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Overview

• Motivation: NCG and HEP

• Noncommutative Riemannian spin manifolds (aka spectral
triples)

• Gauge theory from spectral triples: gauge group, gauge fields

• The spectral Standard Model and Beyond
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A fermion in a spacetime background

• Spacetime is a (pseudo)
Riemannian manifold M:
local coordinates xµ generate
algebra C∞(M).

• Propagator is described by Dirac
operator DM , essentially a
’square root’ of the Laplacian.

waltervansuijlekom.nl 22 September 2017 Beyond the spectral Standard Model: Pati-Salam unification3 / 40



A fermion in a spacetime background

• Spacetime is a (pseudo)
Riemannian manifold M:
local coordinates xµ generate
algebra C∞(M).

• Propagator is described by Dirac
operator DM , essentially a
’square root’ of the Laplacian.

waltervansuijlekom.nl 22 September 2017 Beyond the spectral Standard Model: Pati-Salam unification3 / 40



A fermion in a spacetime background

• Spacetime is a (pseudo)
Riemannian manifold M:
local coordinates xµ generate
algebra C∞(M).

• Propagator is described by Dirac
operator DM , essentially a
’square root’ of the Laplacian.

waltervansuijlekom.nl 22 September 2017 Beyond the spectral Standard Model: Pati-Salam unification3 / 40



The circle

• The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

• The Dirac operator on the circle is

DS1 = −i
d

dt

with square ∆S1 .
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The 2-dimensional torus

• Consider the two-dimensional torus T2 parametrized by two
angles t1, t2 ∈ [0, 2π).

• The Laplacian reads

∆T2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.

• At first sight it seems difficult to construct a differential
operator that squares to ∆T2 :(

a
∂

∂t1
+ b

∂

∂t2

)2

= a2 ∂
2

∂t2
1

+ 2ab
∂2

∂t1∂t2
+ b2 ∂

2

∂t2
2
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• This puzzle was solved by Dirac who considered the possibility
that a and b be complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0

• The Dirac operator on the torus is

DT2 =

 0
∂

∂t1
+ i

∂

∂t2

− ∂

∂t1
+ i

∂

∂t2
0

 ,

which satisfies (DT2)2 = − ∂2

∂t2
1

− ∂2

∂t2
2

.
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The 4-dimensional torus

• Consider the 4-torus T4 parametrized by t1, t2, t3, t4 and the
Laplacian is

∆T4 = − ∂2

∂t2
1

− ∂2

∂t2
2

− ∂2

∂t2
3

− ∂2

∂t2
4

.

• The search for a differential operator that squares to ∆T4

again involves matrices, but we also need quaternions:

i2 = j2 = k2 = ijk = −1.

• The Dirac operator on T4 is

DT4 =

(
0 ∂

∂t1
+i ∂

∂t2
+j ∂

∂t3
+k ∂

∂t4

− ∂
∂t1

+i ∂
∂t2

+j ∂
∂t3

+k ∂
∂t4

0

)
• The relations ij = −ji , ik = −ki , et cetera imply that its

square coincides with ∆T4 .
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Hearing the shape of a drum: motivation from math
Kac (1966), Connes (1989)

• The geometry of M is not fully determined by spectrum of
DM .

• This is considerably improved by considering besides DM also
the algebra C∞(M) of smooth (coordinate) functions on M

• In fact, the Riemannian distance function on M is equal to

d(x , y) = sup
f ∈C∞(M)

{|f (x)− f (y)| : gradient f ≤ 1}

x y x y

f

• The gradient of f is given by the commutator

[DM , f ] = DM f − fDM (e.g. [DS1 , f ] = −i
df

dt
)
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NCG and HEP

Replace spacetime by spacetime × finite (nc) space:
M × F

• F is considered as internal space (Kaluza–Klein like)

• F is described by a noncommutative algebra, such as M3(C),
just as spacetime is described by coordinate functions xµ(p).

• ‘Propagation’ of particles in F is described by a Dirac-type
operator DF which is actually simply a hermitian matrix.
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Finite spaces

• Finite space F , discrete topology

F = 1 • 2 • · · · · · · N•

• Smooth functions on F are given by N-tuples in CN , and the
corresponding algebra C∞(F ) corresponds to diagonal
matrices 

f (1) 0 · · · 0
0 f (2) · · · 0
...

. . .
...

0 0 . . . f (N)


• The finite Dirac operator is an arbitrary hermitian matrix DF ,

giving rise to a distance function on F as

d(p, q) = sup
f ∈C∞(F )

{|f (p)− f (q)| : ‖[DF , f ]‖ ≤ 1}
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Example: two-point space

F = 1 • 2•

• Then the algebra of smooth functions

C∞(F ) :=

{(
λ1 0
0 λ2

) ∣∣∣∣λ1, λ2 ∈ C
}

• A finite Dirac operator is given by

DF =

(
0 c
c 0

)
; (c ∈ C)

• The distance formula then becomes

d(1, 2) =
1

|c |
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Finite noncommutative spaces

The geometry of F gets much more interesting if we allow for a
noncommutative structure at each point of F .

• Instead of diagonal matrices, we consider block diagonal
matrices

A =


a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 . . . aN

 ,

where the a1, a2, . . . aN are square matrices of size
n1, n2, . . . , nN .

• Hence we will consider the matrix algebra

AF := Mn1(C)⊕Mn2(C)⊕ · · · ⊕MnN (C)

• A finite Dirac operator is still given by a hermitian matrix.
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Example: noncommutative two-point space

The two-point space can be given a noncommutative structure by
considering the algebra AF of 3× 3 block diagonal matrices of the
following form λ 0 0

0 a11 a12

0 a21 a22


A finite Dirac operator for this example is given by a hermitian
3× 3 matrix, for example

DF =

0 c 0
c 0 0
0 0 0
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Spectral triples
Noncommutative Riemannian spin manifolds

(A,H,D)

• Extended to real spectral triple:
• J : H → H real structure (charge conjugation)

such that
J2 = ±1; JD = ±DJ

• Right action of A on H: aop = Ja∗J−1 so that
(ab)op = bopaop and

[aop, b] = 0; a, b ∈ A

• D is said to satisfy first-order condition if

[[D, a], bop] = 0
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Spectral invariants
Chamseddine–Connes (1996, 1997)

Trace f (D/Λ) +
1

2
〈Jψ̃,Dψ̃〉

• Invariant under unitaries u ∈ U(A) acting as

D 7→ UDU∗; U = u(u∗)op

• Gauge group: G(A) := {u(u∗)op : u ∈ U(A)}.
• Compute rhs:

D 7→ D + u[D, u∗]± Ju[D, u∗]J−1
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Semigroup of inner perturbations
Chamseddine–Connes-vS (2013)

Extend this to more general perturbations:

Pert(A) :=


∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣∣∣∣∣
∑
j

ajbj = 1∑
j

aj ⊗ bop
j =

∑
j

b∗j ⊗ a∗opj


with semi-group law inherited from product in A⊗Aop.

• U(A) maps to Pert(A) by sending u 7→ u ⊗ u∗op.

• Pert(A) acts on D:

D 7→
∑
j

ajDbj = D +
∑
j

aj [D, bj ]

and this also extends to real spectral triples via the map

Pert(A)→ Pert(A⊗ JAJ−1)
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Perturbation semigroup for matrix algebras

Proposition

Let AF be the algebra of block diagonal matrices (fixed size).
Then the perturbation semigroup of AF is

Pert(AF ) '


∑
j

Aj ⊗ Bj ∈ AF ⊗AF

∣∣∣∣∣∣∣∣
∑
j

Aj(Bj)
t = I∑

j

Aj ⊗ Bj =
∑
j

Bj ⊗ Aj



The semigroup law in Pert(AF ) is given by the matrix product in
AF ⊗AF :

(A⊗ B)(A′ ⊗ B ′) = (AA′)⊗ (BB ′).
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Example: perturbation semigroup of two-point space

• Now AF = C2, the algebra of diagonal 2× 2 matrices.

• In terms of the standard basis of such matrices

e11 =

(
1 0
0 0

)
, e22 =

(
0 0
0 1

)
we can write an arbitrary element of Pert(C2) as

z1e11 ⊗ e11 + z2e11 ⊗ e22 + z3e22 ⊗ e11 + z4e22 ⊗ e22

• Matrix multiplying e11 and e22 yields for the normalization
condition:

z1 = 1 = z4.

• The self-adjointness condition reads

z2 = z3

leaving only one free complex parameter so that
Pert(C2) ' C.

• More generally, Pert(CN) ' CN(N−1)/2 with componentwise
product.
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Example: perturbation semigroup of M2(C)

• Let us consider a noncommutative example, AF = M2(C).

• We can identify M2(C)⊗M2(C) with M4(C) so that elements
in Pert(M2(C) are 4× 4-matrices satisfying the normalization
and self-adjointness condition. In a suitable basis:

Pert(M2(C)) =




1 v1 v2 iv3

0 x1 x2 ix3

0 x4 x5 ix6

0 ix7 ix8 x9

∣∣∣∣ v1, v2, v3 ∈ R
x1, . . . x9 ∈ R


and one can show that

Pert(M2(C)) ' R3 o S .

• More generally (B.Sc. thesis Niels Neumann),

Pert(MN(C)) 'W o S ′.
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Example: noncommutative two-point space

• Consider noncommutative two-point space described by
C⊕M2(C)

• It turns out that

Pert(C⊕M2(C)) ' M2(C)× Pert(M2(C))

• Only M2(C) ⊂ Pert(C⊕M2(C)) acts non-trivially on DF :

DF =

0 c 0
c 0 0
0 0 0

 7→
 0 cφ1 cφ2

cφ1 0 0
cφ2 0 0


• Physicists call φ1 and φ2 the Higgs field.

• The group of unitary block diagonal matrices is now
U(1)× U(2) and an element (λ, u) therein acts as(

φ1

φ2

)
7→ λu

(
φ1

φ2

)
.
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Example: perturbation semigroup of a manifold

Recall, for any involutive algebra A

Pert(A) :=


∑
j

aj ⊗ bop
j ∈ A⊗A

op

∣∣∣∣∣∣∣∣
∑
j

ajbj = 1∑
j

aj ⊗ bop
j =

∑
j

b∗j ⊗ a∗opj


• We can consider functions in C∞(M)⊗ C∞(M) as functions

of two variables in C∞(M ×M).

• The normalization and self-adjointness condition in
Pert(C∞(M)) translate accordingly and yield

Pert(C∞(M)) =

{
f ∈ C∞(M ×M)

∣∣∣∣ f (x , x) = 1

f (x , y) = f (y , x)

}
• The action of Pert(C∞(M)) on the partial derivatives

appearing in a Dirac operator DM is given by

∂

∂xµ
7→ ∂

∂xµ
+

∂

∂yµ
f (x , y)

∣∣∣∣
y=x

=: ∂µ + Aµ
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Applications to particle physics

• Combine (4d) Riemannian spin manifold M with finite
noncommutative space F :

M × F

• F is internal space at each point of M

• Described by matrix-valued functions on M: algebra
C∞(M,AF )
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Dirac operator on M × F

• Recall the form of DM :

DM =

(
0 D+

M
D−M 0

)
.

• Dirac operator on M × F is the combination

DM×F = DM + γ5DF =

(
DF D+

M
D−M −DF

)
.

• The crucial property of this specific form is that it squares to
the sum of the two Laplacians on M and F :

D2
M×F = D2

M + D2
F

• Using this, we can expand the heat trace:

Trace e−D
2
M×F /Λ2

=
Vol(M)Λ4

(4π)2
Trace

(
1−

D2
F

Λ2
+

D4
F

2Λ4

)
+O(Λ−1).
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The Higgs mechanism

We apply this to the noncommutative two-point space described
before

• Algebra AF = C⊕M2(C)

• Perturbation of Dirac operator DM parametrized by gauge
bosons for U(1)× U(2).

• Perturbation of finite Dirac operator DF parametrized by
φ1, φ2.

• Spectral action for the perturbed Dirac operator induces a
potential:

V (φ) = −2Λ2(|φ1|2 + |φ2|2) + (|φ1|2 + |φ2|2)2
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The spectral Standard Model

Describe M × FSM by [CCM 2007]

• Coordinates: x̂µ(p) ∈ C⊕H⊕M3(C) (with unimodular
unitaries U(1)Y × SU(2)L × SU(3)).

• Dirac operator DM×F = DM + γ5DF where

DF =

(
S T ∗

T S

)
is a 96× 96-dimensional hermitian matrix where 96 is:

3 × 2 ×( 2⊗ 1 + 1⊗ 1 + 1⊗ 1 + 2⊗ 3 + 1⊗ 3 + 1⊗ 3 )

families

anti-particles

(νL, eL) νR eR (uL, dL) uR dR
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The Dirac operator on FSM

DF =

(
S T ∗

T S

)

• The operator S is given by

Sl :=


0 0 Yν 0
0 0 0 Ye

Y ∗ν 0 0 0
0 Y ∗e 0 0

 , Sq ⊗ 13 =


0 0 Yu 0
0 0 0 Yd

Y ∗u 0 0 0
0 Y ∗d 0 0

⊗ 13,

where Yν , Ye , Yu and Yd are 3× 3 mass matrices acting on
the three generations.

• The symmetric operator T only acts on the right-handed
(anti)neutrinos, TνR = YRνR for a 3× 3 symmetric Majorana
mass matrix YR , and Tf = 0 for all other fermions f 6= νR .
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Inner perturbations

• Inner perturbations of DM give a matrix

Aµ =


Bµ 0 0 0

0 W 3
µ W +

µ 0

0 W−
µ −W 3

µ 0
0 0 0 (G a

µ)


corresponding to hypercharge, weak and strong interaction.

• Inner perturbations of DF give(
Yν 0
0 Ye

)
 

(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
corresponding to SM-Higgs field. Similarly for Yu,Yd .

waltervansuijlekom.nl 22 September 2017 Beyond the spectral Standard Model: Pati-Salam unification27 / 40



Inner perturbations

• Inner perturbations of DM give a matrix

Aµ =


Bµ 0 0 0

0 W 3
µ W +

µ 0

0 W−
µ −W 3

µ 0
0 0 0 (G a

µ)


corresponding to hypercharge, weak and strong interaction.

• Inner perturbations of DF give(
Yν 0
0 Ye

)
 

(
Yνφ1 −Yeφ2

Yνφ2 Yeφ1

)
corresponding to SM-Higgs field. Similarly for Yu,Yd .

waltervansuijlekom.nl 22 September 2017 Beyond the spectral Standard Model: Pati-Salam unification27 / 40



Dynamics and interactions

If we consider the spectral action:

Trace f (DM/Λ) ∼ c0

∫
FµνFµν−c ′2|φ|2 + c ′0|φ|4 + · · ·

we observe [CCM 2007]:

• The coupling constants of hypercharge, weak and strong
interaction are expressed in terms of the single constant c0

which implies

g 2
3 = g 2

2 =
5

3
g 2

1

In other words, there should be grand unification.

• Moreover, the quartic Higgs coupling λ is related via

λ ≈ 24
3 + ρ4

(3 + ρ2)2
g 2

2 ; ρ =
mν

mtop
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Phenomenology of the spectral Standard Model

This can be used to derive predictions as follows:

• Interpret the spectral action as an effective field theory at
ΛGUT ≈ 1013 − 1016 GeV.

• Run the quartic coupling constant λ to SM-energies to predict

m2
h =

4λM2
W

3g 2
2

2 4 6 8 10 12 14 16

1.1

1.2

1.3

1.4

1.5

1.6

log10 HΜ�GeVL

Λ

This gives [CCM 2007]

167 GeV ≤ mh ≤ 176 GeV
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Three problems

1 This prediction is falsified by the
now measured value.

2 In the Standard Model there is
not the presumed grand
unification.

3 There is a problem with the low
value of mh, making the Higgs
vacuum un/metastable
[Elias-Miro et al. 2011].

5 10 15
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Beyond the SM with noncommutative geometry
A solution to the above three problems?

• The matrix coordinates of the Standard Model arise naturally
as a restriction of the following coordinates

x̂µ(p) =
(
qµR(p), qµL (p),mµ(p)

)
∈ HR ⊕HL ⊕M4(C)

corresponding to a Pati–Salam unification:

U(1)Y × SU(2)L × SU(3)→ SU(2)R × SU(2)L × SU(4)

• The 96 fermionic degrees of freedom are structured as(
νR uiR νL uiL

eR diR eL diL

)
(i = 1, 2, 3)

• Again the finite Dirac operator is a 96× 96-dimensional
matrix (details in [CCS 2013]).
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Inner perturbations

• Inner perturbations of DM now give three gauge bosons:

W µ
R , W µ

L , V µ

corresponding to SU(2)R × SU(2)L × SU(4).

• For the inner perturbations of DF we distinguish two cases,
depending on the initial form of DF :

I The Standard Model DF =

(
S T ∗

T S

)
II A more general DF with zero f L − fL-interactions.
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Scalar sector of the spectral Pati–Salam model

Case I For a SM DF , the resulting scalar fields are composite fields,
expressed in scalar fields whose representations are:

SU(2)R SU(2)L SU(4)

φbȧ 2 2 1
∆ȧI 2 1 4

ΣI
J 1 1 15

Case II For a more general finite Dirac operator, we have fundamental
scalar fields:

particle SU(2)R SU(2)L SU(4)

ΣbJ
ȧJ 2 2 1 + 15

HȧI ḃJ

{
3
1

1
1

10
6
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Action functional

As for the Standard Model, we can compute the spectral action
which describes the usual Pati–Salam model with

• unification of the gauge couplings

gR = gL = g .

• A rather involved, fixed scalar potential, still subject to further
study
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Phenomenology of the spectral Pati–Salam model

However, independently from the spectral action, we can analyze
the running at one loop of the gauge couplings [CCS 2015]:

1 We run the Standard Model gauge couplings up to a
presumed PS → SM symmetry breaking scale mR

2 We take their values as boundary conditions to the
Pati–Salam gauge couplings gR , gL, g at this scale via

1

g 2
1

=
2

3

1

g 2
+

1

g 2
R

,
1

g 2
2

=
1

g 2
L

,
1

g 2
3

=
1

g 2
,

3 Vary mR in a search for a unification scale Λ where

gR = gL = g

which is where the spectral action is valid as an effective
theory.
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Phenomenology of the spectral Pati–Salam model
Case I: Standard Model DF

For the Standard Model Dirac operator, we have found that with
mR ≈ 4.25× 1013 GeV there is unification at Λ ≈ 2.5× 1015 GeV:
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Phenomenology of the spectral Pati–Salam model
Case I: Standard Model DF

In this case, we can also say something about the scalar particles
that remain after SSB:

U(1)Y SU(2)L SU(3)(
φ0

1

φ+
1

)
=

(
φ1

1̇
φ2

1̇

)
1 2 1(

φ−2
φ0

2

)
=

(
φ1

2̇
φ2

2̇

)
−1 2 1

σ 0 1 1

η −2

3
1 3

• It turns out that these scalar fields have a little influence on
the running of the SM-gauge couplings (at one loop).

• However, this sector contains the real scalar singlet σ that
allowed for a realistic Higgs mass and that stabilizes the Higgs
vacuum [CC 2012].
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Phenomenology of the spectral Pati–Salam model
Case II: General Dirac

For the more general case, we have found that with
mR ≈ 1.5× 1011 GeV there is unification at Λ ≈ 6.3× 1016 GeV:
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Conclusion

We have arrived at a spectral Pati–Salam model that

• goes beyond the Standard Model

• has a fixed scalar sector once the finite Dirac operator has
been fixed (only a few scenarios)

• exhibits grand unification for all of these scenarios (confirmed
by [Aydemir–Minic–Sun–Takeuchi 2015])

• the scalar sector has the potential to stabilize the Higgs
vacuum and allow for a realistic Higgs mass.
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Further reading

A. Chamseddine, A. Connes, WvS.

Beyond the Spectral Standard Model: Emergence of
Pati-Salam Unification. JHEP 11 (2013) 132.
[arXiv:1304.8050]

Grand Unification in the Spectral Pati-Salam Model. JHEP 11
(2015) 011. [arXiv:1507.08161]

WvS.

Noncommutative Geometry and Particle Physics.
Mathematical Physics Studies, Springer, 2015.

and also: http://www.noncommutativegeometry.nl
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