Matrix models of fuzzy field theories

Juraj Tekel

Department of Theoretical Physics
Faculty of Mathematics，Physics and Informatics
Comenius University，Bratislava

人ㄷロรヒ Action MP 1405
Quantum Structure of Spacetime

Quantum Spacetime and Physics Models，18．9．2017，Corfu

Math - Matrix models

- ensemble of matrices, probability measure
- expectation values, correlation functions, partition function
- eigenvalue distribution
- a good tool to analyse (some) properties of fuzzy field theories

Physics - fuzzy field theory

- (compact) noncommutative space, (real scalar) field theory
- (naïve) commutative limit of NC theory is different from commutative theory - UV/IR mixing
- different spontaneous symmetry breaking patterns

Physics - fuzzy field theory

- Noncommutative spaces introduce a shortest possible distance.
- Fuzzy spaces (= a finite dimensional algebra) have finite number of the "Planck cells" N.
- The hallmark example is the fuzzy sphere S_{F}^{2}.
Hoppe '82; Madore '92; Grosse, Klimcik, Presnajder '90s
- However there are no sharp boundaries between the pieces
 and everything is blurred, or fuzzy.

Physics - fuzzy field theory

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
$$

- Noncommutative euclidean theory of a real scalar field given by an action (for S_{F}^{2})

$$
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}}
$$

- Eigenvalues of the matrix correspond to values of the field on the "cells" of the space.

Physics - fuzzy field theory

- The commutative theory has two phases.
Glimm, Jaffe '74; Glimm, Jaffe, Spencer
'75; Chang '76
Loinaz, Willey '98; Schaich, Loinaz '09

- The noncommutative theory has one more phase.

Gubser, Sondhi '01; G.-H. Chen and Y.-S. Wu '02
Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14;
Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14;
Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16
Panero CORFU2015

Physics - fuzzy field theory

Mejía-Díaz, Bietenholz, Panero '14

Math - Matrix models

- Ensemble of hermitian $N \times N$ matrices with a probability measure $S(M)$ and expectation values

$$
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}}
$$

- This is the very same expression as for the real scalar field.
- Fuzzy field theory = matrix model with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

(minus the red Brezin, Itzykson, Parisi, Zuber '78)

Math - Matrix models

- The model without kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is well understood.

- The key keywords are diagonalization and large N limit.
- The key results is that for $r<-4 \sqrt{g}$ we get two cut eigenvalue density.

Math - Matrix models

- The model with kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is not well understood.
Steinacker '05; JT Acta Physica Slovaca '15

- The key issue being that diagonalization no longer straightforward.
- All previous or current approaches are based on an effective action

$$
S(M) \rightarrow S_{e f f}\left(x_{i}\right)+\frac{1}{2} r \sum_{i} x_{i}^{2}+g \sum_{i} x_{i}^{4}-2 \sum_{i<j} \log \left|x_{i}-x_{j}\right|
$$

but only approximations to $S_{\text {eff }}\left(x_{i}\right)$ are known.

Math - Matrix models

- There are some promising nonperturbative results for S_{F}^{2}. work in progress
- Most importantly existence of an asymmetric one cut phase, corresponding to the "standard" symmetry broken phase.

- The results are in a(n unexpectedly) good agreement with numerical simulations.
work in progress by O'Connor, Kovacik

Outlook

To do list.

- Find (a more) complete understanding of the matrix model.
- Investigate matrix models corresponding to spaces beyond the fuzzy sphere.
- Investigate matrix models corresponding to theories without the UV/IR mixing. The kinetic term should completely remove the matrix phase.

Thank you for your attention!

Summary of different approaches to $S_{\text {eff }}\left(x_{i}\right)$

$$
e^{-S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-\frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
$$

- Perturbative - expanding in powers of the kinetic term, yields multitrace model, kinetic term large in the interesting cases = perturbative approach fails (badly)
O'Connor, Sämann '07; Sämann '10; Sämann '15; Rea, Sämann '15; Ydri '16
- Nonperturbative

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\mathcal{R} \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right)
$$

Steinacker '05; JT '13; Polychronakos '13; JT '14, JT '15, work in progress

- Two body interaction

$$
S_{e f f}=\sum_{i, j} a \log \left|1-b x_{i} x_{j}\right|
$$

work in progress with M. Šubjaková

