Deformation quantization of non-geometric backgrounds in M-theory

Vladislav Kupriyanov

MPI Munich \& UFABC

Based on: JHEP 1509 (2015) 103; Nucl.Phys. B910 (2016) 240; JHEP 1702 (2017) 099
September 26, 2017

Contents

- Deformation quantization and star product.
- Quantization of non-Poisson structures.
- Non-associative Weyl star product.
- Quantization of constant R-flux.
- G_{2}-structures and deformation quantization.
- Quantization of non-geometric M-theory background.
- Discussion.

Deformation quantization: BFFLS, '77

Let A be an algebra of functions on \mathbb{R}^{N}, e.g., $C^{\infty}\left(\mathbb{R}^{N}\right), \operatorname{Poly}\left(\mathbb{R}^{N}\right)$. Star product is a formal deformation of the pointwise product on A in the direction of a given Poisson bivector field $P^{i j}(x)$.
(1) A formal deformation,

$$
f \cdot g \rightarrow f \star g=f \cdot g+\sum_{r=1}^{\infty}(i \hbar)^{r} C_{r}(f, g)
$$

(2) The "Initial condition",

$$
\lim _{\hbar \rightarrow 0} \frac{[f, g]_{\star}}{2 i \hbar}=\{f, g\}=P^{i j}(x) \partial_{i} f \partial_{j} g
$$

(3) The associativity condition, $(f \star g) \star h=f \star(g \star h)$.

The last condition

- requires Jacoby Identity for consistency:
$\{f, g, h\}:=\{f,\{g, h\}\}+\{h,\{f, g\}\}+\{g,\{h, f\}\}=0$.
- allows to proceed to higher orders, $C_{r}(f, g), r>1$,

Existence: Formality theorem by M. Kontsevich, '97,

- Magnetic charges through covariant momenta:

$$
\begin{aligned}
& \left\{x^{i}, x^{j}\right\}=0, \quad\left\{x^{i}, \pi_{j}\right\}=\delta_{j}^{i}, \\
& \left\{\pi_{i}, \pi_{j}\right\}=e \varepsilon_{i j k} B^{k}(x), \\
& \left\{\pi_{i}, \pi_{j}, \pi_{k}\right\}=e \varepsilon_{i j k} \operatorname{div} \vec{B} .
\end{aligned}
$$

For Dirac monopole, $\vec{B}(\vec{x})=g \vec{x} / x^{3}$. For a constant uniform magnetic charge distribution one sets, $\vec{B}(\vec{x})=\rho \vec{x} / 3$, then $\operatorname{div} \vec{B}=\rho$.
Constant R-flux [Blumenhagen, Plauschin \& Lüst '10] $\left\{x^{i}, x^{j}\right\}=\frac{\ell_{s}^{3}}{\hbar^{2}} R^{i j k} p_{k}, \quad\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i} \quad\left\{p_{i}, p_{j}\right\}=0$ Making, $p \rightarrow x$ and $x \rightarrow-p$, one obtains the algebra of a constant magnetic charge distribution.

Non-Poisson structures

- Magnetic charges through covariant momenta:

$$
\begin{aligned}
& \left\{x^{i}, x^{j}\right\}=0, \quad\left\{x^{i}, \pi_{j}\right\}=\delta_{j}^{i}, \\
& \left\{\pi_{i}, \pi_{j}\right\}=e \varepsilon_{i j k} B^{k}(x) \\
& \left\{\pi_{i}, \pi_{j}, \pi_{k}\right\}=e \varepsilon_{i j k} \operatorname{div} \vec{B} .
\end{aligned}
$$

For Dirac monopole, $\vec{B}(\vec{x})=g \vec{x} / x^{3}$. For a constant uniform magnetic charge distribution one sets, $\vec{B}(\vec{x})=\rho \vec{x} / 3$, then $\operatorname{div} \vec{B}=\rho$.

- Constant R-flux [Blumenhagen, Plauschin \& Lüst '10]:

$$
\left\{x^{i}, x^{j}\right\}=\frac{\ell_{s}^{3}}{\hbar^{2}} R^{i j k} p_{k}, \quad\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i} \quad\left\{p_{i}, p_{j}\right\}=0
$$

Making, $p \rightarrow x$ and $x \rightarrow-p$, one obtains the algebra of a constant magnetic charge distribution.

Octonions, $1 X=X 1=X$, and $|X Y|=|X||Y|$.

$$
X=k^{0} 1+k^{A} e_{A},
$$

where $k^{0}, k^{A} \in \mathrm{R}, A=1, \ldots, 7$, while 1 is the identity element,

$$
e_{A} e_{B}=-\delta_{A B} 1+\eta_{A B C} e_{C}
$$

$\eta_{A B C}=+1$ for $A B C=123,435,471,516,572,624,673$.

$$
\left[e_{A}, e_{B}\right]:=e_{A} e_{B}-e_{B} e_{A}=2 \eta_{A B C} e_{C}
$$

Introducing $f_{i}:=e_{i+3}$ for $i=1,2,3,\left(e_{i}\right.$ and 1 generate $\left.\mathbf{H}\right)$,

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right] } & =2 \varepsilon_{i j k} e_{k} \quad \text { and } \quad\left[e_{7}, e_{i}\right]=2 f_{i} \\
{\left[f_{i}, f_{j}\right] } & =-2 \varepsilon_{i j k} e_{k} \quad \text { and } \quad\left[e_{7}, f_{i}\right]=-2 e_{i} \\
{\left[e_{i}, f_{j}\right] } & =2\left(\delta_{i j} e_{7}-\varepsilon_{i j k} f_{k}\right)
\end{aligned}
$$

Octonions are non-associative, $\left[e_{A}, e_{B}, e_{C}\right]=-12 \eta_{A B C D} e_{D}$, but alternative, i.e.,

$$
[X, Y, Z]=6((X Y) Z-X(Y Z))
$$

M-theory R-flux background [Günaydin, Lüst, Malek '16]

Defining the coordinates and momenta in terms of the imaginary octonions as

$$
x^{i}=\frac{\sqrt{\lambda \ell_{5}^{3} R}}{2 \hbar} f_{i}, \quad p_{i}=-\frac{\lambda}{2} e_{i}, \quad x^{4}=\frac{\sqrt{\lambda^{3} \ell_{5}^{3} R}}{2 \hbar} e_{7},
$$

we obtain
$\left\{x^{i}, x^{j}\right\}_{\lambda}=\frac{\ell_{s}^{3}}{\hbar^{2}} R^{4, j j k 4} p_{k} \quad$ and $\quad\left\{x^{4}, x^{i}\right\}_{\lambda}=\frac{\lambda \ell_{s}^{3}}{\hbar^{2}} R^{4,1234} p^{i}$,
$\left\{x^{i}, p_{j}\right\}_{\lambda}=\delta_{j}^{i} x^{4}+\lambda \varepsilon^{i}{ }_{j k} x^{k} \quad$ and $\quad\left\{x^{4}, p_{i}\right\}_{\lambda}=\lambda^{2} x_{i}$,
$\left\{p_{i}, p_{j}\right\}_{\lambda}=-\lambda \varepsilon_{i j k} p^{k}$.
with λ being the M -theory radius.
Sending $\lambda \rightarrow 0$ one recover the R-flux algebra.

Non-associative star products

Main problem: for a non-Poisson $P^{j k}$ what can be used instead of the associativity condition to restrict the higher order terms in star products? Why not,

$$
f \star g=f \cdot g+\frac{i \hbar}{2}\{f, g\} ?
$$

The nonassociative star products should be:
(a夫) Hermitean:

$$
(f \star g)^{*}=g^{*} \star f^{*} .
$$

(b*) Unital:

$$
1 \star f=f=f \star 1 .
$$

(c*) Closed:

$$
\int f \star g=\int f \cdot g .
$$

(d*) 3-cyclic:

$$
\int(f \star g) \star h=\int f \star(g \star h) .
$$

Alternativity and Malcev-Poisson identity

def. \star is alternative if $A_{\star}(f, g, h)$ is completely antisymmetric in its arguments, or 'alternating'. For such products we have

$$
\begin{aligned}
& f \star(g \star h)-(f \star g) \star h=\frac{1}{6}[f, g, h]_{\star}, \\
& {[f, g, h]_{\star}:=\left[f,[g, h]_{\star}\right]_{\star}+\left[h,[f, g]_{\star}\right]_{\star}+\left[g,[h, f]_{\star}\right]_{\star} .}
\end{aligned}
$$

Each alternative algebra defines the Malcev algebra when product is substituted by the commutator, $f \star g \rightarrow[f, g]_{\star}$. It satisfys:

$$
\left[f, g,[f, h]_{\star}\right]_{\star}=\left[[f, g, h]_{\star}, f\right]_{\star}
$$

In the semi-classical limit it implies the Malcev-Poisson identity:

$$
\{f, g,\{f, h\}\}=\{\{f, g, h\}, f\}
$$

For the constant R-flux taking $f=x^{1}, g=x^{3} p_{1}$ and $h=x^{2}$, one finds on the r.h.s.: $\frac{3 \epsilon_{s}^{3}}{\hbar^{2}} R$, while the I.h.s. vanishes. The same is true for the M -theory R-flux.

Weyl star products

def. Weyl star products satisfy

$$
\left(x^{i_{1}} \ldots x^{i_{n}}\right) \star f=\sum_{P_{n}} \frac{1}{n!} P_{n}\left(x^{i_{1}} \star\left(\cdots \star\left(x^{i_{n}} \star f\right) \cdots\right),\right.
$$

e.g.,

$$
\left(x^{i} x^{j}\right) \star f=\frac{1}{2}\left(x^{i} \star\left(x^{j} \star f\right)+x^{j} \star\left(x^{i} \star f\right)\right) .
$$

Theorem [KVG \& Vassilevich, '15]: For any bivector field $P^{i j}(x)$ there is unique Hermitian, unital, strictly triangular, Weyl star product.

Remarks:

- Weyl \star is alternative on monomials (Schwartz functions?).
- It is neither closed, $\int f \star g \neq \int f \cdot g$, nor 3-cyclyc.
- Constructive order by order procedure.

$$
\begin{aligned}
& (f \star g)(x)=f \cdot g+\frac{i \hbar}{2} P^{i j} \partial_{i} f \partial_{j} g \\
& -\frac{\hbar^{2}}{8} P^{i j} P^{k l} \partial_{i} \partial_{k} f \partial_{j} \partial_{l} g-\frac{\hbar^{2}}{12} P^{i j} \partial_{j} P^{k l}\left(\partial_{i} \partial_{k} f \partial_{l} g-\partial_{k} f \partial_{i} \partial_{l} g\right) \\
& -\frac{i \hbar^{3}}{8}\left[\frac{1}{3} P^{n l} \partial_{l} P^{m k} \partial_{n} \partial_{m} P^{i j}\left(\partial_{i} f \partial_{j} \partial_{k} g-\partial_{i} g \partial_{j} \partial_{k} f\right)\right. \\
& +\frac{1}{6} P^{n k} \partial_{n} P^{j m} \partial_{m} P^{i l}\left(\partial_{i} \partial_{j} f \partial_{k} \partial_{l} g-\partial_{i} \partial_{j} g \partial_{k} \partial_{l} f\right) \\
& +\frac{1}{3} P^{I n} \partial_{l} P^{j m} P^{i k}\left(\partial_{i} \partial_{j} f \partial_{k} \partial_{n} \partial_{m} g-\partial_{i} \partial_{j} g \partial_{k} \partial_{n} \partial_{m} f\right) \\
& +\frac{1}{6} P^{j l} P^{i m} P^{k n} \partial_{i} \partial_{j} \partial_{k} f \partial_{l} \partial_{n} \partial_{m} g \\
& \left.+\frac{1}{6} P^{n k} P^{m l} \partial_{n} \partial_{m} P^{i j}\left(\partial_{i} f \partial_{j} \partial_{k} \partial_{l} g-\partial_{i} g \partial_{j} \partial_{k} \partial_{l} f\right)\right]+\mathcal{O}\left(\hbar^{4}\right) .
\end{aligned}
$$

and so on.

Consider the algebra of non-Poisson brackets,
$\left\{x^{\prime}, x^{J}\right\}=\Theta^{\prime J}(x)=\left(\begin{array}{ccc}\ell_{s}^{3} & R^{i j k} p_{k} & -\delta_{j}^{i} \\ \delta_{j}^{i} & 0\end{array}\right) \quad$ with $\quad x=\left(x^{\prime}\right)=(\mathbf{x}, \mathbf{p})$.
The quantization is given by [Mylonas, Schupp, Szabo '12]:
$f_{\star_{R} g}=\int \frac{d^{6} k}{(2 \pi)^{6}} \frac{d^{6} k^{\prime}}{(2 \pi)^{6}} \tilde{f}(k) \tilde{g}\left(k^{\prime}\right) e^{i \mathcal{B}\left(k, k^{\prime}\right) \cdot x}=f(x) e^{\frac{i \hbar}{2} \overleftarrow{\partial}_{\prime} \Theta^{\prime J}(x) \vec{\partial}_{J}} g(x)$,
where
$\mathcal{B}\left(k, k^{\prime}\right) \cdot x:=\left(\mathbf{k}+\mathbf{k}^{\prime}\right) \cdot \mathbf{x}+\left(\mathbf{I}+\mathbf{I}^{\prime}\right) \cdot \mathbf{p}-\frac{\ell_{s}^{3}}{2 \hbar} R \mathbf{p} \cdot\left(\mathbf{k} \times{ }_{\varepsilon} \mathbf{k}^{\prime}\right)+\frac{\hbar}{2}\left(\mathbf{I} \cdot \mathbf{k}^{\prime}-\mathbf{k} \cdot \mathbf{I}^{\prime}\right)$,
It is alternative on Schwartz functions and monomials.
Also, it is Weyl; Hermitean, unital, closed and 3-cyclic.

For each $\vec{p}, \vec{p}^{\prime}$ from the unit ball $|\vec{p}| \leq 1$ in \mathbf{R}^{7}, define the map

$$
\vec{p} \circledast_{\eta} \vec{p}^{\prime}=\epsilon_{\left(\vec{p}, \vec{p}^{\prime}\right)}\left(\sqrt{1-\left|\vec{p}^{\prime}\right|^{2}} \vec{p}+\sqrt{1-|\vec{p}|^{2}} \vec{p}^{\prime}-\vec{p} \times{ }_{\eta} \vec{p}^{\prime}\right) .
$$

(V1) Vector $\vec{p} \circledast_{\eta} \vec{p}^{\prime}$ belongs to the unit ball in V,

$$
1-\left|\vec{p} \circledast_{\eta} \vec{p}^{\prime}\right|^{2}=\left(\sqrt{1-|\vec{p}|^{2}} \sqrt{1-\left|\vec{p}^{\prime}\right|^{2}}-\vec{p} \cdot \vec{p}^{\prime}\right)^{2} \geq 0 ;
$$

(V2) Commutator reproduces the cross product,

$$
\vec{p} \circledast_{\eta} \vec{p}^{\prime}-\vec{p}^{\prime} \circledast_{\eta} \vec{p}=\frac{1}{2} \vec{p}^{\prime} \times_{\eta} \vec{p} ; \quad\left(\vec{p} \times{ }_{\eta} \vec{p}^{\prime}\right)_{A}=\eta_{A B C} p_{B} p_{C}^{\prime} .
$$

(V3) It is alternative,

$$
\vec{A}_{\eta}\left(\vec{p}, \vec{\rho}^{\prime}, \vec{p}^{\prime \prime}\right):=\left(\vec{p} \circledast_{\eta} \vec{\rho}^{\prime}\right) \circledast_{\eta} \vec{p}^{\prime \prime}-\vec{p} \circledast_{\eta}\left(\vec{p}^{\prime} \circledast_{\eta} \vec{\rho}^{\prime \prime}\right)=\frac{2}{3} \vec{J}_{\eta}\left(\vec{p}, \vec{\rho}^{\prime}, \vec{p}^{\prime \prime}\right) .
$$

For $\mathbf{q} \in \mathbf{R}^{3}$, vector star product $\mathbf{q} \circledast \mathbf{q}^{\prime}$ is associative,

To extend $\vec{p} \circledast_{\eta} \vec{p}^{\prime}$ over the entire space V we introduce the maps

$$
\vec{p}=\frac{\sin (\hbar|\vec{k}|)}{|\vec{k}|} \vec{k} \quad \text { and } \quad \vec{k}=\frac{\sin ^{-1}|\vec{p}|}{\hbar|\vec{p}|} \vec{p} .
$$

The deformed vector sum is defined as

$$
\overrightarrow{\mathcal{B}_{\eta}}\left(\vec{k}, \vec{k}^{\prime}\right)=\left.\frac{\sin ^{-1}\left|\vec{p} \circledast_{\eta} \vec{p}^{\prime}\right|}{\hbar\left|\vec{p} \circledast_{\eta} \vec{p}^{\prime}\right|} \vec{p} \circledast_{\eta} \vec{p}^{\prime}\right|_{\vec{p}=\vec{k} \sin (\hbar|\vec{k}|) /|\vec{k}|}
$$

(B1) $\overrightarrow{\mathcal{B}}_{\eta}\left(\vec{k}, \vec{k}^{\prime}\right)=-\overrightarrow{\mathcal{B}}_{\eta}\left(-\vec{k}^{\prime},-\vec{k}\right)$;
(B2) $\overrightarrow{\mathcal{B}}_{\eta}(\vec{k}, \overrightarrow{0})=\overrightarrow{\mathcal{B}_{\eta}}(\overrightarrow{0}, \vec{k})=\vec{k}$;
(B3) $\overrightarrow{\mathcal{B}}_{\eta}\left(\vec{k}, \vec{k}^{\prime}\right)=\vec{k}+\vec{k}^{\prime}-2 \hbar \vec{k} \times_{\eta} \vec{k}^{\prime}+O\left(\hbar^{2}\right)$;
(B4) The associator

$$
\overrightarrow{\mathcal{A}}_{\eta}\left(\vec{k}, \vec{k}^{\prime}, \vec{k}^{\prime \prime}\right):=\overrightarrow{\mathcal{B}}_{\eta}\left(\overrightarrow{\mathcal{B}}_{\eta}\left(\vec{k}, \overrightarrow{k^{\prime}}\right), \vec{k}^{\prime \prime}\right)-\overrightarrow{\mathcal{B}}_{\eta}\left(\vec{k}, \overrightarrow{\mathcal{B}}_{\eta}\left(\overrightarrow{k^{\prime}}, \overrightarrow{k^{\prime \prime}}\right)\right)
$$

is antisymmetric in all arguments.

Quantization of imaginary octonions, $\left[e_{A}, e_{B}\right]=2 \eta_{A B C} e_{C}$.

$$
\left(f \star_{\eta} g\right)(\vec{\xi})=\int \frac{d^{7} \vec{k}}{(2 \pi)^{7}} \frac{d^{7} \vec{k}^{\prime}}{(2 \pi)^{7}} \tilde{f}(\vec{k}) \tilde{g}\left(\vec{k}^{\prime}\right) e^{i \overrightarrow{\mathcal{B}}_{\eta}\left(\vec{k}, \vec{k}^{\prime}\right) \cdot \vec{\xi}} .
$$

This star product satisfies,
(S1) $\left(f \star_{\eta} g\right)^{*}=g^{*} \star_{\eta} f^{*}$;
(S2) $f \star_{\eta} 1=1 \star_{\eta} f=f$;
(S3) provides quantization of imaginary octonions,

$$
f \star_{\eta} g=f \cdot g+\frac{i \hbar}{2}\{f, g\}_{\eta}+O\left(\hbar^{2}\right), \quad\left\{\xi_{A}, \xi_{B}\right\}_{\eta}=2 \eta_{A B C} \xi_{C} ;
$$

(S4) It is alternative on monomials and Schwartz functions.
(S5) For functions f, g on three-dimensional subspace endowed with $s u(2)$ Lie algebra $\left[e_{i}, e_{j}\right]=2 \varepsilon_{i j k} e_{k}$, the \star_{η} defines the associative star product $\left(f \star_{\varepsilon} g\right)(\xi, \mathbf{0}, 0)$.
Neither \star_{η}, nor \star_{ε} is closed, $\int f \star g \neq \int f g$.

Closure and cyclicity

def. Star products • and \star are equivalent if

$$
f \bullet g=\mathcal{D}^{-1}(\mathcal{D} f \star \mathcal{D} g) \quad \text { with } \quad \mathcal{D}=1+O(\hbar)
$$

Physically, equivalent star products represent different quantizations for the same classical system preserving the main properties.

$$
\begin{aligned}
& 6(f \star(g \star h)-(f \star g) \star h)=[f, g, h]_{\star} \\
& 6(f \bullet(g \bullet h)-(f \bullet g) \bullet h)=[f, g, h]_{\bullet} .
\end{aligned}
$$

The closed, $\int f \bullet g=\int f g$, alternative star product is 3-cyclic:

$$
\int(f \bullet g) \bullet h=\int f \bullet(g \bullet h) .
$$

Octonionic closed star product is given by:

Closure and cyclicity

def. Star products - and \star are equivalent if

$$
f \bullet g=\mathcal{D}^{-1}(\mathcal{D} f \star \mathcal{D} g) \quad \text { with } \quad \mathcal{D}=1+O(\hbar)
$$

Physically, equivalent star products represent different quantizations for the same classical system preserving the main properties.

$$
\begin{aligned}
& 6(f \star(g \star h)-(f \star g) \star h)=[f, g, h]_{\star} \\
& 6(f \bullet(g \bullet h)-(f \bullet g) \bullet h)=[f, g, h]_{\bullet} .
\end{aligned}
$$

The closed, $\int f \bullet g=\int f g$, alternative star product is 3-cyclic:

$$
\int(f \bullet g) \bullet h=\int f \bullet(g \bullet h)
$$

Octonionic closed star product is given by:
$f \bullet{ }_{\eta} g=\mathcal{D}^{-1}\left(\mathcal{D} f \star_{\eta} \mathcal{D} g\right) \quad$ with $\quad \mathcal{D}=\left(\left(\hbar \triangle_{\vec{\xi}}^{1 / 2}\right)^{-1} \sinh \left(\hbar \triangle_{\vec{\xi}}^{1 / 2}\right)\right)^{6}$,
[KVG '16].

Quantization of non-geometric M-theory background

The GLM algebra is obtained from, $\left\{\xi_{A}, \xi_{B}\right\}=2 \eta_{A B C} \xi_{C}$, by linear transformation,
$\vec{x}=\left(x^{A}\right)=\left(\mathbf{x}, x^{4}, \mathbf{p}\right):=\Lambda \vec{\xi}=\frac{1}{2 \hbar}\left(\sqrt{\lambda \ell_{s}^{3} R} \sigma, \sqrt{\lambda^{3} \ell_{s}^{3} R} \sigma^{4},-\lambda \hbar \xi\right)$.
Define a star product of functions on the seven-dimensional M-theory phase space by the prescription

$$
\left(f \star_{\lambda} g\right)(\vec{x})=\left.\left(f_{\Lambda} \bullet \eta g_{\Lambda}\right)(\vec{\xi})\right|_{\vec{\xi}=\Lambda^{-1} \vec{x}}
$$

where $f_{\Lambda}(\vec{\xi}):=f(\Lambda \vec{\xi})$. It satisfies all required properties. Moreover,

$$
\lim _{\lambda \rightarrow 0}\left(f \star_{\lambda} g\right)(\vec{x})=\left(f \star_{R} g\right)(x)
$$

in the limit $\lambda \rightarrow 0$ the non-geometric M-theory star product reduces exactly to constant R-flux star product, [KVG \& Szabo '17].
(1) Why we cannot just set

$$
f \star g=f \cdot g+\frac{i \hbar}{2}\{f, g\} ?
$$

The condition of the alternativity of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.

(1) Why we cannot just set

$$
f \star g=f \cdot g+\frac{i \hbar}{2}\{f, g\} ?
$$

The condition of the alternativity of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.
(2) G_{2}-symmetric star product \star_{η} is used to quantize non-geometric M -theory background, construct \star_{λ}.

- The restriction of \star_{λ} to a proper subspace defines an associative su(2) star product \star_{ε}.
- The limit $\lambda \rightarrow 0$ of \star_{λ} reproduces the constant R-flux star product \star_{R}. The limit $R \rightarrow 0$ of \star_{R} gives Moyal.
- Explicit all orders formulas for everything.
(3) Not the end of the story! What kind of physics will we have here?
(1) Why we cannot just set

$$
f \star g=f \cdot g+\frac{i \hbar}{2}\{f, g\} ?
$$

The condition of the alternativity of the star product, at least on some class of functions, seems to be reasonable condition to restrict non-associative star products.
(2) G_{2}-symmetric star product \star_{η} is used to quantize non-geometric M -theory background, construct \star_{λ}.

- The restriction of \star_{λ} to a proper subspace defines an associative su(2) star product \star_{ε}.
- The limit $\lambda \rightarrow 0$ of \star_{λ} reproduces the constant R-flux star product \star_{R}. The limit $R \rightarrow 0$ of \star_{R} gives Moyal.
- Explicit all orders formulas for everything.
(3) Not the end of the story! What kind of physics will we have here?

