMS-02 data]

$$
\langle\sigma v\rangle=\frac{\left.\left.g_{x}^{2}\right)\left(3 g_{q}^{2}\right)+2 g_{\ell}^{2}\right)}{2 \pi}\left(\frac{(70 \mathrm{GeV})^{2}}{m_{Z^{\prime}}^{4}}\right) \simeq 4.4 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}
$$

- DM solution in our model

$$
g_{\chi} \equiv n_{\chi} g_{q} \simeq 1.09 \sqrt{n_{\chi}}\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)
$$

[B and CR anomalies]

Requirement

- In terms of couplings
B physics : $g_{q}^{2} \simeq 0.12 n_{q} \times\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)^{2}$ for the point \star
Astrophysics : $g_{q}^{2} \simeq \frac{1.2}{n_{\chi}} \times\left(\frac{m_{Z^{\prime}}}{1 \mathrm{TeV}}\right)^{2} \quad$ for $m_{\chi}=70 \mathrm{GeV}$

$$
n_{\chi} \cdot n_{q} \simeq 10 \quad\left(g_{\chi} \equiv n_{\chi} g_{q}, g_{q} \equiv n_{q} g_{\ell}\right)
$$

- The DM re-fit to AMS data indicates $\chi \bar{\chi} \rightarrow b \bar{b}$ is dominant process

At least, $n_{q}>1 \quad\left(g_{q}>g_{\ell}\right)$
Indeed, $\quad n_{q}=2 \quad\left(g_{q}=2 g_{\ell}\right)$ is sufficient (86% of full bb case)

[B and CR anomalies : LHC prospect]

Collider limit and prospect

> [ATLAS-CONF-2016-045]
> ATLAS 13 TeV
> $\cdots \cdots n_{q}=2, n_{\chi}=5$
> $\cdots \cdots \cdots n_{q}=5, n_{\chi}=2$
> $n_{\chi} \Pi=\operatorname{Br}\left(Z^{\prime} \rightarrow \mu \mu\right)$
> z' mass $\Pi=$ couplings

Hierarchical couplings are favored: $g_{\chi}>g_{q}>g_{\ell}$
Small Z' mass is (1) still viable
(2) rather favored
$m_{Z^{\prime}} \sim 500 \mathrm{GeV}$

[B and CR anomalies : DM prospect]

Current \& future limits of DM direct detection

[Talk by M. Lisanti] 1612.01223 (PandaX-II) 1602.03489 (LUX) 1509.02910 (LZ)

Current $\sim 2 \times 10^{-45} \mathrm{~cm}^{2}$
Future $\sim 10^{-48} \mathrm{~cm}^{2}$

DM-proton scattering in nucleon

- Kinetic mixing (ε) of \mathbf{Z}^{\prime} and photon induces a contribution
- Our naive estimation obtains $\sigma_{p}=\frac{\left(\epsilon e g_{\chi} m_{p}\right)^{2}}{\pi m_{Z^{\prime}}^{4}} \lesssim 1.7 \times 10^{-45} \mathrm{~cm}^{2}$

[Summary]

Z^{\prime} can simultaneously explain

SM/data deviations in $b \rightarrow s \mu^{+} \mu^{-}$
AMS anti-proton excess interpreted as Dark Matter annihilation

One viable scenario :

$$
\mathcal{L}_{U(1)^{\prime}}=g_{q}\left(\bar{q}_{L}^{3} \gamma^{\mu} q_{L}^{3}\right) Z_{\mu}^{\prime}+g_{\ell}\left(\bar{\ell}_{L}^{2} \gamma^{\mu} \ell_{L}^{2}\right) Z_{\mu}^{\prime}+g_{\chi}\left(\bar{\chi} \gamma^{\mu} \chi\right) Z_{\mu}^{\prime}
$$

with

$$
g_{\chi} \simeq 5 g_{q}, g_{q} \simeq 2 g_{\ell}, \quad\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)_{\text {gauge }} \simeq\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sim 1 & 0.005 \\
0 & -0.005 & \sim 1
\end{array}\right)\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)_{\text {mass }}
$$

[Summary]

$$
\text { constraint/prospect }: p p \rightarrow \mu^{+} \mu^{-}
$$

LHC bound

B physics

DM issue

anomaly $: b \rightarrow s \mu^{+} \mu^{-}$
constraint : $\bar{B}_{s}-B_{s}$ mixing $\boldsymbol{\nu} \boldsymbol{N} \rightarrow \boldsymbol{\nu} \boldsymbol{N} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
anomaly : antiproton excess
consistency : relic density
prospect : direct detections

[Summary]

$$
\text { constraint/prospect }: p p \rightarrow \mu^{+} \mu^{-}
$$

LHC bound

B physics

anomaly :
constraint : $\widehat{B}_{s}-\boldsymbol{B}_{s}$ mixing

$$
\nu N \rightarrow \nu N \mu^{+} \mu^{-}
$$

anomaly : experton excess
consistency : relic density
prospect : direct detections

[Summary]

anomaly :
constraint : $\boldsymbol{B}_{s}-\boldsymbol{B}_{s}$ mixing

$$
\nu \boldsymbol{N} \rightarrow \boldsymbol{\nu} \boldsymbol{N} \mu^{+} \mu^{-}
$$

Thenk y/v!

[DM direct detection]

DM-nucleon scattering

- Coupling to up-quark is very much suppressed, but exists

$$
\begin{aligned}
\mathcal{L}_{u \bar{u} Z^{\prime}}= & g_{q} X_{u u}\left(\bar{u} \gamma^{\mu} P_{L} u\right) Z_{\mu}^{\prime} \\
& X_{u u} \sim\left|V_{u b}-\theta_{D} V_{u s}\right|^{2} \sim 6 \times 10^{-6} \text { for } \star
\end{aligned}
$$

(no interaction of $d-\bar{d}-Z^{\prime}$)

- Still, it gives rise to a contribution to $\chi N \rightarrow \chi N$

$$
\begin{aligned}
\sigma_{N} & =(1+Z / A)^{2} \frac{g_{\chi}^{2} g_{q}^{2} X_{u u}^{2}}{4 \pi} \frac{m_{n}^{2}}{m_{Z^{\prime}}^{2}} \\
& \simeq 2 \times 10^{-51} \mathrm{~cm}^{2}
\end{aligned}
$$

keeping the conditions from B-physics \& Astrophysics for the $n_{q}=2, n_{\chi}=5$ scenario and for xenon

[DM direct detection]

Kinetic mixing of $Z^{\prime} \&$ photon $\frac{\epsilon}{2} F^{\mu \nu} Z_{\mu \nu}^{\prime}$ ソ M N Z^{\prime}

- Natural size at one loop (for "marginal" point)

1. Log divergence at UV cancels only if $g_{q}=g_{\ell}$
2. The present case is, however, $g_{q}>g_{\ell}$
3. Possible solution is to introduce heavy vector-like fermion (F)
4. In this case, contribution at the low energy is calculable

$$
\epsilon \sim 0.04 e g_{q} \quad\left(\text { for } m_{F} \sim 100 \mathrm{TeV} \text { and } g_{q}=2 g_{\ell}\right)
$$

- DM can then interact with proton in nucleon

$$
\sigma_{p}=\frac{\left(\epsilon e g_{\chi} m_{p}\right)^{2}}{\pi m_{Z^{\prime}}^{4}} \sim 1.7 \times 10^{-45} \mathrm{~cm}^{2}
$$

1. Just below the bound from PandaX-II $1.8 \times 10^{-45} \mathrm{~cm}^{2}$
2. Well above the expected reach of $L Z$ experiment $\sim 10^{-47} \mathrm{~cm}^{2}$

[UV completion]

Simple example

- Gauged flavor symmetries

$$
\begin{aligned}
& S U(3)_{q} \times S U(3)_{u} \times S U(3)_{d} \times S U(3)_{\ell} \times S U(3)_{e} \times O(3)_{\nu_{R}} \\
& S U(3)_{q} \times S U(3)_{\ell} \rightarrow U(1)^{\prime} \text { at } \mathrm{TeV} \text { scale }
\end{aligned}
$$

- Direction of $\mathbf{U (1)}$,

We assign $U(1)^{\prime}$ in a way that q^{3} and ℓ^{2} are charged under $U(1)^{\prime}$

- Some requirements (unimportant for today's topic)

Scalar field that breaks U(1)' to get \mathbf{Z}^{\prime} mass
Chiral fermion(s) to ensure anomaly free
Cut-off scale ($>100 \mathrm{TeV}$ for $<1 \mathrm{TeV} Z^{\prime}$ mass) due to running effect of g_{χ}

[UV completion]

Realization of $\mathbf{U}(1)$ '

- gives a prediction on hierarchy of coupling

arXiv:1704.08158

$S U(3)_{H} \times U(1)_{B-L} \rightarrow U(1)^{\prime}$

$$
n_{q}=5 / 9, \quad n_{\chi}=? \quad\left(\mathrm{DM}=\nu_{R}\right)
$$

$$
\theta_{D} \sim V_{t b} V_{t s}^{*}
$$

arXiv:1706.08510

$S U(3)_{L} \times S U(3)_{R} \rightarrow U(1)^{\prime}$
$n_{q}=4, \quad n_{\chi}=? \quad(\mathrm{DM}$ is not considered)
$\theta_{D} \sim V_{t b} V_{t s}^{*}$

[LHC bound]

Two relevant analyses

[ATLAS-CONF-2016-045]
(also, CMS-PAS-EXO-16-031)

[arXiv:1611.03568]

[LHC bound]

Usual bound vs Our bound

[ATLAS-CONF-2016-045]
(also, CMS-PAS-EXO-16-031)
[Reference model]

$g_{\mathrm{SM}}\left(\bar{q}_{L} \gamma^{\mu} \boldsymbol{q}_{L}\right) Z_{\mu}^{\prime}$

$$
q=u, d, s,(c, b)
$$

$g_{\mathrm{SM}}=Z$ coupling

[Our model]

PDF suppressed

Smaller mass

 will be allowed
[Cosmic Ray anomaly]

AMS-02 antiproton observation

- Fit including DM

[arXiv:1610.03071]

[Cosmic Ray anomaly]

Conflict with dwarf spheroidal galaxies?

The most recent Fermi-LAT searches for emission from dark matter annihilation in dwarf spheroidal galaxies currently exclude cross sections of $\langle\sigma v\rangle>1.9 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{s}$ at 95% C.L. for 80 GeV DM annihilating to $b \bar{b}$ [53]. This is in tension with the cross sections suggested by the DM interpretation of the \bar{p} excess. However, recent works [54, 55] have pointed out that the dark matter content of some of the dwarf spheroidals in the Fermi analysis may have been overestimated, resulting in a less stringent limit that can be compatible with DM explanations of cosmic ray excesses.
[arXiv:1504.02048]
[arXiv:1603.07721]

