Electromagnetic neutrinos: theory, experimental limits and phenomenब̈logy

Corfu Summer Institute: Alexander Studenikin
Workshop on Hi H Moscow State the Standard Model and Beyond O :H月: University

Discovery of Higgs boson at LHC
is one of the most important results in
Particle Physics
has ever obtained

Robert Brout François Englert

Peter Higgs
Observation of Higgs boson confirms the symmetry breaking mechanism by Brout-Englert-Higgs (BEH)
provides final glorious triumph of Standard Model that was crowned by Nobel Prize 2013
... since 2013 studies of
ν properties is the most
promising way in search for
NEW Physics

Beyond Standard Model

electromagnetic properties

REVIEWS OF MODERN PHYSICS, VOLUME 87, APRIL-JUNE 2015
 Neutrino electromagnetic interactions:
 A window to new physics

Carlo Giunti
INFN, Torino Section, Via P. Giuria 1, I-10125 Torino, Italy

Alexander Studenikin ${ }^{\dagger}$
Department of Theoretical Physics, Faculty of Physics, Moscow State University and Joint Institute for Nuclear Research, Dubna, Russia
(published 16 June 2015)

Abstract

A review is given of the theory and phenomenology of neutrino electromagnetic interactions, which provide powerful tools to probe the physics beyond the standard model. After a derivation of the general structure of the electromagnetic interactions of Dirac and Majorana neutrinos in the one-photon approximation, the effects of neutrino electromagnetic interactions in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic properties are presented and the predictions of theories beyond the standard model are confronted.

DOI: 10.1103/RevModPhys.87.531
PACS numbers: $14.60 . \mathrm{St}, 13.15 .+\mathrm{g}, 13.35 . \mathrm{Hb}, 14.60 . \mathrm{Lm}$

CONTENTS

I. Introduction 531
II. Neutrino Masses and Mixing 532
A. Dirac neutrinos 533
B. Majorana neutrinos 533
C. Three-neutrino mixing 534
D. Neutrino oscillations 535
E. Status of three-neutrino mixing 538
F. Sterile neutrinos 540
III. Electromagnetic Form Factors 540
A. Dirac neutrinos 541
B. Majorana neutrinos 545
C. Massless Weyl neutrinos 546
IV. Magnetic and Electric Dipole Moments 547
A. Theoretical predictions for Dirac neutrinos 547
B. Theoretical predictions for Majorana neutrinos 549
C. Neutrino-electron elastic scattering 550
D. Effective magnetic moment 551
E. Experimental limits 553
F. Theoretical considerations 554
V. Radiative Decay and Related Processes 556
A. Radiative decay 556
B. Radiative decay in matter 559
C. Cherenkov radiation 560
D. Plasmon decay into a neutrino-antineutrino pair 561
E. Spin light 562
VI. Interactions with Electromagnetic Fields 563
A. Effective potential 564
B. Spin-flavor precession 565
C. Magnetic moment in a strong magnetic field 571
D. Beta decay of the neutron in a magnetic field 573
E. Neutrino pair production by an electron 574
F. Neutrino pair production by a strong magnetic field 575
G. Energy quantization in rotating media 576
VII. Charge and Anapole Form Factors 578
A. Neutrino electric charge 578
B. Neutrino charge radius 580
C. Neutrino anapole moment 583
VIII. Summary and Perspectives 585
Acknowledgments 585
References 585

Outline

(1) review of \mathcal{V} electromagnetic properties
(2) experimental constraints on μ_{ν} and q_{ν} (including GEMMA and Borexino collabs. results)
(3) \mathcal{V} electromagnetic interactions (new effects)

(4)
new ν spin (flavour) oscillations
Studenikin $(2004,2017)$

Staff member at

 Faculty of Physics of Moscow State University 1966-1986$$
m_{\nu} \neq 0
$$

then $\nu \leftrightarrow \bar{\nu}$
in vacuum

Bruno Pontecorvo, \ll Inverse β processes and nonconcervation of leptonic charge», JINR Preprint P-95, Dubna, 1957, 3 pages:

60 years of mixing and oscillations
<Neutrinos in vacuum can transform themselves into antineutrino and vice versa. This means that neutrino and antineutrino are particle mixtures... So, for example, a beam of neutral leptons from a reactor which at first consists mainly of antineutrinos will change its composition and at a certain distance R from the reactor will be composed of neutrino and antineutrino in equal quantities>.

Bruno Pontecorvo, «Мезоний и антимезоний», *ЭТф 33 (1957) 549-551:
«Bыше предполагалось, что имеет место закон сохранения нейтринного заряда... Этот закон пока не установлен... Если теория

5руно Toнmiekoph if $m_{\nu} \neq 0$ then
\qquad in vacuum

двухкомпонентного нейтрино оказалась бы неверной... и если бы не имел места закон сохранения нейтринного заряда, то 6 принципе переходы
нейтрино \rightarrow антинейтрино 6 bакууме возможны»».
... problem and puzzle ...
\checkmark electromagnetic properties up to now nothing has been seen
... in spite of reasonable efforts ...

- results of terrestrial lab experiments on $\mu_{\nu}($ and ν EM properties in general)
- as well as data from astrophysics and cosmology
are in agreement with "ZERO"
ν EM properties
... However, in course of recent development of knowledge on \mathcal{V} mixing and oscillations,

exhibits unexpected properties (puzzles)

W. Pau7i, 1930

neutra7" neutron" \Rightarrow
E.Fermi, 1933

- probab7y $\mu_{\nu} \neq 0$?

Pauli himself wrote to Baade:
"Today I did something a physicist should never do. I predicted something which will never be observed experimentally..."

H. Bethe, R. Peierls,

«The 'neutrino'»

Nature 133 (1934) 532

- «There is no practically possible way of observing the neutrino»
... puzzles...
... what about electromagnetic
properties of \boldsymbol{V} ?

2015 Nobel Laureates

Arthur McDonald The Nobel Prize

Sudbury Neutrino in Physics 2015 Observatory «for the discovery of neutrino oscillations, which shows

that neutrinos have mass»
 that neutrinos have mass»
 that neutrinos have mass»

Takaaki Kajita

Super-Kamiokande
Experiment

$m \neq 0$...a tool for studying physics Beyond Extended Standard Model...

Theory (Standard Mode7 with ν_{R})

$\mu_{\nu}=\frac{3 e G_{F}}{8 \sqrt{2 \pi} m^{2}} m_{\nu} \sim\left(3 \cdot 10^{-19} \mu_{B}\left(\frac{m_{\nu}}{1 e V_{\text {Fujickawa }}} \mu_{\text {Lee }}=\frac{e}{2 m_{e}}\right.\right.$
magnetic moment

$$
a_{e}=\frac{\alpha_{Q E D}}{2 \pi} \sim 10^{-3}
$$

... much greater values are desired
for astrophysical or cosmology

$$
\text { visualization of } \mu_{\nu}
$$

new
physics ... hopes for physics BESM ...

electromagnetic properties

(flash on theory)

$$
m_{\nu} \neq 0
$$

ν electromagnetic vertex function

$<\psi\left(p^{\prime}\right)\left|J_{\mu}^{E M}\right| \psi(p)>=\bar{u}\left(p^{\prime}\right) \Lambda_{\mu}(q, l) u(p)$
Matrix element of electromagnetic current is a Lorentz vector
$\Lambda_{\mu}(q, l)$ should be constructed using
matrices $\hat{\mathbf{1}}, \quad \gamma_{5}, \quad \gamma_{\mu}, \quad \gamma_{5} \gamma_{\mu}, \quad \sigma_{\mu \nu}$,
tensors $g_{\mu \nu}, \epsilon_{\mu \nu \sigma \gamma}$
vectors q_{μ} and $l_{\mu} \quad$ Lorentz covariance (1)

$$
q_{\mu}=p_{\mu}^{\prime}-p_{\mu}, l_{\mu}=p_{\mu}^{\prime}+p_{\mu}
$$

- and electromagnetic gauge invariance (2)

Matrix element of electromagnetic current between neutrino states

$$
\left\langle\nu\left(p^{\prime}\right)\right| J_{\mu}^{E M}|\nu(p)\rangle=\bar{u}\left(p^{\prime}\right) \Lambda_{\mu}(q) u(p)
$$

where vertex function generally contains 4 form factors

Hermiticity and discrete symmetries of EM current J_{μ}^{EM} put constraints on form factors

Dirac \mathcal{V}

1) $C P$ invariance + Hermiticity $\Rightarrow f_{E}=0$,
2) at zero momentum transfer only electric Charge $f_{Q}(0)$ and magnetic moment $f_{M}(0)$ contribute to $H_{\text {int }} \sim J_{\mu}^{E M} A^{\mu}$
3) Hermiticity itself \Longrightarrow three formfactors
are real: $\quad \operatorname{Im} f_{Q}=\operatorname{Im} f_{M}=\operatorname{Im} f_{A}=\mathbf{0}$

Majorana V

1) from CPT invariance
(regardless CP or SP).

$$
f_{Q}=f_{M}=f_{E}=0
$$

In general case matrix element of J_{μ}^{EM} can be considered between different initial $\psi_{i}(p)$ and final $\psi_{j}\left(p^{\prime}\right)$ states of different masses

$$
\left\langle\psi_{j}\left(p^{\prime}\right)\right| J_{\mu}^{E M} \mid \psi_{i}(p)>=\bar{u}_{j}\left(p^{\prime}\right) \Lambda_{\mu}(q) u_{i}(p)
$$

$$
p^{2}=m_{i}^{2}, p^{\prime 2}=m_{j}^{2}:
$$

... beyond SM...

$$
\begin{aligned}
& \Lambda_{\mu}(q)=\left(f_{Q}\left(q^{2}\right)_{i j}+f_{A}\left(q^{2}\right)_{i j} \gamma_{5}\right)\left(q^{2} \gamma_{\mu}-q_{\mu} \not q\right)+ \\
& f_{M}\left(q^{2}\right)_{i j} i \sigma_{\mu \nu} q^{\nu}+f_{E}\left(q^{2}\right)_{i j} \sigma_{\mu \nu} q^{\nu} \gamma_{5}
\end{aligned}
$$

form factors are matrices in ν mass eigenstates space.

Dirac $\boldsymbol{\nu}$ (off-diagonal case $i \neq j$)
 Majorana
 ν

1) Hermiticity itself does not apply restrictions on form factors,
2) $C P$ invariance + Hermiticity

... quite different EM properties...

$$
\mu_{i j}^{M}=0 \quad \text { and } \quad \epsilon_{i j}^{M}=2 \epsilon_{i j}^{D}
$$ are relatively real (no relative phases).

3

... a bit of \boldsymbol{V} electromagnetic properties theory

$3.1 \vee$ vertex function
The most genera 7 study of the massive neutrino vertex function (including electric and magnetic form factors) in arbitrary R_{5} gauge in the context of the SM + SU(2)-singlet ν_{R} accounting for masses of particles in polarization loops
M. Dvornikov, A.Studenikin

* Phys.Rer. D 63, 0730012 2004 ,
"Electric charge and magnetic moment of massive nentrino";

JETP126(2009), N8,1
*" "Electromaghetic form tactors of a massiv neutrino."

$$
\begin{aligned}
& \Delta_{\mu}(q)=f_{Q}\left(q^{2}\right) \gamma_{\mu}+f_{\mu}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}- \\
& -f_{E}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu} \gamma_{5}-f_{A}\left(q^{2}\right)\left(q^{2} \gamma_{\mu}-q_{\mu} \psi\right) \gamma_{5}
\end{aligned}
$$

electric moment anapole moment

$\Lambda_{\mu}(q)$

$\Lambda_{\mu}(q)=\sum_{i=1}^{19} \Lambda_{\mu}^{i}(q)$

Dipole magnetic $f_{M}\left(q^{2}\right)$ and electric

are most well studied and theoretically understood among form factors
...because in the limit $q^{2} \rightarrow 0$ they have
$\mu_{\nu}=f_{M}(0) \Leftarrow \nu$ magnetic moment
$\epsilon_{\nu}=f_{E}(0) \Leftarrow v$ electric moment ???

Calculation of ν magnetic moment (massive $\mathcal{\nu}$, arbitrary R_{ξ}-gauge)

$$
\begin{array}{|c|}
\hline \Lambda_{\mu}(q)=f_{Q}\left(q^{2}\right) \gamma_{\mu}+f_{M}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}-f_{E}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5} \\
\text { magnetic } \\
\text { moment }
\end{array}+f_{A}\left(q^{2}\right)\left(q^{2} \gamma_{\mu}-q_{\mu} \phi\right) \gamma_{5}
$$

Dvornikov,
Studenikin, PRD 2004

Proper vertices

$$
\mu(a, b, \alpha)=f_{M}\left(q^{2}=0\right)
$$

two mass parameters
$a=\left(\frac{m_{\ell}}{M_{W}}\right)^{2} \quad b=\left(\frac{m_{\nu}}{M_{W}}\right)^{2}$

(a)

(c)
and gauge-fixing parameter
$\xi=0$ - unitary gauge, $\xi=1$-'t Hooft-Feynman gauge

$$
\begin{aligned}
& \left\lvert\, \alpha=\frac{1}{\zeta}\right. \\
& =\text { eynman gauge }
\end{aligned}
$$

(b)

(d)

(f)
ν magnetic moment

Dvornikov,

Studenikin, PRD 2004
$\alpha=100$
$\alpha=1$ ('t Hooft-Feynman)

$$
\alpha=\frac{1}{6}
$$

$$
\bar{f}_{M}(t)=\sum_{i=1}^{6} \bar{f}_{M}^{(i)}(t) \quad 1.4992
$$

1.4995

$m_{\nu} \ll m_{e} \ll M_{W}$ light $\boldsymbol{\nu} \longrightarrow \mu_{e}=\frac{3 e G_{F}}{8 \sqrt{2} \pi^{2}} m_{\nu}$

$$
\mu_{\nu}=\frac{e G_{F}}{4 \pi^{2} \sqrt{2}} \frac{3}{m_{\nu}} \frac{3}{4(1-a)^{3}}\left(2-7 a+6 a^{2}-2 a^{2} \ln a-a^{3}\right) \quad a=\left(\frac{m_{e}}{M_{W}}\right)^{2}
$$

Gabral-Rosetti, Bernabeu, Vidal, Zepeda, Studenikin,
Phys.Rev.D 69 $m_{e} \ll m_{\nu} \ll M_{W}$ intermediate ${ }^{\text {Eur.Phys.J C } 12}$ (2000) 633 Studenikin,
Phys.Rev.D 69 $m_{e} \ll m_{\nu} \ll M_{W}$ intermediate ${ }^{\text {ind }} \begin{aligned} & \text { Eur.Phys.J } \\ & \text { (2000) } 633\end{aligned}$ (2004) 073001; JETP 99 (2004) 254

$$
\mu_{\nu}=\frac{3 e G_{F}}{8 \pi^{2} \sqrt{2}} m_{\nu}\left\{1+\frac{5}{18} b\right\} \quad b=\left(\frac{m_{\nu}}{M_{W}}\right)^{2}
$$

$$
m_{e} \ll M_{W} \ll m_{\nu}
$$

$$
\mu_{\nu}=\frac{e G_{F}}{8 \pi^{2} \sqrt{2}} m_{\nu} \sim 10^{-19} \mu_{\mathrm{B}}\left(\frac{m_{\nu_{e}}}{1 \mathrm{eV}}\right)
$$

$\ldots \mu_{v}$ in case of mixing.. .0

Neutrino (beyond dipole moments

 (+ transition moments)- Dirac neutrino

$\left.\begin{array}{c}\mu_{i j} \\ \epsilon_{i j}\end{array}\right\}=\frac{e G_{F} m_{i}}{8 \sqrt{2} \pi^{2}}\left(1 \pm \frac{m_{j}}{m_{i}}\right) \sum_{l=e, \mu, \tau} f\left(r_{l}\right) U_{l j} U_{l i}^{*}$
$m_{i}, m_{j} \ll m_{l}, m_{W}$

transition moments vanish because unitarity of U implies that its rows or columns represent orthogonal vectors
Majorana neutrino only for

$$
\mu_{i j}^{M}=2 \mu_{i j}^{D} \text { and } \epsilon_{i j}^{M}=0
$$

or

$$
\mu_{i j}^{M}=0 \text { and } \epsilon_{i j}^{M}=2 \epsilon_{i j}^{D}
$$

... depending on relative
CP phase of V_{i} and V_{j}

The first nonzero contribution from neutrino transition moments
$f_{r_{i}} \rightarrow \frac{23}{2}+\frac{3}{4}\left(\frac{m_{l}}{m_{W}}\right)^{2} \ll \mathbb{1}$
GIM cancellation

$$
\mu_{B}=\frac{e}{2 m_{e}}
$$

$$
\left.\begin{array}{l}
\mu_{i j} \\
\epsilon_{i j}
\end{array}\right\}=4 \times 10^{-23} \mu_{B}\left(\frac{m_{i} \pm m_{j}}{1 \mathrm{eV}}\right) \sum_{l=e, \mu, \tau}\left(\frac{m_{l}}{m_{\tau}}\right)^{2} U_{l j} U_{l i}^{*}
$$

$$
\left.\begin{array}{c}
\mu_{i j} \\
\epsilon_{i j}
\end{array}\right\}=\frac{3 e G_{F} m_{i}}{32 \sqrt{2} \pi^{2}}\left(1 \pm \frac{m_{j}}{m_{i}}\right)\left(\frac{m_{\tau}}{m_{W}}\right)^{2} \sum_{l=e, \mu, \tau}\left(\frac{m_{l}}{m_{\tau}}\right)^{2} U_{l j} U_{l i}^{*}
$$

... neutrino radiative
decay is very slow

Dirac V diagonal ($\mathrm{i}=\mathrm{j}$) maxnetic moment

$$
\epsilon_{i i}^{D}=0 \quad \begin{aligned}
& \text { for } C P_{-i n v a r i a n t ~}^{\text {interactions }}
\end{aligned}
$$

$$
\mu_{i i}=\frac{3 e G \cdot m_{i}}{8 \sqrt{2} \pi^{2}}\left(1-\frac{1}{2} \sum_{l=e, \mu, \tau} r_{l}\left|U_{l i}\right|^{2}\right) \approx r_{r_{1}}=\left(\frac{m_{l}}{3.2 \times 10^{-19}}\left(\frac{m_{i}}{1 e V}\right) \mu_{B}\right.
$$

- no GIM cancellation
$\mu_{i i}^{M}=\epsilon_{i i}^{M}=0$

Lee, Shrock, Fujikawa, 1977

- $\mu_{i i}^{D}$-toleadingorder- independent on $\bigcup_{l i}$ and $m_{l=e, \mu, \tau}$
$\mu_{e}^{2}=\sum_{i=1,2,3}\left|U_{i e}\right|^{2} \mu_{i i}^{2}$...possibility to measure fundamental $\mu_{i i}^{D}$
$\mu_{i i}^{D}=0$ for massless V (in the absence of right-handed charged currents)
...the present status...
to have visible $\mu_{v} \neq 0$
is not an easy task for
theoreticians
and experimentalists
3.3 Naïve relationship between m_{ν} and μ_{ν}
... problem to get large μ_{ν} and still acceptable \boldsymbol{m}_{ν}
3.3 Naïve relationship between m_{ν} and μ_{ν}
... problem to get large μ_{ν} and still acceptable \boldsymbol{m}_{ν} If μ_{ν} is generated by physics beyond the SM at energy scale $\boldsymbol{\Lambda}$,

3.6 Neutrino magnetic moment in left-right symmetric models

$$
S U_{L}(2) \times S U_{R}(2) \times U(1)
$$

with mixing angle ξ of gauge bosons $W_{L, R}$ with pure $(V \pm A)$ couplings
Kim, 1976; Marciano, Sanda, 1977;
Beg, Marciano, Ruderman, 1978

$$
\mu_{\nu_{l}}=\frac{e G_{F}}{2 \sqrt{2} \pi^{2}}\left[m_{l}\left(1-\frac{m_{W_{1}}^{2}}{m_{W_{2}}^{2}}\right) \sin 2 \xi+\frac{3}{4} m_{\nu_{l}}\left(1+\frac{m_{W_{1}}^{2}}{m_{W_{2}}^{2}}\right)\right]
$$

... charged lepton mass ...
... neutrino mass ...

Large magnetic moment $\mu_{\nu}=\mu_{\nu}\left(m_{\nu}, m_{B^{\prime}}, m_{e}\right)$

- In the L-R symmetric models $(S U(2) \times S U(2) \cdot \cdot U(1))$

Kim, 1976
 Beg. Marciano, Ruderman! 198

Voloshin, 1988
"On compatibility of small, m, with large μ_{ν} of neutrino', Sov.J.Nucl.I'hys. 48 (1988) 512
... there may be $S U(2)_{v}$
symmetry that forbids m_{ν} but not μ_{ν}
Z.Z.Xing, Y.L.Zhou, "Enhanced electromagnetic transition dipole moments and radiative decays of massive neutrinos due to the seesawinduced non-unitary effects"

Bar, Freire, Zee, 1990

- supersymmetry
- extra dimensions
considerable enhancement of μ_{ν} to experimentally relevant range
model-independent constraint μ_{ν}
$\mu_{\nu}^{D} \leq 10^{-15} \mu_{B}$
$\mu_{\nu}^{M} \leq 10^{-14} \mu_{B}$
for $\boldsymbol{B S M}(\Lambda \sim 1 \mathrm{TeV})$ without fine tuning and under the assumption that $\delta m_{\nu} \leq 1 \mathrm{eV}$

Bell, Cirigliano, Ramsey-Musolf, Vogel, Wise, 2005

magnetic moment in experiments

(most easily understood and accessible for experimental studies are dipole moments)

Studies of V-U scattering

- most sensitive method for experimental investigation of μ_{ν}
Cross-section:

$$
\frac{d \sigma}{d T}(\nu+e \rightarrow \nu+e)=\left(\frac{d \sigma}{d T}\right)_{\mathrm{SN}}+\left(\frac{d \sigma}{d T}\right)_{\mu_{\nu}}
$$

where the Standard Modetcontribution

$$
\left(\frac{d \sigma}{d T}\right)_{\mathrm{SM}}=\frac{G_{\mathrm{F}}^{2} m_{e}}{2 \pi}\left[\left(g_{V}+g_{V}\right)^{2}+\left(g_{V}-g_{A}\right)^{2}\left(1-\frac{T}{E_{\nu}}\right)^{2}+\left(g_{A}^{2}-g_{V}^{2}\right) \frac{m_{e} T}{E_{\nu}^{2}}\right]
$$

\boldsymbol{T} is the electron recoil energy and
$\left(\frac{d \sigma}{d T}\right)_{\mu_{\nu}}=\frac{\pi \alpha_{e m}^{2}}{m_{e}^{2}}\left[\frac{1-T / E_{\nu}}{T}\right] \mu_{\nu}^{2}$
$g_{V}=\left\{\begin{array}{ll}2 \sin ^{2} \theta_{W}+\frac{1}{2} & \text { for } \nu_{e}, \\ 2 \sin ^{2} \theta_{W}-\frac{1}{2} & \text { for } \nu_{\mu}, \nu_{\tau},\end{array} \quad g_{A}=\left\{\begin{array}{l}\frac{1}{2} \\ -\frac{1}{2}\end{array}\right.\right.$

$$
\mu_{\nu}^{2}\left(\nu_{l}, L, E_{\nu}\right)=\sum_{j}\left|\sum_{i} U_{l i} e^{-i E_{i} L} \mu_{j i}\right|^{2}
$$

$$
\mu_{i j} \rightarrow\left|\mu_{i j}-\epsilon_{i j}\right|
$$

- to incorporate charge radius: $g_{V} \rightarrow g_{V}+\frac{2}{3} M_{W}^{2}\left\langle r^{2}\right\rangle \sin ^{2} \theta_{W}$

$$
\Lambda_{\mu}(q)=f_{Q}\left(q^{2}\right) \gamma_{\mu}+f_{M}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}-f_{E}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5}
$$

Although it is usually assumed that ν are electrically neutral (charge quantization implies $Q \sim \frac{1}{3} e$),

νcan dissociates into charged particles so that $f_{Q}\left(q^{2}\right) \neq 0$ for $q^{2} \neq 0$:

$$
f_{Q}\left(q^{2}\right)=f_{Q}(0)+q^{2} \frac{d f_{Q}}{d q^{2}}(0)+\cdots,
$$

where the massive V charge radius

$$
\left\langle r_{\nu}^{2}\right\rangle=-6 \frac{d f_{Q}}{d q^{2}}(0)
$$

$\underset{\text { For massless }}{\text { anapole moment }} \longrightarrow a_{\nu}=f_{A}\left(q^{2}\right)=\frac{1}{6}\left\langle r_{\nu}^{2}\right\rangle$
Interpretation of charge radius as an observable is rather delicate issue: $\left\langle r_{\nu}^{2}\right\rangle$ represents a correction to tree-level electroweak scattering amplitude between ν and charged particles, which receives radiative corrections from several diagrams (including \%exchange) to be considered simultaneously \longmapsto calculated CR is infinite and gauge dependent quantity. For massless $\mathcal{\nu}, a_{\nu}$ and $\left\langle r_{\nu}^{2}\right\rangle$ can be defined (finite and gauge independent) from scattering cross section.

??? For massive ν

Bernabeu, Papavassiliou, Vidal, Nucl.Phys. B 680 (2004) 450

K. Kouzakov, A. Studenikin, Phys. Rev. D 95 (2017) 055013

"Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering"

Abstract

A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos arriving from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

Magnetic moment contribution dominates at low electron

recoil energies when $\left(\frac{d \sigma}{d T}\right)_{\mu_{\nu}}>\left(\frac{d \sigma}{d T}\right)_{S M}$ and $\frac{T}{m_{e}}<\frac{\pi^{2} \alpha_{e m}}{G_{F}^{2} m_{e}^{4}} \mu_{\nu}^{2}$
... the lower the smallest measurable electron recoil energy is, smaller values of μ_{ν}^{2} can be probed in scattering experiments...

MUNU experiment at Bugey reactor (2005)

$$
\mu_{\nu} \leq 9 \times 10^{-11} \mu_{B}
$$

TEXONO collaboration at Kuo-Sheng power plant (2006)

$$
\mu_{\nu} \leq 7 \times 10^{-11} \mu_{B}
$$

GEMMA (2007) $\mu_{\nu} \leq 5.8 \times 10^{-11} \mu_{B}$

GEMMA I 2005-2007

BOREXINO (2008)
 $$
\mu_{\nu} \leq 5.4 \times 10^{-11} \mu_{B}
$$

...was considered as the world best constraint..

$$
\mu_{\nu} \leq 8.5 \times 10^{-11} \mu_{B} \quad\left(\nu_{\tau}, \nu_{\mu}\right)
$$

based on first release of BOREXINO data

Montanino, Picariello, Pulido, PRD 2008
... attempts to improve bounds

GEMMA (2005-2012)

Germanium Experiment for Measurement of Magnetic Moment of Antineutrino

JINR (Dubna) + ITEP (Moscow) at Kalinin Nuclear Power Plant World best experimental limit

0

$$
\mu_{\nu}<2.9 \times 10^{-11} \mu_{B}
$$

June 2012
A. Beda et al, in: Special Issue on "Neutrino Physics", Advances in High Energy Physics (2012) 2012, editors: J. Bernabeu, G. Fogli, A. McDonald, K. Nishikawa ... quite realistic prospects of the near future ... 2018

$$
\mu_{\nu}^{a} \sim 0.7 \times 10^{-12} \mu_{B}
$$ unprecedentedly low threshold

$$
T \sim 200 \mathrm{eV}
$$

... quite recent claim that v-e cross section should be increased by Atomic lonization Effect:
H.Wong et al. (TEXONO Coll.), PRL 105 (2010) 061801
(ν scattering on bound e)
... an interesting hypothetical possibility to improve bounds...

... better limits on \mathcal{V} effective magnetic moment ...

K.Kouzakov, A.Studenikin,

- "Magnetic neutrino scattering on atomic electrons revisited" Phys.Lett. B 105 (2011) 061801,
- "Electromagnetic neutrino-atom collisions: The role of electron binding" Nucl.Phys. (Proc.Suppl.) 217 (2011) 353
K.Kouzakov, A.Studenikin, M.Voloshin,
- "Neutrino electromagnetic properties and new bounds on neutrino magnetic moments" J.Phys.: Conf.Ser. 375 (2012) 042045
- "Neutrino-impact ionization of atoms in search for neutrino magnetic moment", Phys.Rev.D 83 (2011) 113001
- "On neutrino-atom scattering in searches for neutrino magnetic moments" Nucl.Phys.B (Proc.Supp.) 2011 (Proc. of Neutrino 2010 Conf.)
- "Testing neutrino magnetic moment in ionization of atoms by neutrino impact", JETP Lett. 93 (2011) 699 M.Voloshin,
- "Neutrino scattering on atomic electrons in search for neutrino magnetic moment"
Phys.Rev.Lett. 105 (2010) 201801

Effective \boldsymbol{v}_{e} magnetic moment

 measured in ν-e scattering experiments
Two steps:

1) consider $V_{\boldsymbol{e}}$ as superposition of mass eigenstates $(i=1,2,3)$ at some distance L from the source, and then sum up magnetic moment contributions to $\boldsymbol{v} \boldsymbol{- e}$ scattering amplitude (of each of mass components) induced by their magnetic moments

$$
A_{j} \sim \sum_{i} U_{e i} e^{-i E_{i} L} \mu_{j i}
$$

J.Beacom,
P.Vogel, 1999
2) amplitudes combine incoherently in total cross section

$$
\sigma \sim \mu_{e}^{2}=\sum_{j}\left|\sum_{i} U_{e i} e^{-i E_{i} L} \mu_{j i}\right|^{2}
$$

C. Giunti, A.Studenikin, 2009
$\boldsymbol{N B}$! Summation over $\boldsymbol{j}=1,2,3$ is outside the square because of incoherence of different final mass states contributions to cross section.

Effective ν magnetic moment in experiments

(for neutrino produced as ν_{l} with energy \boldsymbol{E}_{ν} and after traveling a distance \boldsymbol{L})
magnetic and electric moments Observable μ_{ν} is an effective parameter that depends on neutrino flavour composition at the detector.

Implications of μ_{ν} limits from different experiments (reactor, solar ${ }^{8} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}$) are different.

Limiting the effective magnetic moment of solar neutrinos with the Borexino detector

Livia Ludhova on behalf of the Borexino collaboration

IKP-2 FZ Jülich, RWTH Aachen, and JARA Institute, Germany

- In addition to the weak-interaction term σ_{w}, there appears an additional electromagnetic term σ_{EM}, proportional to NMM:

$$
\frac{d \sigma_{\mathrm{EM}}}{d T_{e}}\left(T_{e}, E_{\nu}\right)=\pi r_{0}^{2} \mu_{e f f}^{2}\left(\frac{1}{T_{e}}-\frac{1}{E_{\nu}}\right)
$$

$$
r_{0}=1.818 \times 10^{-13} \mathrm{~cm} \text { (electron radius) }
$$

- $\mu_{\text {eff }}$ for a mixture of mass eigenstates
- l-photon exchange $+v$ flips helicity (WI and EM terms do not interfere)
- For $\mathrm{T}_{\mathrm{e}} \ll \mathrm{E}_{\mathrm{v}}: \sigma_{\text {TOTAL }} \sim 1 / \mathrm{T}_{\mathrm{e}}$, the spectrum of the scattered electron is influenced mostly at low energies.

${ }^{7} \mathrm{Be}-v$: strong change of the shape

 MAJOR SENSITIVTY TO NMM
Difference for pp shapes

 $\mathrm{pp}-\mathrm{v}$: the change of the shape is almost equivalent to the change of only normalization CONSTRAINING PP FLUX HELPS!${ }^{7} \mathrm{Be}-\mathrm{v}$: strong change of the shape MAJOR SENSITIVTY TO NMM

Difference for pp shapes pp-v: the change of the shape is almost equivalent to the change of only normalization CONSTRAINING PP FLUX HELPS!

Livia Ludhova: Limiting the effective magnetic moment of solar neutrinos with the Borexino detector
TAUP 2017, Sudbury

Data selection:

Fiducial volume: $\mathrm{R}<3.021 \mathrm{~m},|\mathrm{z}|<1.67 \mathrm{~m}$ Muon, ${ }^{214} \mathrm{Bi}-{ }^{214} \mathrm{Po}$, and noise suppression Free fit parameters: solar-v (pp, ${ }^{7} \mathrm{Be}$) and backgrounds (${ }^{85} \mathrm{Kr},{ }^{210} \mathrm{Po},{ }^{210} \mathrm{Bi},{ }^{11} \mathrm{C}$, external bgr.), response parameters (light yield, ${ }^{210} \mathrm{Po}$ position and width, ${ }^{11} \mathrm{C}$ edge ($2 \times 511 \mathrm{keV}$), 2 energy resolution parameters)
Constrained parameters: ${ }^{14} \mathrm{C}$, pile up Fixed parameters: pep-, CNO-, ${ }^{8} \mathrm{~B}-\mathrm{v}$ rates Systematics: treatment of pile-up, energy estimators, pep and CNO constraints with LZ and HZ SSM

Without radiochemical constraint $\mu_{\text {eff }}<4.0 \times 10^{-11} \mu_{\mathrm{B}}$ (90% C.L.)

With radiochemical constraint $\mu_{\mathrm{eff}}<2.6 \times 10^{-11} \mu_{\mathrm{B}}$ (90% C.L.) a.ddine systematics $\mu_{\text {eff }}<2.8 \times 10^{-11} \mu_{\mathrm{B}}$ (90\% C.L.)

Profiling $\mu_{\text {eff }}$ with $\sigma_{E M}$ for pp $\&^{7} B e$

Experimental limits for different effective μ_{ν}

Method	Experiment	Limit	CL	Reference
Reactor $\bar{\nu}_{e}-e^{-}$	Krasnoyarsk	$\mu_{\nu_{e}}<2.4 \times 10^{-10} \mu_{\mathrm{B}}$	90\%	Vidyakin et al. (1992)
	Rovno	$\mu_{\nu_{e}}<1.9 \times 10^{-10} \mu_{\mathrm{B}}$		Derbin et al. (1993)
	MUNU	$\mu_{\nu_{e}}<0.9 \times 10^{-10} \mu_{\mathrm{B}}$		Daraktchieva et al. (2005)
	TEXONO	$\mu_{\nu_{e}}<7.4 \times 10^{-11} \mu_{\mathrm{B}}$		Wong et al. (2007)
	- GEMMA	$\mu_{\nu_{e}}<2.9 \times 10^{-11} \mu_{\mathrm{B}}$	90\%	Beda et al. (2012)
Accelerator $\nu_{e}-e^{-}$	LAMPF	$\mu_{\nu_{e}}<10.8 \times 10^{-10} \mu_{\mathrm{B}}$	90\%	Allen et al. (1993)
Accelerator $\left(\nu_{\mu}, \bar{\nu}_{\mu}\right)-e^{-}$	- BNL-E734	$\mu_{\nu_{\mu}}<8.5 \times 10^{-10} \mu_{\text {B }}$		Ahrens et al. (1990)
	LAMPF	$\mu_{\nu_{\mu}}<7.4 \times 10^{-10} \mu_{\mathrm{B}}$		Allen et al. (1993)
	LSND	$\mu_{\nu_{\mu}}<6.8 \times 10^{-10} \mu_{\mathrm{B}}$	90\%	Auerbach et al. (2001)
Accelerator $\left(\nu_{\tau}, \bar{\nu}_{\tau}\right)-e^{-}$	e^{-}DONUT	$\mu_{\nu_{\tau}}<3.9 \times 10^{-7} \mu_{\mathrm{B}}$	90\%	Schwienhorst et al. (2001)
Solar $\nu_{e}-e^{-}$	Super-Kamiokande $\mu_{\mathrm{S}}\left(E_{\nu} \geq 5 \mathrm{MeV}\right)<11 \times 10^{-10} \mu_{\mathrm{B}} 90 \%$ Liu et al. (2004)			
	Borexino	$\mu_{\mathrm{S}}\left(E_{\nu} \lesssim 1 \mathrm{MeV}\right)<5.4 \times$	90\%	Arpesella et al. (2008)

... next talk by Livia Ludhova ...
C. Giunti, A. Studenikin, "Electromagnetic interactions of neutrinos: a window to new physics", Rev. Mod. Phys. 87 (2015) 531

\ldots A remar $\nu \begin{gathered}\text { neutraitit } Q=0 \\ \text { is }\end{gathered}$. is attributed to

imposed in SM of electroweak interactions
Foot, Joshi, Lew, Volkas, 1990;
Foot, Lew, Volkas, 1993;
Babu, Mohapatra, 1989, 1990
Foot, He (1991)

- In SM (without ν_{R}) triangle anomalies

Beyond Standard Model...
...General proof: In SM :
 cancellation constraints $\stackrel{R}{ }$ certain relations among particle hypercharges Y, that is enough to fix all Y so that they, and consequently Q, are quantized
$Q=0$
is proven also by direct calculation in SM within different gauges and methods

Bardeen, Gastmans, Lautrup, 1972;
However, strict requirements for

Qquantization may disappear in extensions of standard $S U(2)_{L} \times U(1)_{Y} \boldsymbol{E W}$ model if ν_{R} with $\boldsymbol{Y} \neq 0$ are included: in the absence

Cabral-Rosetti, Bernabeu, Vidal, Zepeda, 2000;
Beg, Marciano, Ruderman, 1978;
Marciano, Sirlin, 1980; Sakakibara, 1981;
M.Dvornikov, A.S., 2004 (for extended SM in one-loop calculations)
of Y quantization electric charges \mathbf{Q} gets dequantized

millicharged ν

Experimental limits for different effective q
C. Giunti, A. Studenikin, "Electromagnetic interactions of neutrinos: a window to new physics", Rev. Mod. Phys. 87 (2015) 531

Limit	Method	Reference
$\left\|\mathbb{q}_{\nu_{\tau}}\right\| \lesssim 3 \times 10^{-4} e$	SLAC e^{-}beam dump	Davidson et al. (1991)
$\left\|\mathfrak{q}_{\nu_{\tau}}\right\| \lesssim 4 \times 10^{-4} e$	BEBC beam dump	Babu et al. (1994)
$\left\|\mathbb{q}_{\nu}\right\| \lesssim 6 \times 10^{-14} e$	Solar cooling (plasmon decay)	Raffelt (1999a)
$\left\|\mathfrak{q}_{\nu}\right\| \lesssim 2 \times 10^{-14} e$	Red giant cooling (plasmon decay)	Raffelt (1999a)
$\left\|\mathbb{q}_{\nu_{e}}\right\| \lesssim 3 \times 10^{-21} e$	Neutrality of matter	Raffelt (1999a)
$\left\|\mathbb{q}_{\nu_{e}}\right\| \lesssim 3.7 \times 10^{-12} e$ Nuclear reactor	Gninenko et al. (2007)	
$\left\|\mathfrak{q}_{\nu_{e}}\right\| \lesssim 1.5 \times 10^{-12} e$	Nuclear reactor	Studenikin (2013)

A. Studenikin: "New bounds on neutrino electric millicharge from limits on neutrino magnetic moment",
Eur.Phys.Lett. 107 (2014) 2100
C.Patrignani et al (Particle Data Group),
"The Review of Particle Physics 2016"
Chinese Physics C 40 (2016) 100001

Bounds on millicharge q_{ν} from μ_{ν}

two not seen contributions:

\mathcal{V}-e cross-section

$\left(\frac{d \sigma}{d T}\right)_{\nu-e}=\left(\frac{d \sigma}{d T}\right)_{S M}+\left(\frac{d \sigma}{d T}\right)_{\mu_{\nu}}+\left(\frac{d \sigma}{d T}\right)_{q_{\nu}}$

Bounds on q_{ν} from

unobservable effects of New Physics

$$
\left(\frac{d \sigma}{d T}\right)_{q_{\nu}} \approx 2 \pi \alpha \frac{1}{m_{e} T^{2}} q_{\nu}^{2}
$$

(3) V electromagnetic interactions

ν decay, Cherenkov radiation

γ decay in plasma
\prod_{0}

Scattering

Spin precession

Astrophysical bound on μ_{ν}

 comes from cooling of red gaint stars by plasmon decay $\gamma^{\star} \longrightarrow V V$$$
L_{\text {int }}=\frac{1}{2} \sum_{a, b}\left(\mu_{a, b} \bar{\psi}_{a} \sigma_{\mu \nu} \psi_{b}+\epsilon_{a, b} \bar{\psi}_{a} \sigma_{\mu \nu} \gamma_{5} \psi_{b}\right)
$$

Matrix element

$$
\epsilon_{\alpha} k^{\alpha}=0
$$

$$
|M|^{2}=M_{\alpha \beta} p^{\alpha} p^{\beta}, \quad M_{\alpha \beta}=4 \mu^{2}\left(2 k_{\alpha} k_{\beta}-2 k^{2} \epsilon_{\alpha}^{*} \epsilon_{\beta}-k^{2} g_{\alpha, \beta}\right),
$$

Decay rate

$$
\Gamma_{\gamma \rightarrow \nu \bar{\nu}}=\frac{\mu^{2}}{24 \pi} \frac{\left(\omega^{2}-k^{2}\right)^{2}}{\omega}=O \text { in vacuum } \quad \omega=k
$$

In the classical limit γ-like a massive particle with $\omega^{2}-k^{2}=\omega_{p l}^{2}$
Energy-loss rate per unit volume

$$
\mu^{2} \rightarrow \sum_{a, b}\left(\left|\mu_{a, b}\right|^{2}+\left|\left.\right|_{a, b},\right|^{2}\right)
$$

$$
Q_{\mu}=g \int \frac{d^{3} k}{(2 \pi)^{3}} \omega f_{B E} \Gamma_{\gamma \rightarrow \nu \bar{\nu}}
$$

distribution function of plasmons

more fast star cooling
In order not to delay helium ignition ($\leq 5 \%$ in Q)

- Constraints on neutrino millicharge from red gaints cooling

- $q_{\nu} \leq 2 \times 10^{-14} e$
...to avoid helium ignition in Halt, Raffelt, low-mass red gaints Weiss, PRL1994
-

$$
q_{\nu} \leq 3 \times 10^{-17} e
$$

absence of anomalous energy-dependent dispersion of SN1987A V signal, most model independent
... from "charge neutrality" of neutron...

$$
q_{\nu} \leq 3 \times 10^{-21} e
$$

- New mechanism of electromagnetic radiation
A. Egorov, A. Lobanov, A. Studenikin, Phys.Lett. B 491 (2000) 137
"Spin light of neutrino"

Lobanov, Studenikin,
Phys.Lett. B515(2001) 94
Phys.Lett. B 564 (2003) 27
Phys.Lett. B601 (2004) 171
Studenikin, A.Ternov,
Phys.Lett. B 608 (2005) 107
A. Grigoriev, Studenikin, Ternov,

Phys.Lett. B 622 (2005) 199
Studenikin,
J.Phys.A: Math.Gen. 39 (2006) 6769
J.Phys.A: Math.Theor. 41 (2008) 16402

Grigoriev, A. Lokhov, Studenikin, Ternov, Nuovo Cim. 35 C (2012) 57 Phys.Lett.B718(2012)512

Neutrino - photon coupling

broad neutrino lines account for interaction with environment
"Spin light of neutrino in matter"

$S L \boldsymbol{\nu}$

... within the quantum treatment based on method of exact solutions...

Modified Dirac equation for neutrino in matter

Addition to the vacuum neutrino Lagrangian

$$
\Delta L_{e f f}=\Delta L_{e f f}^{C C}+\Delta L_{e f f}^{N C}=-f^{\mu}\left(\bar{\nu} \gamma_{\mu} \frac{1+\gamma^{5}}{2} \nu\right)
$$

current

matter
where

$$
\begin{gathered}
f^{\mu}=\frac{G_{F}}{\sqrt{2}}\left(\left(1+4 \sin ^{2} \theta_{W}\right) j^{\mu}-\lambda^{\mu}\right)-\frac{1}{\text { matter }} \\
\left\{i_{2} \gamma_{\mu}\left(1+\partial^{\mu}-\frac{1}{2}\right) f^{\mu}-m\right\} \Psi(x)=0
\end{gathered}
$$

It is supposed that there is a macroscopic amount of electrons in the scale of a neutrino de Broglie wave length. Therefore, the interaction of a neutrino with the matter (electrons) is coherent.
L.Chang, R.Zia,'88; J.Panteleone,'91; K.Kiers, N.Weiss, M.Tytgat,'97-'98; P.Manheim,'88; D.Nötzold, G.Raffelt,'88; J.Nieves,'89; V.Oraevsky, V.Semikoz, Ya.Smorodinsky,89; W.Naxton, W-M.Zhang'91; M.Kachelriess,'98;
A.Studenikin, A.Ternov, hep-ph/0410297; Phys.Lett.B 608 (2005) 107

This is the most general equation of motion of a neutrino in which the effective potential accounts for both the charged and neutralcurrent interactions with the background matter and also for the possible effects of the matter motion and polarization.
A.Kusenko, M.Postma,'02.

Quantum theory of spin light of neutrino

Quantum treatment of spin light of neutrino in matter showns that this process originates from the two subdivided phenomena:
the shift of the neutrino energy levels in the presence of the background matter, which is different for the two opposite neutrino helicity states,

$$
E=\sqrt{\mathbf{p}^{2}\left(1-s \alpha \frac{m}{p}\right)^{2}+m^{2}}+\alpha m
$$

$$
s= \pm 1
$$

the radiation of the photon in the process of the neutrino transition from the "excited" helicity state to the low-lying helicity state in matter
A.Studenikin, A.Ternov,
A.Grigoriev, A.Studenikin, A.Ternov,
neutrino-spin self-polarization effect in the matter
A.Lobanov, A.Studenikin, Phys.Lett.B 564 (2003) 27;

Phys.Lett.B 601 (2004) 171

Phys.Lett.B 608 (2005) 107;
Phys.Lett.B 622 (2005) 199;
Grav. \& Cosm. 14 (2005) 132;

A.Grigoriev, A.Lokhov, A.Ternov, A.Studenikin The effect of plasmon mass on Spin Light of Neutrino in dense matter
 Figure 1: 3D representation of the radiation power distribution.

 Phys.Lett. B 718 (2012) 512

 Phys.Lett. B 718 (2012) 512}

Figure 2: The two-dimensional cut along the symmetry axis. Relative units are used.

4. Conclusions

We developed a detailed evaluation of the spin light of neutrino in matter accounting for effects of the emitted plasmon mass. On the base of the exact solution of the modified Dirac equation for the neutrino wave function in the presence of the background matter the appearance of the threshold for the considered process is confirmed. The obtained exact and explicit threshold condition relation exhibit a rather complicated dependance on the matter density and neutrino mass. The dependance of the rate and power on the neutrino energy, matter density and the angular distribution of the $S L \nu$ is investigated in details. It is shown how the rate and power wash out when the threshold parameter $a=m_{\gamma}^{2} / 4 \widetilde{n} p$ approaching unity. From the performed detailed analysis it is shown that the $S L \nu$ mechanism is practically insensitive to the emitted plasmon mass for very high lensities of matter (even up to $n=10^{41} \mathrm{~cm}^{-3}$) for ultra-high energy neutrinos for a wide ange of energies starting from $E=1 \mathrm{TeV}$. This conclusion is of interest for astrophysical pplications of $S L \nu$ radiation mechanism in light of the recently reported hints of $1 \div 10$ PeV neutrinos observed by IceCube [17].
A. Grigoriev, A. Lokhov, A.Ternov, A. Studenikin

Spin light of neutrino in astrophysical environments

arXiv: 1705.07481

manifests its

electromagnetic properties most clearly under influence of astrophysical extreme external conditions:

- strong external electromagnetic fields
and
- dense background matter

ν
in extreme external conditions (strong fields and dense matter)
A. Studenikin,

- "Quantum treatment of neutrino in background matter",
J. Phys. A: Math. Gen. 39 (2006) 6769-6776
- "Neutrinos and electrons in background matter: a new approach",
Ann.Fond. de Broglie 31 (2006) 289-316
- "Method of wave equations exact solutions in studies of neutrinos and electron interactions in dense matter",
J.Phys.A: Math.Theor. 41 (2008) 164047
... astrophysical bound on millicharge q_{v} from

\mathcal{V} energy quantization in rotating magnetized media

Grigoriev, Savochkin, Studenikin, Russ. Phys. J. 50 (2007) 845 Studenikin, J.Phys. A: Math. Theor. 41 (2008) 164047 Balantsev, Popov, Studenikin,
J. Phys. A: Math. Theor. 44 (2011) 255301 Balantsev, Studenikin, Tokarev,

Phys. Part. Nucl. 43 (2012) 727
Phys. Atom. Nucl. 76 (2013) 489
Studenikin, Tokarev, Nucl. Phys. B 884 (2014) 396

Millicharged \mathcal{V} in rotating magnetized matter

)

Balatsev, Tokarev, Studenikin, Phys.Part.Nucl., 2012, Phys.Atom.Nucl., Nucl.Phys. B, 2013, Studenikin, Tokarev, Nucl.Phys.B(2014) •
Modffied Dirac equation for ν wave function
$\left(\gamma_{\mu}\left(p^{\mu}+q_{0} A^{\mu}\right)-\frac{1}{2} \gamma_{\mu}\left(c_{l}+\gamma_{5}\right) f^{\mu}-\frac{i}{2} \mu \sigma_{\mu \nu} F^{\mu \nu}-m\right) \Psi(x)=0$
external magnetic field
$V_{m}=\frac{1}{2} \gamma_{\mu}\left(c_{l}+\gamma_{5}\right) f^{\mu}$

$$
c_{l}=1
$$

matter potential
rotating matter

rotation angular frequency
ν energy is quantized in rotating matter
A.Studenikin, I.Tokarev, Nucl.Phys.B (2014)

$$
G=\frac{G_{F}}{\sqrt{2}}
$$

integer number

ν energy is quantized in rotating matter like electron energy in magnetic field (Landau energy levels):

$$
p_{0}^{(e)}=\sqrt{m_{e}^{2}+p_{3}^{2}+2 \gamma N}, \quad \gamma=e B, \quad N=0,1,2, \ldots
$$

In quasi-classical approach

ν quantum states in rotating matter
ν motion in circular orbits

$$
R=\int_{0}^{\infty} \Psi_{L}^{\dagger} \mathrm{r} \Psi_{L} d \mathbf{r}=\sqrt{\frac{2 N}{\left|2 G n_{n} \omega-\epsilon q_{0} B\right|}}
$$

due to effective Lorentz force

$$
\mathbf{F}_{e f f}=q_{e f f} \mathbf{E}_{e f f}+q_{e f f}\left[\boldsymbol{\beta} \times \mathbf{B}_{e f f}\right] \quad \begin{aligned}
& \text { J.Phys.A: Math. Theor, } \\
& \text { 41(2008) } 164047
\end{aligned}
$$

$$
q_{e f f} \mathbf{E}_{e f f}=q_{m} \mathbf{E}_{m}+q_{0} \mathbf{E} \quad q_{e f f} \mathbf{B}_{e f f}=\left|q_{m} B_{m}+q_{0} B\right| \mathbf{e}_{z}
$$

where
matter induced "charge", "electric" and "magnetic" fields

E ~ 1 eV

1) low-energy ν are trapped in circular orbits inside rotating neutron stars

$$
R=\sqrt{\frac{2 N}{G n \omega}}<R_{N S}=10 \mathrm{~km}
$$

2) rotating neutron stars as
filters for low-energy relic \mathcal{V} ?

$$
T_{\nu} \sim 10^{-4} \mathrm{eV}
$$

... we predict:

3) high-energy \boldsymbol{V} are deflected inside a rotating astrophysical transient sources (GRBs, SNe, AGNs)
absence of light in correlation with ν signal reported by ANTARES Coll.
M.Ageron et al, Nucl.Instrum.Meth. A692 (2012) 184

- Millicharged V as star rotation engine

- Single \mathcal{V} generates feedback force with projection on rotation plane

$$
\text { - } F=\left(q_{0} B+2 G n_{n} \omega\right) \sin \theta
$$

single \mathcal{V} torque

$$
\text { - } M_{0}(t)=\sqrt{1-\frac{r^{2}(t) \Omega^{2} \sin ^{2} \theta}{4}} F r(t) \sin \theta
$$

$$
\omega_{c}=\frac{q_{0} B}{p_{0}+G n_{n}}
$$

total N_{ν} torque

$$
M(t)=\frac{N_{\nu}}{4 \pi} \int M_{0}(t) \sin \theta d \theta d \varphi
$$

Should effect initial star rotation (shift of star angular velocity)

$$
|\triangle \omega|=\frac{5 N_{\nu}}{6 M_{S}}\left(q_{0} B+2 G n_{n} \omega_{0}\right)
$$

$$
\Delta \omega=\omega-\omega_{0}
$$

A.Studenikin, Nucl.Phys.B (2014)

- VStar Turning mechanism (VST)

 A. Studenikin, I. Tokarev, Nucl. Phys. B 884 (2014) 396Escaping millicharged V s move on curved orbits inside magnetized rotating star and feedback of effective Lorentz force should effect initial star rotation

- New astrophysical constraint on ν millicharge

$$
\frac{|\triangle \omega|}{\omega_{0}}=7.6 \varepsilon \times 10^{18}\left(\frac{P_{0}}{10 \mathrm{~s}}\right)\left(\frac{N_{\nu}}{10^{58}}\right)\left(\frac{1.4 M_{\odot}}{M_{S}}\right)\left(\frac{B}{10^{14} G}\right)
$$

- $|\triangle \omega|<\omega_{0}$...to avoid contradiction of V ST impact with observational data on pulsars...

$$
q_{0}<1.3 \times 10^{-19} e_{0} \quad \ldots \text { best astrophysical } \begin{gathered}
\text { bound }
\end{gathered}
$$

spin and spin-flavour oscillations in transversal matter currents

Studenikin (2004)

Main steps in ν oscillations

(4) V spin and spin-flavour oscillations in B

 Consider two different neutrinos: $\quad \nu_{e_{L}}, \quad \nu_{\mu_{R}}, \quad m_{L} \neq m_{R}$ with magnetic moment interaction$$
L \sim \bar{\nu} \sigma_{\lambda \rho} F^{\lambda \rho} \nu^{\prime}=\bar{\nu}_{L} \sigma_{\lambda \rho} F^{\lambda \rho} \nu_{R}{ }^{\prime}+\bar{\nu}_{R} \sigma_{\lambda \rho} F^{\lambda \rho} \nu_{L}{ }^{\prime} .
$$

Twisting magnetic field $B=\left|\mathbf{B}_{\perp}\right| e^{i \phi(t)}$ or solar \mathcal{V} etc...

$$
\text { evolution equation } i \frac{d}{d t}\binom{\nu_{L}}{\nu_{R}}=H\binom{\nu_{L}}{\nu_{R}}
$$

$$
H=\left(\begin{array}{cc}
E_{L} & \mu_{e \mu} B e^{-i \phi} \\
\mu_{e \mu} B e^{+i \phi} & E_{R}
\end{array}\right)=\ldots\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\tilde{H}
$$

$$
\tilde{H}=\left(\begin{array}{cc}
-\frac{\Delta m^{2}}{4 E} \cos 2 \theta+\frac{V_{\nu_{e}}}{2} & \mu_{e \mu} B e^{-i \phi} \\
\mu_{e \mu} B e^{+i \phi} & \frac{\Delta m^{2}}{4 E}-\frac{V_{\nu_{e}}}{2}
\end{array}\right)
$$

Probability of $\nu_{e_{L}} \Longleftrightarrow \nu_{\mu_{R}}$ oscillations in $B=\left|\mathrm{B}_{\perp}\right| e^{i \phi(t)}$

$$
P_{\nu_{L} \nu_{R}}=\sin ^{2} \beta \sin ^{2} \Omega z, \quad \sin ^{2} \beta=\frac{\left(\mu_{e \mu} B\right)^{2}}{\left(\mu_{e \mu} B\right)^{2}+\left(\frac{\Delta_{L R}}{4 E}\right)^{2}}
$$

$$
\Delta_{L R}=\frac{\Delta m^{2}}{2}(\cos 2 \theta+1)-2 E V_{\nu_{e}}+2 E \dot{\phi}
$$

Resonance amplification of oscillations in matter:

$$
\Omega^{2}=\left(\mu_{e \mu} B\right)^{2}+\left(\frac{\Delta_{L R}}{4 E}\right)^{2}
$$

Akhmedov, 1988 Lime, Marciano

$$
\Delta_{L R} \rightarrow 0
$$

... similar to
MSW effect

In magnetic field
$\nu_{e_{L}} \nu_{\mu_{R}}$

$$
\begin{aligned}
& i \frac{d}{d z} \nu_{e_{L}}=-\frac{\Delta_{L R}}{4 E} \nu_{e_{L}}+\mu_{e \mu} B \nu_{\mu_{R}} \\
& \quad i \frac{d}{d z} \nu_{\mu_{L}}=\frac{\Delta_{L R}}{4 E} \nu_{\mu_{L}}+\mu_{e \mu} B \nu_{e_{R}}
\end{aligned}
$$

Neutrino conversions and oscillations
in magnetic field

- $\circledast \nu_{\odot}$ problem
...for recent analysis see
J.Pulido, 2006,

Cisneros, 1971
TAUP-09;

$$
*\left\{\begin{array}{l}
\text { Voloshin, Vysotsky, Okum, } 1986 \\
\text { Barbievi, Fiorentini, } 1988
\end{array}\right.
$$

A.Balantekin, C.Volpe, 2005

Otwisting B $\left\{\begin{array}{l}\text { Smirnov, } 1991 \\ \text { Akhmedov, Peteov, Smirnov, } 1993\end{array}\right.$..subdominant contribution to* supernova $\nu_{L} \stackrel{B}{\leftrightarrow} \nu_{R}$ LMA - MSW

- Dar, 1987

Fujikawa, Shrock, 1988
Voloshin, 1988
3
Spin-flavour oscillations in early universe - strong B_{\perp} \longmapsto population of ν wrong-helicity states (r.h.) would accelerate expansion of universe (???)

- neutrino spin and flavor oscillations in moving matter
A.Egorov, A.Lobanov,
A.Studenikin,

Phys.Lett.B 491
(2000) 137
A.Lobanov,
A.Studenikin,

Phys.Lett.B515
(2001) 94
A.Lobanov, A.Grigoriev, A.Studenikin,

Phys.Lett.B535
(2002) 187

moving matter components

$$
f=e, n, p, \mu, \text { etc }
$$ with polarizations

$\vec{\jmath}, \vec{\jmath}, \vec{\jmath}, \vec{\jmath}$, etc

spin evolution in presence of general external fields

M.Dvornikov, A.Studenikin, JHEP 09 (2002) 016

General types non-derivative interaction with external fields

$$
\begin{aligned}
-\mathcal{L}=g_{s} s(x) \bar{\nu} \nu+ & g_{p} \pi(x) \bar{\nu} \gamma^{5} \nu+g_{v} V^{\mu}(x) \bar{\nu} \gamma_{\mu} \nu+g_{a} A^{\mu}(x) \bar{\nu} \gamma_{\mu} \gamma^{5} \nu+ \\
& +\frac{g_{t}}{2} T^{\mu \nu} \bar{\nu} \sigma_{\mu \nu} \nu+\frac{g_{t}^{\prime}}{2} \Pi^{\mu \nu} \bar{\nu} \sigma_{\mu \nu} \gamma_{5} \nu
\end{aligned}
$$

scalar, pseudoscalar, vector, axial-vector, $\quad s, \pi, V^{\mu}=\left(V^{0}, \vec{V}\right), A^{\mu}=\left(A^{0}, \vec{A}\right)$, tensor and pseudotensor fields:

Relativistic equation (quasiclassical) for

$$
T_{\mu \nu}=(\vec{a}, \vec{b}), \Pi_{\mu \nu}=(\vec{c}, \vec{d})
$$

$$
\begin{aligned}
\dot{\vec{\zeta}}_{\nu} & =2 g_{a}\left\{A^{0}\left[\vec{\zeta}_{\nu} \times \vec{\beta}\right]-\frac{m_{\nu}}{E_{\nu}}\left[\vec{\zeta}_{\nu} \times \vec{A}\right]-\frac{E_{\nu}}{E_{\nu}+m_{\nu}}(\vec{A} \vec{\beta})\left[\vec{\zeta}_{\nu} \times \vec{\beta}\right]\right\} \\
& +2 g_{t}\left\{\left[\vec{\zeta}_{\nu} \times \vec{b}\right]-\frac{E_{\nu}}{E_{\nu}+m_{\nu}}(\overrightarrow{\beta b})\left[\vec{\zeta}_{\nu} \times \vec{\beta}\right]+\left[\vec{\zeta}_{\nu} \times[\vec{a} \times \vec{\beta}]\right]\right\}+ \\
& +2 i g_{t}^{\prime}\left\{\left[\vec{\zeta}_{\nu} \times \vec{c}\right]-\frac{E_{\nu}}{E_{\nu}+m_{\nu}}(\vec{\beta} \vec{c})\left[\vec{\zeta}_{\nu} \times \vec{\beta}\right]-\left[\overrightarrow{\zeta_{\nu}} \times[\vec{d} \times \vec{\beta}]\right]\right\}
\end{aligned}
$$

Neither S nor π nor V contributes to spin evolution

- Electromagnetic interaction

$$
T_{\mu \nu}=F_{\mu \nu}=(\vec{E}, \vec{B})
$$

- SM weak interaction

$$
\begin{array}{lrl}
\text { M weak interaction } & \vec{M} & =\gamma\left(A^{0} \vec{\beta}-\vec{A}\right) \\
G_{\mu \nu}=(-\vec{P}, \vec{M}) & \vec{P} & =-\gamma[\vec{\beta} \times \vec{A}],
\end{array}
$$

- $\left[\begin{array}{l}\text { Neutrino spin evolution in } \\ \text { arbitrary electromagnetic field } F_{\mu \nu} \text { and } \\ \text { moving and polarized matter }\end{array}\right.$

START
\perp Bargmann-Miche7-Telegdi equation for spin vector S_{μ} of neutral particle:

$$
\begin{aligned}
& \frac{d S^{\mu}}{d \tau}=2 \mu\left[F^{\mu \nu} S_{\nu}-u^{\mu}\left(u_{\nu} F^{\nu \lambda} S_{\Lambda}^{\prime}\right)\right]+ \\
& \begin{array}{c}
\text { magnetic } \\
\text { dipole moments } \\
\text { eledric }
\end{array} \\
& 2 \in \underbrace{\left[\left[\tilde{F}^{\mu \nu} S_{\nu}-u^{\mu}\left(u_{\nu} \tilde{F}^{\nu \lambda} S_{\lambda}\right)\right]\right.}_{\text {T-ingeriance }}
\end{aligned}
$$

- direct interaction of spin with $F_{\mu \nu}$
- Pinvariant theory
arbitrary em fie led

Lorentz invariant generalization of BMT eq. :

Substitution $\quad F_{\mu \nu} \rightarrow F_{\mu \nu}+G_{\mu \nu}$ implies:

$$
\sqrt{\left\lvert\, \begin{array}{l}
\vec{B} \rightarrow \vec{B}+\vec{M} \\
\vec{E} \rightarrow \vec{E}-\vec{P}
\end{array} \begin{array}{l}
\text { effects of } \nu \\
\text { interaction } \\
\text { with moving } \\
\text { and polarized } \\
\text { matter }
\end{array}\right.}
$$

. once more..
For $S M+S V(2)$-singlet ν_{R} and matter $f=e$

spin precession in moving matter !!! without any magnetic field !!!

ELEMENTARY PARTICLES AND FIELDS

Theory

Phys.Atom.Nucl. 67 (2004) 993-1002 Neutrino in Electromagnetic Fields and Moving Media

A. I. Studenikin*
Moscow State University, Vorob'evy gory, Moscow, 119899 Russia
Received March 26, 2003; in final form, August 12, 2003

Abstract

The history of the development of the theory of neutrino-flavor and neutrino-spin oscillations in electromagnetic fields and in a medium is briefly surveyed. A new Lorentz-invariant approach to describing neutrino oscillations in a medium is formulated in such a way that it makes it possible to consider the motion of a medium at an arbitrary velocity, including relativistic ones. This approach permits studying neutrino-spin oscillations under the effect of an arbitrary external electromagnetic field. In particular, it is predicted that, in the field of an electromagnetic wave, new resonances may exist in neutrino oscillations. In the case of spin oscillations in various electromagnetic fields, the concept of a critical magnetic-fieldcomponent strength is introduced above which the oscillations become sizable. The use of the Lorentzinvariant formalism in considering neutrino oscillations in moving matter leads to the conclusion that the relativistic motion of matter significantly affects the character of neutrino oscillations and can radically change the conditions under which the oscillations are resonantly enhanced. Possible new effects in neutrino oscillations are discussed for the case of neutrino propagation in relativistic fluxes of matter. © 2004 MAIK "Nauka/Interperiodica".

consion
 $$
\nu_{e_{L}} \quad \rightarrow \nu_{e_{R}}, \quad \nu_{e_{L}} \quad \longrightarrow \nu_{\mu_{R}}
$$

$$
P\left(\nu_{i} \rightarrow \nu_{j}\right)=\sin ^{2}\left(2 \theta_{\mathrm{eif}}\right) \sin ^{2} \frac{\pi x}{L_{\mathrm{eif}}}, \quad i \neq j
$$

$$
L_{\text {eif }}=\frac{2 \pi}{\sqrt{E_{\text {eif }}^{2}+\Delta_{\text {eif }}^{2}}}
$$

$$
\sin ^{2} 2 \theta_{\text {eif }}=\frac{E_{\text {eif }}^{2}}{E_{\text {eif }}^{2}+\Delta_{\text {eif }}^{2}}, \left.\quad \Delta_{\text {eif }}^{2}=\frac{\mu}{\gamma_{\nu}}\left|\mathbf{M}_{0 \|}+\mathbf{B}_{0 \|}\right| . \quad E_{\text {efi }}=\mu \right\rvert\, \mathbf{B}_{\perp}+\left(\frac{1}{\gamma_{\nu}} \mathbf{M}_{0 \perp}\right.
$$

- A.Studenikin, "Status and perspectives of neutrino magnetic monents" J.Phys.Conf.Ser. 718 (2016) 062076
where

$$
\rho=\frac{G_{F}}{2 \mu_{\nu} \sqrt{2}}\left(1+4 \sin ^{2} \theta_{W}\right)
$$

Physics of Atomic Nuclei, Vol. 67, No. 5, 2004, pp. 993-1002. Translated from Yadernaya Fizika, Vol. 67, No. 5, 2004, pp. 1014-1024. Original Russian Text Copyright © 2004 by Studenikin.

ELEMENTARY PARTICLES AND FIELDS

Theory
Phys.Atom.Nucl. 67 (2004) 993-1002, hep-ph/04070100 Neutrino in Electromagnetic Fields and Moving Media

A. I. Studenikin*
Moscow State University, Vorob'evy gory, Moscow, 119899 Russia
Received March 26, 2003; in final form, August 12, 2003

The possible emergence of neutrino-spin oscillations (for example, $\nu_{e L} \leftrightarrow \nu_{e R}$) owing to neutrino interaction with matter under the condition that there exists a nonzero transverse current component or matter polarization (that is, $\mathbf{M}_{0 \perp} \neq 0$) is the most important new effect that follows from the investigation of neutrino-spin oscillations in Section 4. So far, it has been assumed that neutrino-spin oscillations may arise only in the case where there exists a nonzero transverse magnetic field in the neutrino rest frame.
... the effect of $\mathcal{\nu}$ helicity
conversions and oscillations induced by
transversal matter currents has been recently confirmed:

- J. Serreau and C. Volpe,
"Neutrino-antineutrino correlations in dense anisotropic media", Phys.Rev. D90 (2014) 125040
- V. Ciriglianoa, G. M. Fuller, and A. Vlasenko,
"A new spin on neutrino quantum kinetics" Phys. Lett. B747 (2015) 27
- A. Kartavtsev, G. Raffelt, and H. Vogel,
"Neutrino propagation in media: flavor-, helicity-, and pair correlations", Phys. Rev. D91 (2015) 125020
- A. Dobrynina, A. Kartavtsev, and G. Raffelt, "Helicity oscillations of Dirac and Majorana neutrinos", Phys. Rev. D93 (2016) 125030

Neutrino spin (spin-flavour) oscillations in transversal matter currents

... quantum treatment ...

- Studenikin

Two flavour ν states
PoS (2017) NOW2O16_070
$\nu_{e}^{ \pm}=\nu_{1}^{ \pm} \cos \theta+\nu_{2}^{ \pm} \sin \theta, \quad \nu_{\mu}^{ \pm}=-\nu_{1}^{ \pm} \sin \theta+\nu_{2}^{ \pm} \cos \theta$

- Popov, Pustoshny, Studenikin,
two $\mathcal{\nu}$ mass $\nu_{\alpha}^{ \pm}=C_{\alpha} \sqrt{\frac{E_{\alpha}+m_{\alpha}}{2 E_{\alpha}}}\left(\begin{array}{c}u^{ \pm} \\ E_{\alpha}+m_{\alpha}\end{array} u^{ \pm}\right) e^{i \mathbf{p}_{\alpha} \mathrm{x}}, \alpha=1,2$ Poster \# 129
two helicities
$u^{+}=\binom{1}{0}, \quad u^{-}=\binom{0}{1}$
ν interaction with moving matter composed of neutrons:

$$
L_{e f f}=-f^{\mu}\left(\bar{\nu} \gamma_{\mu} \frac{1+\gamma_{5}}{2} \nu\right)
$$

$$
f^{\mu}=-\frac{G_{F}}{2 \sqrt{2}} j_{n}^{\mu}
$$

$$
j_{n}^{\mu}=n(1, \mathbf{v}) \quad n=\frac{n_{0}}{\sqrt{1-v^{2}}}
$$

$$
\vec{J}_{\perp}+\overrightarrow{0}_{11}
$$

Two flavour ν with two helicities in moving matter
$i \frac{d}{d t}\left(\begin{array}{l}\nu_{e}^{+} \\ \nu_{e}^{-} \\ \nu_{\mu}^{+} \\ \nu_{\mu}^{-}\end{array}\right)=\left\{H_{\text {vac }}^{\text {eff }}+\Delta H^{\text {eff }}\right\}\left(\begin{array}{l}\nu_{e}^{+} \\ \nu_{e}^{-} \\ \nu_{\mu}^{+} \\ \nu_{\mu}^{-}\end{array}\right)$

$$
\Delta H^{\text {eff }}=\Delta H_{v=0}^{\text {eff }}+\Delta H_{\vec{j}_{\|}+\vec{j}_{\perp}}^{\text {eff }}
$$

$$
\vec{j}_{1}+\vec{j}_{11}
$$

Contribution of matter currents

$\Delta H^{e f f}=\left(\begin{array}{llll}\Delta_{e e}^{++} & \Delta_{e e}^{+-} & \Delta_{e \mu}^{++} & \Delta_{e \mu}^{+-} \\ \Delta_{e e}^{-+} & \Delta_{e e}^{--} & \Delta_{e \mu}^{-+} & \Delta_{e \mu}^{--} \\ \Delta_{\mu e}^{++} & \Delta_{\mu e}^{+-} & \Delta_{\mu \mu}^{++} & \Delta_{\mu \mu}^{+-} \\ \Delta_{\mu e}^{-} & \Delta_{\mu e}^{--} & \Delta_{\mu \mu}^{-} & \Delta_{\mu \mu}^{-}\end{array}\right)$

$$
\begin{aligned}
& \Delta_{k l}^{s s^{\prime}}=\left\langle v_{k}^{s}\right| \Delta H^{S M}\left|v_{l}^{s^{\prime}}\right\rangle k, l=e, \mu \quad s, s^{\prime}= \pm \\
& \Delta H^{S M}=-\frac{G_{F}}{2 \sqrt{2}} \frac{n}{\sqrt{1-v^{2}}}\left(1-\gamma_{0} \boldsymbol{\gamma} \mathbf{v}\right)\left(1+\gamma_{5}\right)
\end{aligned}
$$

$$
\nu_{e}^{ \pm}=\nu_{1}^{ \pm} \cos \theta+\nu_{2}^{ \pm} \sin \theta, \quad \nu_{\mu}^{ \pm}=-\nu_{1}^{ \pm} \sin \theta+\nu_{2}^{ \pm} \cos \theta
$$

$$
\gamma_{\alpha \alpha^{\prime}}{ }^{-1}=\frac{1}{2}\left(\gamma_{\alpha}^{-1}+\gamma_{\alpha^{\prime}}^{-1}\right) \quad \widetilde{\gamma}_{\alpha \alpha^{\prime}}^{-1}=\frac{1}{2}\left(\gamma_{\alpha}^{-1}-\gamma_{\alpha^{\prime}}^{-1}\right)
$$

$$
\Delta_{\alpha \alpha^{\prime}}^{s s^{\prime}}=\frac{G_{F}}{2 \sqrt{2}} \frac{n_{0}}{\sqrt{1-v^{2}}}\left\{u_{\alpha}^{s T}\left[\left(1-\sigma_{3}\right)\left(v_{\|}-1\right)+\left(\gamma_{\alpha \alpha^{\prime}}-1 \sigma_{1}+i \widetilde{\gamma}_{\alpha \alpha^{\prime}}^{-1} \sigma_{2}\right) v_{\perp}\right\rfloor u_{\alpha^{\prime}}^{s^{\prime}}\right\} \alpha=1,2
$$

- longitudinal current \mathbf{j}_{11} does not change ν helicity
- transversal current j_{\perp} do change ν helicity

Studenikin, 2004, 2017; Popov, Pustoshny, Studenikin, Poster \# 129

Conclusions

\mathcal{V} em. vertex function $\Rightarrow 4$ form factors $\} \gamma$ charge dipole magnetic and electric

- $\Lambda_{\mu}(q)=f_{Q}\left(q^{2}\right) \gamma_{\mu}+f_{M}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}+f_{E}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu} \gamma_{5}$ $f_{A}\left(q^{2}\right)\left(q^{2} \gamma_{\mu}-q_{\mu} \not q\right) \gamma_{5}$ anapole

Standard mode 7 with $\nu_{R}\left(m_{\nu} \neq 0\right): \mu_{e}=\frac{3 e G_{F}}{8 \sqrt{2} T^{2}} m_{e^{\prime}} \sim 3 \cdot 10^{-19} \mu_{B}\left(\frac{m_{\nu}}{2 g v^{2}}\right)$

- In extensions of SM

Limits from reactor $v-e$
scattering experiments (2012):

$$
\mu_{\nu}<2.9 \times 10^{-11} \mu_{B}
$$

A.Beda et al. (GEMMA Coll.) star cooling (1990):

- Limits from astrophysics,
(GEMMA Coll.)
 EM properties \Longleftrightarrow a way to distinguish Dirac $\begin{array}{r}\text { and Majorana } \nu\end{array}$

.
μ_{ν} is "presently known" to be in the range

$$
10^{-20} \mu_{B} \leq \mu_{\nu} \leq 10^{-\mathbf{1 1}} \mu_{B}
$$

μ_{ν} provides a tool for exploration possible physics beyond the Standard Model

Due to smallness of neutrino-mass-induced magnetic moments,

$$
\mu_{i i} \approx 3.2 \times 10^{-19}\left(\frac{m_{i}}{1 \mathrm{eV}}\right) \mu_{B}
$$

any indication for non-trivial electromagnetic properties of \mathcal{V}, that could be obtained within reasonable time in the future, would give evidence for BESM physics

Beyond Extended Standard Model
μ_{ν} interactions could have important effects in astrophysical and cosmological environments
future high-precision observations of supernova ν fluxes (for instance, in JUNO experiment) may reveal effect of collective spin-flavour oscillations due to Majorana

$$
\mu_{v} \sim 10^{-21} \mu_{\mathrm{B}}
$$

A. de Gouvea, S. Shalgar,

Cosmol. Astropart. Phys. 04 (2013) 018

back up slides

ν electromagnetic vertex function

$<\psi\left(p^{\prime}\right)\left|J_{\mu}^{E M}\right| \psi(p)>=\bar{u}\left(p^{\prime}\right) \Lambda_{\mu}(q, l) u(p)$
Matrix element of electromagnetic current is a Lorentz vector
$\Lambda_{\mu}(q, l)$ should be constructed using
matrices $\hat{\mathbf{1}}, \quad \gamma_{5}, \quad \gamma_{\mu}, \quad \gamma_{5} \gamma_{\mu}, \quad \sigma_{\mu \nu}$,
tensors $g_{\mu \nu}, \epsilon_{\mu \nu \sigma \gamma}$
vectors q_{μ} and $l_{\mu} \quad$ Lorentz covariance (1)

$$
q_{\mu}=p_{\mu}^{\prime}-p_{\mu}, l_{\mu}=p_{\mu}^{\prime}+p_{\mu}
$$

- and electromagnetic gauge invariance (2)

Vertex function $\Lambda_{\mu}(q, l) \longmapsto$ there are three sets of operators:

$\bigcirc \hat{\mathbf{1}} q_{\mu}, \quad \hat{\mathbf{1}} l_{\mu}, \quad \gamma_{5} q_{\mu}, \quad \gamma_{5} l_{\mu}$ $\not q q_{\mu}, \quad \nless q_{\mu}, \quad \gamma_{5} q_{\mu}, \quad \gamma_{5} \not q q_{\mu}, \quad \gamma_{5} \not\left\langle q_{\mu}, \quad \sigma_{\alpha \beta} q^{\alpha} l^{\beta} q_{\mu}, \quad\left(q_{\mu} \leftrightarrow l_{\mu}\right)\right.$
$\bigcirc \gamma_{\mu}, \quad \gamma_{5} \gamma_{\mu}, \quad \sigma_{\mu \nu} q^{\nu}, \quad \sigma_{\mu \nu} l^{\nu}$.
$\bigcirc \epsilon_{\mu \nu \sigma \gamma} \sigma^{\alpha \beta} q^{\nu}, \quad \epsilon_{\mu \nu \sigma \gamma} \sigma^{\alpha \beta} l^{\nu}, \quad \epsilon_{\mu \nu \sigma \gamma} \sigma^{\nu \beta} q_{\beta} q^{\sigma} l^{\gamma}$,
$\epsilon_{\mu \nu \sigma \gamma} \sigma^{\nu \beta} l_{\beta} q^{\sigma} l^{\gamma}, \quad \epsilon_{\mu \nu \sigma \gamma} \gamma^{\nu} q^{\sigma} l^{\gamma} \hat{\mathbf{1}}, \quad \epsilon_{\mu \nu \sigma \gamma} \gamma^{\nu} q^{\sigma} l^{\gamma} \gamma_{5}$
ν vertex function (using Gordon-like identities)

$$
\begin{aligned}
\Lambda_{\mu}(q, l)= & f_{1}\left(q^{2}\right) q_{\mu}+f_{2}\left(q^{2}\right) q_{\mu} \gamma_{5}+f_{3}\left(q^{2}\right) \gamma_{\mu}+ \\
& f_{4}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+f_{5}\left(q^{2}\right) \sigma_{\mu \nu} q^{\nu}+f_{6}\left(q^{2}\right) \epsilon_{\mu \nu \rho \gamma} \sigma^{\rho \gamma} q^{\nu}
\end{aligned}
$$

the only dependence on q^{2} emains because

$$
p^{2}=p^{\prime 2}=m^{2}, l^{2}=4 m^{2}-q^{2}
$$

Gordon-like identities

$$
\begin{aligned}
\bar{u}\left(\mathbf{p}_{1}\right) \gamma^{\mu} u\left(\mathbf{p}_{2}\right) & =\frac{1}{2 m} \bar{u}\left(\mathbf{p}_{1}\right)\left[l^{\mu}+i \sigma^{\mu \nu} q_{\nu}\right] u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right) \gamma^{\mu} \gamma_{5} u\left(\mathbf{p}_{2}\right) & =\frac{1}{2 m} \bar{u}\left(\mathbf{p}_{1}\right)\left[\gamma_{5} q^{\mu}+i \gamma_{5} \sigma^{\mu \nu} l_{\nu}\right] u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right) i \sigma^{\mu \nu} l_{\nu} u\left(\mathbf{p}_{2}\right) & =-\bar{u}\left(\mathbf{p}_{1}\right) q^{\nu} u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right) i \sigma^{\mu \nu} q_{\nu} u\left(\mathbf{p}_{2}\right) & =\bar{u}\left(\mathbf{p}_{1}\right)\left[2 m \gamma^{\mu} l^{\mu}\right] u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right) i \sigma^{\mu \nu} \gamma_{5} q_{\nu} u\left(\mathbf{p}_{2}\right) & =-\bar{u}\left(\mathbf{p}_{1}\right) l^{\mu} \gamma_{5} u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right)\left[\epsilon^{\alpha \mu \nu \beta} \gamma_{5} \gamma_{\beta} q_{\mu} l_{\nu}\right] u\left(\mathbf{p}_{2}\right) & =\bar{u}\left(\mathbf{p}_{1}\right)\left\{-i\left[q^{\alpha} \not \chi-l^{\alpha} \not q\right]+i\left(q^{2}-4 m^{2}\right) \gamma^{\alpha}+\right. \\
\bar{u}\left(\mathbf{p}_{1}\right)\left[\epsilon^{\alpha \mu \nu \beta} \gamma_{\beta} q_{\mu} l_{\nu}\right] u\left(\mathbf{p}_{2}\right) & =\bar{u}\left(\mathbf{p}_{1}\right)\left\{i\left[q^{\alpha} \not \chi-l^{\alpha} q\right] \gamma_{5}+i q^{2} \gamma_{5} \gamma^{\alpha}-\right. \\
& \left.2 i m\left(l^{\alpha}+q^{\alpha}\right) \gamma_{5}\right\} u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right)\left[\epsilon^{\mu \nu \alpha \beta} q_{\alpha} l_{\beta} \gamma_{\nu} \gamma_{5}\right] u\left(\mathbf{p}_{2}\right) & =\frac{i}{2 m} \bar{u}\left(\mathbf{p}_{1}\right)\left[\epsilon^{\mu \nu \alpha \beta} q_{\alpha} l_{\beta} \sigma_{\nu \rho} q^{\rho}\right] u\left(\mathbf{p}_{2}\right) \\
\bar{u}\left(\mathbf{p}_{1}\right)\left[\epsilon^{\mu \nu \alpha \beta} q_{\alpha} l_{\beta} \sigma_{\nu \rho} l^{\rho}\right] u\left(\mathbf{p}_{2}\right) & =0
\end{aligned}
$$

Electromagnetic gauge invariance (2)

 (requirement of current conservation)$$
\partial_{\mu} j^{\mu}=0
$$

$$
\begin{gathered}
f_{1}\left(q^{2}\right) q^{2}+f_{2}\left(q^{2}\right) q^{2} \gamma_{5}+2 m f_{4}\left(q^{2}\right) \gamma_{5}=0, \\
f_{1}\left(q^{2}\right)=0, \quad f_{2}\left(q^{2}\right) q^{2}+2 m f_{4}\left(q^{2}\right)=0
\end{gathered}
$$

$\boldsymbol{\nu}$ vertex function

charge
dipole electric and magnetic anapole
4 Form Factors

electromagnetic gauge invariance (2)

Matrix element of electromagnetic current between neutrino states

$$
\left\langle\nu\left(p^{\prime}\right)\right| J_{\mu}^{E M}|\nu(p)\rangle=\bar{u}\left(p^{\prime}\right) \Lambda_{\mu}(q) u(p)
$$

where vertex function generally contains 4 form factors

Hermiticity and discrete symmetries of EM current J_{μ}^{EM} put constraints on form factors

Dirac \mathcal{V}

1) $C P$ invariance + Hermiticity $\Rightarrow f_{E}=0$,
2) at zero momentum transfer only electric Charge $f_{Q}(0)$ and magnetic moment $f_{M}(0)$ contribute to $H_{\text {int }} \sim J_{\mu}^{E M} A^{\mu}$
3) Hermiticity itself \Longrightarrow three formfactors
are real: $\quad \operatorname{Im} f_{Q}=\operatorname{Im} f_{M}=\operatorname{Im} f_{A}=\mathbf{0}$

Majorana V

1) from CPT invariance
(regardless CP or SP).

$$
f_{Q}=f_{M}=f_{E}=0
$$

\ldots A remar $\nu \begin{gathered}\text { neutraitit } Q=0 \\ \text { is }\end{gathered}$. is attributed to

imposed in SM of electroweak interactions
Foot, Joshi, Lew, Volkas, 1990;
Foot, Lew, Volkas, 1993;
Babu, Mohapatra, 1989, 1990
Foot, He (1991)

- In SM (without ν_{R}) triangle anomalies

Beyond Standard Model...
...General proof: In SM :
 cancellation constraints $\stackrel{R}{ }$ certain relations among particle hypercharges Y, that is enough to fix all Y so that they, and consequently Q, are quantized
$Q=0$
is proven also by direct calculation in SM within different gauges and methods

Bardeen, Gastmans, Lautrup, 1972;
However, strict requirements for

Qquantization may disappear in extensions of standard $S U(2)_{L} \times U(1)_{Y} \boldsymbol{E W}$ model if ν_{R} with $\boldsymbol{Y} \neq 0$ are included: in the absence

Cabral-Rosetti, Bernabeu, Vidal, Zepeda, 2000;
Beg, Marciano, Ruderman, 1978;
Marciano, Sirlin, 1980; Sakakibara, 1981;
M.Dvornikov, A.S., 2004 (for extended SM in one-loop calculations)
of Y quantization electric charges \mathbf{Q} gets dequantized

millicharged ν

Astrophysics bounds on μ
 $$
\mu_{\nu}(\text { astro })<10^{-10}-10^{-12} \mu_{\mathrm{B}}
$$

Mostly derived from consequences of helicity-state change in astrophysical medium:

- available degrees of freedom in BBN,
- stellar cooling via plasmon decay, cooling of SN1987a

Bounds depend on

- modeling of astrophysical systems,
- on assumptions on the neutrino properties.
${ }^{\circ}$ Generic assumption:
- absence of other nonstandard interactions except for μ_{ν}

A global treatment would be desirable, incorporating oscillation and matter effects as well as the complications due to interference and competitions among various channels

K. Kouzakov, A. Studenikin, Phys. Rev. D 95 (2017) 055013

"Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering"

Abstract

A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos arriving from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

... comprehensive analysis of \boldsymbol{V} - \boldsymbol{e} scattering...

PHYSICAL REVIEW D 95, 055013 (2017)

Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

Konstantin A. Kouzakov*
Department of Nuclear Physics and Quantum Theory of Collisions, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
Alexander I. Studenikin ${ }^{\dagger}$
Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia and Joint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia (Received 11 February 2017; published 14 March 2017)

A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavortransition millicharges and charge radii in the scattering experiments are pointed out.

DOI: 10.1103/PhysRevD.95.055013

Elastic neutrino-electron scattering $\begin{aligned} & \text { at energy-momentum } \\ & \text { transfer } q=(T, \mathbf{q})\end{aligned}$ $\nu_{l}(L)+e^{-} \rightarrow \nu_{j}+e^{-}$flavour state $\left|\nu_{\ell}\right\rangle$ in the source arrives to the detector as

Matrix element of weak interactions

$$
\left|\nu_{\ell}(L)\right\rangle=\sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L}\left|\nu_{k}\right\rangle
$$

$$
\mathcal{M}_{j}^{(w)}=\frac{G_{F}}{\sqrt{2}} \sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L}\left[\left(g_{V}^{\prime}\right)_{j k} \bar{u}_{j} \gamma_{\lambda}\left(1-\gamma^{5}\right) u_{k} J_{V}^{\lambda}(q)-\left(g_{A}^{\prime}\right)_{j k} \bar{u}_{j} \gamma_{\lambda}\left(1-\gamma^{5}\right) u_{k} J_{A}^{\lambda}(q)\right]
$$

$$
\left(g_{V}^{\prime}\right)_{j k}=\delta_{j k} g_{V}+U_{e j}^{*} U_{e k} \quad\left(g_{A}^{\prime}\right)_{j k}=\delta_{j k} g_{A}+U_{e j}^{*} U_{e k} \quad g_{V}=2 \sin ^{2} \theta_{W}-1 / 2, g_{A}=-1 / 2
$$

Electron transition V and A currents in detector

$$
J_{V}^{\lambda}(q)=\langle f| \sum_{d} e^{i \mathbf{q} \cdot \mathbf{r}_{d}} \gamma_{d}^{0} \gamma_{d}^{\lambda}|i\rangle \quad J_{A}^{\lambda}(q)=\langle f| \sum_{d} e^{i \mathbf{q} \cdot \mathbf{r}_{d}} \gamma_{d}^{0} \gamma_{d}^{\lambda} \gamma_{d}^{5}|i\rangle
$$

$$
\mathcal{E}_{f}-\mathcal{E}_{i}=T
$$

energy transfer

$$
\begin{aligned}
& \nu \text { electromagnetic interactions } \\
& \text { mass states } \nu_{j}, m_{j}(j=1,2,3) \\
& q=p_{j}-p_{k} \\
& \mathcal{H}_{\mathrm{em}}^{(\nu)}=j_{\lambda}^{(\nu)} A^{\lambda}=\sum_{j, k=1}^{3} \bar{\nu}_{j} \Lambda_{\lambda}^{j k} \nu_{k} A^{\lambda} \\
& \Lambda_{\lambda}(q)=\left(\gamma_{\lambda}-\frac{q_{\lambda} \not \mathscr{}}{q^{2}}\right)\left[f_{Q}\left(q^{2}\right)+f_{A}\left(q^{2}\right) q^{2} \gamma^{5}\right]-i \sigma_{\lambda \rho} q^{\rho}\left[f_{M}\left(q^{2}\right)+i f_{E}\left(q^{2}\right) \gamma^{5}\right]
\end{aligned}
$$

Matrix element of electromagnetic interactions

$$
\mathcal{M}_{j}^{(\gamma)}=\mathcal{M}_{j}^{(Q)}+\mathcal{M}_{j}^{(\mu)}
$$

$$
\mathcal{M}_{j}^{(Q)}=\frac{4 \pi \alpha}{q^{2}} \sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L} \bar{u}_{j}\left(\gamma_{\lambda}-\frac{q_{\lambda} \not Q}{q^{2}}\right)\left[\left(e_{\nu}\right)_{j k}+\frac{q^{2}}{6}\left\langle r_{\nu}^{2}\right\rangle_{j k}\right] u_{k} J_{V}^{\lambda}(q)
$$

millicharge $\left\langle e_{\nu}\right)_{j k}=e_{j k}$ charge radius and anapole moment $\left\langle r_{\nu}^{2}\right\rangle_{j k}=\left\langle r^{2}\right\rangle_{j k}+6 \gamma^{5} a_{j k}$

$$
\mathcal{M}_{j}^{(\mu)}=-i \frac{2 \pi \alpha}{m_{e} q^{2}} \sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L} \bar{u}_{j} \sigma_{\lambda \rho} q^{\rho}\left(\mu_{\nu}\right)_{j k} u_{k} J_{V}^{\lambda}(q) \frac{\left(\mu_{\nu}\right)_{j k}=\mu_{j k}+i \gamma^{5} \varepsilon_{j k}}{\text { magnetic \& electric }} \begin{aligned}
& \text { dipole moments }
\end{aligned}
$$

nonmoving matter !!!
Helicity-conserving amplitudes $\mathcal{M}_{j}^{(w, Q)}=\mathcal{M}_{j}^{(w)}+\mathcal{M}_{j}^{(Q)}$

$$
\begin{aligned}
& =\frac{G_{F}}{\sqrt{2}} \sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L}\left\{\left[\left(g_{V}^{\prime}\right)_{j k}+\tilde{Q}_{j k}\right] \bar{u}_{j} \gamma_{\lambda}\left(1-\gamma^{5}\right) u_{k} J_{V}^{\lambda}(q)\right. \\
& \left.\tilde{Q}_{j k}=\frac{2 \sqrt{2} \pi \alpha}{G_{F}}\left[\frac{\left(e_{\nu}\right)_{j k}}{q^{2}}+\frac{1}{6}\left\langle r_{\nu}^{2}\right\rangle_{j k}\right]-\left(g_{A}^{\prime}\right)_{j k} \bar{u}_{j} \gamma_{\lambda}\left(1-\gamma^{5}\right) u_{k} J_{A}^{\lambda}(q)\right\}
\end{aligned}
$$

Differential cross section measured in scattering experiment the final massive state is not resolved in experiment

$$
\frac{d \sigma}{d T}=\frac{1}{32 \pi^{2}} \int_{T^{2}}^{\left(2 E_{\nu}-T\right)^{2}} \frac{d \mathbf{q}^{2}}{E_{\nu}^{2}} \int_{0}^{2 \pi} d \varphi_{\mathbf{q}}\left|\mathcal{M}_{f i}\right|^{2} \delta\left(T-\mathcal{E}_{f}+\mathcal{E}_{i}\right)
$$

$$
\left|\mathcal{M}_{f i}^{(w, Q)}\right|^{2}=\sum_{j=1}^{3}\left|\tilde{\mathcal{M}}_{j}^{(w, Q)}\right|^{2}
$$

$$
\left|\mathcal{M}_{f i}\right|^{2}=\sum_{j=1}^{3}\left\{\left|\mathcal{M}_{j}^{(w, Q)}\right|^{2}+\left|\mathcal{M}_{j}^{(\mu)}\right|^{2}\right\}
$$

2) $p_{j}=p^{\prime} \quad p_{k}=p$ 3) averaging (summation) over initial (final) spin polariz. 4) φ_{q} is azimutal angle

$$
\begin{aligned}
= & 4 G_{F}^{2}\left\{C_{1}\left[2\left|p \cdot J_{V}(q)\right|^{2}-\left(p \cdot p^{\prime}\right) J_{V}(q) \cdot J_{V}^{*}(q)-i \varepsilon_{\lambda \rho \lambda^{\prime} \rho^{\prime} p^{\prime} \rho} p^{\rho^{\prime}} J_{V}^{\lambda}(q) J_{V}^{\lambda^{\prime} *}(q)\right]\right. \\
& +C_{2}\left[\left(p \cdot J_{A}(q)\right)\left(p^{\prime} \cdot J_{A}^{*}(q)\right)+\left(p^{\prime} \cdot J_{A}(q)\right)\left(p \cdot J_{A}^{*}(q)\right)-\left(p \cdot p^{\prime}\right) J_{A}(q) \cdot J_{A}^{*}(q)\right. \\
& \left.-i \varepsilon_{\lambda \rho \lambda^{\prime} \rho^{\prime}} p^{\prime \rho} p^{\rho^{\prime}} J_{A}^{\lambda}(q) J_{A}^{\lambda^{\prime *}}(q)\right]+2 \operatorname{Re}\left\{C _ { 3 } \left[\left(p \cdot J_{V}(q)\right)\left(p^{\prime} \cdot J_{A}^{*}(q)\right)\right.\right. \\
& \left.\left.\left.+\left(p^{\prime} \cdot J_{A}(q)\right)\left(p \cdot J_{V}^{*}(q)\right)-\left(p \cdot p^{\prime}\right) J_{V}(q) \cdot J_{A}^{*}(q)-i \varepsilon_{\lambda \rho \lambda^{\prime} \rho^{\prime}} p^{\prime \rho} p^{\rho^{\prime}} J_{V}^{\lambda}(q) J_{A}^{\lambda^{\prime} *}(q)\right]\right\}\right\}
\end{aligned}
$$

... complicated intersection of weak and electromagnetic interactions with effects of mixing ...

$$
\begin{aligned}
C_{1} & =\sum_{i . k . k^{\prime}=1}^{3} U_{\ell k}^{*} U_{\ell k^{\prime}} e^{-i \frac{\delta m_{k k^{\prime}}^{2}}{2 E_{\nu}} L}\left[\left(g_{V}^{\prime}\right)_{j k}+\tilde{Q}_{j k}\right]\left[\left(g_{V}^{\prime}\right)_{j k^{\prime}}^{*}+\tilde{Q}_{j k^{\prime}}^{*}\right] \\
C_{2} & =\sum_{j, k, k^{\prime}=1}^{3} U_{\ell k}^{*} U_{\ell k^{\prime}} e^{-i \frac{\delta m_{k k^{\prime}}^{2}}{2 E_{\nu}} L}\left(g_{A}^{\prime}\right)_{j k}\left(g_{A}^{\prime}\right)_{j k^{\prime}}^{*} \\
C_{3} & =\sum_{j, k, k^{\prime}=1}^{3} U_{\ell k}^{*} U_{\ell k^{\prime}} e^{-i \frac{\delta m_{k k^{\prime}}^{2}}{2 E_{\nu}} L}\left[\left(g_{V}^{\prime}\right)_{j k}+\tilde{Q}_{j k}\right]\left(g_{A}^{\prime}\right)_{j k^{\prime}}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{Q}_{j k}=\frac{2 \sqrt{2} \pi \alpha}{G_{F}}\left[\frac{\left(e_{\nu}\right)_{j k}}{q^{2}}+\frac{1}{6}\left\langle r_{\nu}^{2}\right\rangle_{j k}\right] \\
& \hline\left(g_{V}^{\prime}\right)_{j k}=\delta_{j k} g_{V}+U_{e j}^{*} U_{e k} \\
& \hline\left(g_{A}^{\prime}\right)_{j k}=\delta_{j k} g_{A}+U_{e j}^{*} U_{e k}
\end{aligned}
$$

$$
\delta m_{k k^{\prime}}^{2}=m_{k}^{2}-m_{k^{\prime}}^{2}
$$

Magnetic moment part of cross section

$$
\frac{d \sigma}{d T}=\frac{1}{32 \pi^{2}} \int_{T^{2}}^{\left(2 E_{\nu}-T\right)^{2}} \frac{d \mathbf{q}^{2}}{E_{\nu}^{2}} \int_{0}^{2 \pi} d \varphi_{\mathbf{q}}\left|\mathcal{M}_{f i}\right|^{2} \delta\left(T-\mathcal{E}_{f}+\mathcal{E}_{i}\right)
$$

$$
\left|\mathcal{M}_{f i}\right|^{2}=\sum_{j=1}^{3}\left\{\left|\mathcal{M}_{j}^{(w, Q)}\right|^{2}+\left|\mathcal{M}_{j}^{(\mu)}\right|^{2}\right\}
$$

$\left|\mathcal{M}_{f i}^{(\mu)}\right|^{2}=\sum_{j=1}^{3}\left|\mathcal{M}_{j}^{(\mu)}\right|^{2}=\frac{32 \pi^{2} \alpha^{2}}{m_{e}^{2}\left|q^{2}\right|}\left|\mu_{\nu}\left(L, E_{\nu}\right)\right|^{2}\left|p \cdot J_{V}(q)\right|^{2}$

$$
\left|\mu_{\nu}\left(L, E_{\nu}\right)\right|^{2}=\sum_{j=1}^{3}\left|\sum_{k=1}^{3} U_{\ell k}^{*} e^{-i \frac{m_{k}^{2}}{2 E_{\nu}} L}\left(\mu_{\nu}\right)_{j k}\right|^{2}
$$

Giunti, Studenikin,
Rev. Mod. Phys. 2015

For Dirac antineutrinos

$$
\begin{gathered}
\left(e_{\nu}\right)_{j k} \rightarrow\left(e_{\bar{\nu}}\right)_{j k}=-e_{k j} \quad\left(\mu_{\nu}\right)_{j k} \rightarrow\left(\mu_{\bar{\nu}}\right)_{j k}=-\mu_{k j}-i \gamma^{5} \varepsilon_{k j} \quad\left\langle r_{\nu}^{2}\right\rangle_{j k} \rightarrow\left\langle r_{\bar{\nu}}^{2}\right\rangle_{j k}=-\left\langle r^{2}\right\rangle_{k j}+6 \gamma^{5} a_{k j} \\
\left(g_{V}^{\prime}\right)_{j k} \rightarrow-\left(g_{V}^{\prime}\right)_{j k}^{*} \quad\left(g_{A}^{\prime}\right)_{j k} \rightarrow-\left(g_{A}^{\prime}\right)_{j k}^{*} \quad \varepsilon_{\lambda \rho \lambda^{\prime} \rho^{\prime}} \rightarrow-\varepsilon_{\lambda \rho \lambda^{\prime} \rho^{\prime}} \quad U_{\ell k} \rightarrow U_{\ell k}^{*}
\end{gathered}
$$

Free-electron approximation

electrons are free and at rest energy electron binding transfer energy in detector V-e scattering cross section (free e)

$$
\frac{d \sigma}{d T}=\frac{1}{32 \pi^{2}} \int_{T^{2}}^{\left(2 E_{\nu}-T\right)^{2}} \frac{d \mathbf{q}^{2}}{E_{\nu}^{2}} \int_{0}^{2 \pi} d \varphi_{\mathbf{q}}\left|\mathcal{M}_{f i}\right|^{2} \delta\left(T-\sqrt{\mathbf{q}^{2}+m_{e}^{2}}+m_{e}\right)
$$

$$
\begin{aligned}
J_{A}^{\lambda}(q) & =\frac{1}{2 \sqrt{E_{e}^{\prime} m_{e}}} \bar{u}_{e}^{\prime} \gamma^{\lambda} \gamma^{5} u_{e} \\
J_{V}^{\lambda}(q) & =\frac{1}{2 \sqrt{E_{e}^{\prime} m_{e}}} \bar{u}_{e}^{\prime} \gamma^{\lambda} u_{e} \\
E_{e}^{\prime} & =m_{e}+T
\end{aligned}
$$

Finally cross section (free e)

$$
\frac{d \sigma^{\mathrm{FE}}}{d T}=\frac{d \sigma_{(w, Q)}^{\mathrm{FE}}}{d T}+\frac{d \sigma_{(\mu)}^{\mathrm{FE}}}{d T}
$$

$$
\text { where } \quad \frac{d \sigma_{(\mu)}^{\mathrm{FE}}}{d T}=\frac{\pi \alpha^{2}}{m_{e}^{2}}\left|\mu_{\nu}\left(L, E_{\nu}\right)\right|^{2}\left(\frac{1}{T}-\frac{1}{E_{\nu}}\right)
$$

and

$$
\frac{d \sigma_{(w, Q)}^{\mathrm{FE}}}{d T}=\frac{G_{F}^{2} m_{e}}{2 \pi}\left[C_{1}+C_{2}-2 \operatorname{Re}\left\{C_{3}\right\}+\left(C_{1}+C_{2}+2 \operatorname{Re}\left\{C_{3}\right\}\right)\left(1-\frac{T}{E_{\nu}}\right)+\left(C_{2}-C_{1}\right) \frac{T m_{e}}{E_{\nu}^{2}}\right]
$$

The role of ν flavor oscillations

- Manifestation of $\boldsymbol{\nu}$ electromagnetic properties depends on \boldsymbol{V} state $\nu_{\ell}(L)$ in the detector
- The obtained cross section depends on flavor transition amplitude probability

$$
\mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\ell}}\left(L, E_{\nu}\right)=\left\langle\nu_{l} \mid \nu_{\ell}(L)\right\rangle=\sum^{3} U_{k k}^{*} U_{\ell \in k} e^{-i \frac{m^{2}}{2 k_{\nu}} L} \quad \text { and }
$$

$$
\frac{d \sigma_{w, Q)}^{\mathrm{FE}}}{d T}=\frac{G_{F}^{2} m_{e}}{2 \pi}\left[C_{1}+C_{2}-2 \operatorname{Re}\left\{C_{3}\right\}+\left(C_{1}+C_{2}+2 \operatorname{Re}\left\{C_{3}\right\}\right)\left(1-\frac{T}{E_{\nu}}\right)+\left(C_{2}-C_{1}\right) \frac{T m_{e}}{E_{\nu}^{2}}\right]
$$

$$
C_{2}=g_{A}^{2}+2 g_{A} P_{\nu \epsilon \rightarrow \nu_{e}}\left(L, E_{\nu}\right)+P_{\nu_{\ell} \rightarrow \nu_{e}}\left(L, E_{\nu}\right)
$$

$$
C_{3}=g_{V} g_{A}+\left(g_{V}+g_{A}+1\right) P_{\nu_{\ell} \rightarrow \nu_{e}}\left(L, E_{\nu}\right)+g_{A} \sum_{e^{\prime}, l^{\prime \prime}=e, \mu, T} \mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\nu_{l}}}\left(L, E_{\nu}\right) \mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\ell^{\prime \prime}}^{*}}^{*}\left(L, E_{\nu}\right) \tilde{Q}_{e^{\prime \prime \prime}}
$$

$$
+\mathcal{A}_{\nu_{\ell 匕} \rightarrow \nu_{e}}^{*}\left(L, E_{\nu}\right) \sum_{{ }_{\ell}=e, \mu, T} \mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\nu_{l}}}\left(L, E_{\nu}\right) \tilde{Q}_{e l}
$$

Generalized \mathcal{V} charge

Up to now we have used $\tilde{Q}_{j k}=\frac{2 \sqrt{2} \pi \alpha}{G_{F}}\left[\frac{\left(e_{\nu}\right)_{j k}}{q^{2}}+\frac{1}{6}\left\langle r_{\nu}^{2}\right\rangle_{j k}\right]$ in mass basis
Finally we have in flavour basis

$$
\tilde{Q}_{\ell^{\prime} \ell}=\sum_{j, k=1}^{3} U_{\ell^{\prime} j} U_{\ell k}^{*} \tilde{Q}_{j k}=\frac{2 \sqrt{2} \pi \alpha}{G_{F}}\left[\frac{\left(e_{\nu}\right)_{\ell^{\prime} \ell}}{q^{2}}+\frac{1}{6}\left\langle r_{\nu}^{2}\right\rangle_{\ell^{\prime} \ell}\right]
$$

where

$$
\left(e_{\nu}\right)_{\ell^{\prime} \ell}=\sum_{j, k=1}^{3} U_{\ell^{\prime} j} U_{\ell k}^{*}\left(e_{\nu}\right)_{j k}
$$

millicharge
in \mathcal{V} flavour basis

$$
\left\langle r_{\nu}^{2}\right\rangle_{\ell^{\prime} \ell}=\sum_{j, k=1}^{3} U_{\ell^{\prime} j} U_{\ell k}^{*}\left\langle r_{\nu}^{2}\right\rangle_{j k}
$$

charge radius

- Short-baselin case $L<L_{k k^{\prime}}=2 E_{\nu} /\left|\delta m_{k k^{\prime} \mid}^{2}\right| \longrightarrow e^{-i\left(\delta m_{k k^{2}}^{2} / 2 E_{\nu}\right) L}=1$ $P_{\nu_{\ell} \rightarrow \nu_{e}}\left(L, E_{\nu}\right)=\delta_{\ell e} \quad \mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\ell^{\prime}}}\left(L, E_{\nu}\right) \mathcal{A}_{\nu_{\ell} \rightarrow \nu_{\ell^{\prime \prime}}}^{*}\left(L, E_{\nu}\right)=\delta_{\ell \ell^{\prime}} \delta_{\ell_{\ell^{\prime \prime}}}$
effect of \mathcal{V} flavor change is insignificant $\left(\nu_{\ell}(L)\right.$ is as in the source)

$$
\begin{aligned}
& C_{1}=\left(g_{V}+\delta_{\ell e}+\tilde{Q}_{\ell \ell}\right)^{2}+\sum_{\ell^{\prime}=e, \mu, \tau}\left(1-\delta_{\ell^{\prime} \ell}\right)\left|\tilde{Q}_{\ell^{\prime} \ell}\right|^{2} \quad C_{2}=\left(g_{A}+\delta_{\ell e}\right)^{2} \\
& C_{3}=\left(g_{V}+\delta_{\ell e}\right)\left(g_{A}+\delta_{\ell e}\right)+\left(g_{A}+\delta_{\ell e}\right) \tilde{Q}_{\ell \ell}
\end{aligned}
$$

weak-electromagnetic interference term contains only flavour-diagonal millicharges and charge radii

- Effective magnetic moment

$$
\left|\mu_{\nu}\left(L, E_{\nu}\right)\right|^{2}=\sum_{i=1}^{3} \sum_{k k^{\prime}=1}^{3} U_{\ell k}^{*} U_{\ell k^{\prime}}\left(\mu_{\nu}\right)_{j k}\left(\mu_{\nu}\right)_{j k^{\prime}}^{*}=\sum_{\ell^{\prime}=e, \mu, \tau}\left|\left(\mu_{\nu}\right)_{\ell^{\prime} \ell}\right|^{2} \quad \text { where }
$$

$\left(\mu_{\nu}\right)_{\ell^{\prime} \ell}=\sum_{j, k=1}^{3} U_{\ell k}^{*} U_{\ell^{\prime} j}\left(\mu_{\nu}\right)_{j k}$ is the effective magnetic moment in flavor basis

- Long-baselin case $L \gg L_{k j}=2 E_{\nu} / \mid \delta m_{k k^{\prime}}^{2}$

$$
\exp \left(-i \delta m_{k k^{\prime}}^{2} / 2 E_{\nu}\right)=\delta_{k k^{\prime}}
$$

effect of decoherence

$$
C_{1}=g_{V}^{2}+2 g_{V} P_{\nu_{k} \rightarrow \nu_{e}}+P_{\nu \epsilon \rightarrow \nu_{e}}+\sum_{j, k=1}^{3}\left|U_{e k}\right|^{2}\left|\tilde{Q}_{j k}\right|^{2}+2 g_{V} \sum_{j=1}^{3}\left|U_{\epsilon j}\right| \tilde{Q}_{j, ~}+2 \sum_{j, k=1}^{3}\left|U_{e k}\right|^{2} \operatorname{Re}\left\{U_{e j} U_{e k}^{*} \tilde{Q}_{j k k}\right\}
$$

$$
C_{2}=g_{A}^{2}+2 g_{A} P_{\nu_{\ell} \rightarrow \nu_{e}}+P_{\nu_{\ell} \rightarrow \nu_{e}}
$$

$C_{3}=g_{V} g_{A}+\left(g_{V}+g_{A}+1\right) P_{V_{\ell \in} \rightarrow \nu_{e}}+g_{A} \sum_{j=1}^{3}\left|U_{e j}\right|^{2} \tilde{Q}_{j j}+2 \sum_{j, k=1}^{3}\left|U_{e k}\right|^{2} U_{e j} U_{e k}^{*} \tilde{Q}_{j k}$
where the flavour transition probability $P_{\nu_{\epsilon} \rightarrow \nu_{e}}=\sum_{k=1}^{3}\left|U_{e k}\right|^{2}\left|U_{e k}\right|^{2}$ does not depend on source-detector distance and $\mathcal{\nu}$ energy

- Effective magnetic moment $\left|\mu_{\nu}\left(L, E_{\nu}\right)\right|^{2}=\sum_{j, k=1}^{3}\left|U_{\ell k}\right|^{2}\left|\left(\mu_{\nu}\right)_{j k}\right|^{2}$ is independent of L and E

Concluding remarks

- cross section of \mathcal{V} - e is
of ν electromagnetic form factors
- in short-baseline experiments one studies form factors in flavour basis
- long-baseline experiments more convenient to interpret in terms of fundamental form factors in mass basis
- V millicharge when it is constrained in reactor short-baseline experiments (GEMMA, for instance) should be interpreted as

$$
\left|e_{\nu_{e}}\right|=\sqrt{\left|\left(e_{\nu}\right)_{e e}\right|^{2}+\left|\left(e_{\nu}\right)_{\mu e}\right|^{2}+\left|\left(e_{\nu}\right)_{\tau e}\right|^{2}}
$$

- Vcharge radius in $\mathcal{V}-e$ elastic scattering can't be considered as a shift $g_{V} \rightarrow g_{V}+\frac{2}{3} M_{W}^{2}\left\langle r^{2}\right\rangle \sin ^{2} \theta_{W}$, there are also contributions from flavor-transition charge radii

GEMMA

\#2: 14 m

\#3: 10 m

Experiment GEMMA

(Germanium Experiment for measurement of Magnetic Moment of Antineutrino) [Phys. of At. Nucl, 67(2004)1948]

- Spectrometer includes a HPGe detector of 1.5 kg installed within Nal active shielding.
- HPGe + Nal are surrounded with multi-layer passive shielding : electrolytic copper, borated polyethylene and lead.

Reactor unit \# 2 of the "Kalinin" Nuclear Power Plant (400 km North from Moscow)

Power: 3 GW
 ON: 315 days/y
 OFF: 50 days/y

Total mass above
(reactor, building, shielding, etc.):
$\sim 70 \mathrm{~m}$ of W.E. just under reactor 14 m only!
$2.7 \times 10^{13} \mathrm{v} / \mathrm{cm}^{2} / \mathrm{s}$
... courtesy of D.Medvedev...

GEMMA background conditions

- γ-rays were measured with Ge detector. The main sources are: ${ }^{137} \mathrm{Cs},{ }^{60} \mathrm{Co},{ }^{134} \mathrm{Cs}$.
- Neutron background was measured with ${ }^{3} \mathrm{He}$ counters, i.e., thermal neutrons were counted. Their flux at the facility site turned out to be 30 times lower than in the outside laboratory room.
- Charged component of the cosmic radiation (muons) was measured to be $\underline{5}$ times lower than outside.

Experimental sensitivity

$$
\mu_{v} \propto \frac{1}{\sqrt{N_{v}}}\left(\frac{B}{m t}\right)^{\frac{1}{4}}
$$

N_{v} : number of signal events expected
B : background level in the ROI m : target (=detector) mass
t : measurement time

$$
\begin{aligned}
\mathbb{N}_{v} & \sim \varphi_{v}\left(\sim P \text { Power } / / r^{2}\right) \\
& \sim\left(T_{\max }-T_{\min } / T_{\max } * T_{\min }\right)^{1 / 2}
\end{aligned}
$$

GEMMA I

$$
\left.\begin{array}{rl}
\varphi_{v} & \sim 2.7 \times 10^{13} v / \mathrm{cm}^{2} / \mathrm{s} \\
\mathrm{t} & \sim 4 \text { years } \\
\mathrm{B} & \sim 2.5 \mathrm{keV}^{-1} \mathrm{~kg}^{-1} \text { day-1 } \\
\mathbf{m} & \sim 1.5 \mathrm{~kg} \\
\mathrm{~T}_{\mathrm{th}} & \sim 2.8 \mathrm{keV}
\end{array}\right\} \begin{aligned}
& \\
& \mu_{v} \leq 2.9 \times 10^{-11} \mu_{B} \\
& \\
& \ldots \text { courtesy of D.Medvedev... }
\end{aligned}
$$

DataSet

- I phase - 5184 h ON, 1853 h OFF

$$
\mu_{v}<5.8 * 10^{-11} \mu_{B}
$$

- Il phase - 6798 h ON, 1021 h OFF
- I+II - 11982 h ON, 2874 h OFF

$$
\mu_{v}<3.2 * 10^{-11} \mu_{B}
$$

- Ill phase - 6152 h ON, 1613 h OFF
- I+II+III - 18134 h ON, 4487 h OFF

$$
\mu_{v}<2.9 * 10^{-11} \mu_{B}
$$

Beda A.G. et al. // Advances in High Energy Physics. 2012. V. 2012, Article ID 350150.
Beda A.G. et al. // Physics of Particles and Nuclei Letters, 2013, V. 10, №2, pp. 139-143.

Sensitivity of future experiments

$B=0.21 / \mathrm{keV} / \mathrm{kg} /$ day (background level in ROI)

Mass, kg	Threshold, keV	Sensitivity, $10^{-12} \mu_{B}$
4.5	0.4	5.8
10	0.4	4.7
20	0.4	4.0
4.5	0.3	5.6
10	0.3	4.6
20	0.3	3.9

\ldots the obtained constraint on neutrino millicharge q_{ν}

- rough order-of-magnitude estimation,
- exact values should be evaluated using the
- corresponding statistical procedures
this is because limits on neutrino μ_{ν} are derived from GEMMA experiment data taken over an extended energy range $2.8 \mathrm{keV}---55 \mathrm{keV}$, rather than at a single electron energy-bin at threshold
A.Studenikin: "New bounds on neutrino electric millicharge from limits on neutrino magnetic moment",
Eur.Phys.Lett. 107 (2014) 2100, arXiv:1302.1168

- Limit evaluated using statistical procedures is of the same order as previously discussed

$$
\left|q_{\nu}\right|<2.7 \times 10^{-12} e_{0}(90 \% \text { C.L. })
$$

A.Studenikin:"New bounds on neutrino electric millicharge from limits on neutrino magnetic moment", Eur.Phys.Lett. 107 (2014)2100, arXiv:1302.1168
V.Brudanin, D.Medvedev, A.Starostin, A.Studenikin:
"New bounds on neutrino electric millicharge from GEMMA experiment on neutrino magnetic moment", arXiv: 1411.2279

Radiative decay

3.7 Neutrino radiative decay
$\nu_{i} \longrightarrow \nu_{j}+\gamma$
$m_{i}>m_{j}$
$L_{i n t}=\frac{1}{2} \bar{\psi}_{i} \sigma_{\alpha \beta}\left(\sigma_{i j}+\epsilon_{i j} \gamma_{5}\right) \psi_{j} F^{\alpha \beta}+h . c$.

Petkov 1977; Zatsepin, Smirnov 1978; Bilenky, Petkov 1987; Pal, Wolfenstein 1982

$$
\begin{gathered}
\Gamma_{\nu_{i} \rightarrow \nu_{j}+\gamma}=\frac{\mu_{e f f}^{2}}{8 \pi}\left(\frac{m_{i}^{2}-m_{j}^{2}}{m_{i}^{2}}\right)^{3} \approx 5\left(\frac{\mu_{e f f}}{\mu_{B}}\right)^{2}\left(\frac{m_{i}^{2}-m_{j}^{2}}{m_{i}^{2}}\right)^{3}\left(\frac{m_{i}}{1 e V}\right)^{3} s^{-1} \\
\mu_{e f f}^{2}=\left|\mu_{i j}\right|^{2}+\left|\epsilon_{i j}\right|^{2}
\end{gathered}
$$

- Radiative decay has been constrained from absence of decay photons:

1) reactor \bar{V}_{e} and solar V_{e} fluxes,
2) SN 1987A V burst (all flavours),
3) spectral distortion of CMBR

Raffelt 1999
Kolb, Turner 1990;
Ressell, Turner 1990
3.8

Neutrino radiative two-photon decay

$$
\underset{\substack{V_{i} \\ m_{i}>m_{j}} \boldsymbol{V}_{j}+\gamma+\gamma}{ }
$$

fine structure constant

$$
\Gamma_{\nu_{i} \rightarrow \nu_{j}+\gamma+\gamma} \sim \frac{\alpha_{Q E D}}{4 \pi} \Gamma_{\nu_{i} \rightarrow \nu_{j}+\gamma}
$$

... there is no GIM cancellation...

$$
f\left(r_{l}\right) \approx \frac{3}{2}\left(\mathbb{K}-\frac{1}{2}\left(\frac{m_{l}}{m_{W}}\right)^{2}\right) \rightarrow\left(m_{i} / m_{l}\right)^{2}
$$

Nieves, 1983; Ghosh, 1984
... can be of interest for certain range of V masses...

Modified Dirac equation for neutrino in matter

Addition to the vacuum neutrino Lagrangian

> matter

$$
\Delta L_{e f f}=\Delta L_{e f f}^{C C}+\Delta L_{e f f}^{N C}=-f^{\mu}\left(\bar{\nu} \gamma_{\mu} \frac{1+\gamma^{5}}{2} \nu\right)
$$

where

$$
f^{\mu}=\frac{G_{F}}{\sqrt{2}}\left(\left(1+4 \sin ^{2} \theta_{W}\right) j^{\mu}-\lambda^{\mu}\right)
$$

matter polarization

$$
\left\{i_{\mu} \partial^{\mu}-\frac{1}{2} \gamma_{\mu}\left(1+\gamma_{5}\right) f^{\mu}-m\right\}^{\Psi}(x)=0
$$

It is supposed that there is a macroscopic amount of electrons in the scale of a neutrino de Broglie wave length. Therefore, the interaction of a neutrino with the matter (electrons) is coherent.
L.Chang, R.Zia,'88; J.Panteleone,'91; K.Kiers, N.Weiss, M.Tytgat,'97-'98; P.Manheim,'88; D.Nötzold, G.Raffelt,'88; J.Nieves,'89; V.Oraevsky, V.Semikoz, Ya.Smorodinsky,89; W.Naxton, W-M.Zhang'91; M.Kachelriess,'98;
A.Kusenko, M.Postma,'02.
A.Studenikin, A.Ternov, hep-ph/0410297; Phys.Lett.B 608 (2005) 107

This is the most general equation of motion of a neutrino in which the effective potential accounts for both the charged and neutralcurrent interactions with the background matter and also for the possible effects of the matter motion and polarization.

Neutrino wave function in matter (II)

$$
\Psi_{\varepsilon, \mathbf{p}, s}(\mathbf{r}, t)=\frac{e^{-i\left(E_{\varepsilon} t-\mathbf{p r}\right)}}{2 L^{\frac{3}{2}}}\left(\begin{array}{c}
\sqrt{1+\frac{m}{E_{\varepsilon}-\alpha m}} \sqrt{1+s \frac{p_{3}}{p}} \\
s \sqrt{1+\frac{m}{E_{\varepsilon}-\alpha m}} \sqrt{1-s \frac{p_{3}}{p}} e^{i \delta} \\
s \varepsilon \eta \sqrt{1-\frac{m}{E_{\varepsilon}-\alpha m}} \sqrt{1+s \frac{p_{3}}{p}} \\
\varepsilon \eta \sqrt{1-\frac{m}{E_{\varepsilon}-\alpha m}} \sqrt{1-s \frac{p_{3}}{p}} e^{i \delta}
\end{array}\right)
$$

A.Studenikin, A.Ternov, Phys.Lett.B 608 (2005) 107
A.Grigoriev, A.Studenikin, A.Ternov, Phys.Lett.B 622 (2005) 199

$$
\eta=\operatorname{sign}\left(1-s \alpha \frac{m}{p}\right), \delta=\arctan \left(p_{2} / p_{1}\right)
$$

$$
E_{\varepsilon}-\alpha m=\varepsilon \sqrt{\mathbf{p}^{2}\left(1-s \alpha \frac{m}{p}\right)^{2}+m^{2}}
$$

The quantity $\varepsilon= \pm 1$ splits the solutions into the two branches that in the limit of vanishing matter density, $\alpha \longrightarrow 0$, reproduce the positive and negative-frequency solutions, respectively.

Quantum theory of spin light of neutrino (I)

Quantum treatment of spin light of neutrino in matter showns that this process originates from the two subdivided phenomena:
the shift of the neutrino energy levels in the presence of the background matter, which is different for the two opposite neutrino helicity states,

$$
E=\sqrt{\mathbf{p}^{2}\left(1-s \alpha \frac{m}{p}\right)^{2}+m^{2}}+\alpha m
$$

$s= \pm 1$

the radiation of the photon in the process of the neutrino transition from the "excited" helicity state to the low-lying helicity state in matter
A.Studenikin, A.Ternov,
A.Grigoriev, A.Studenikin, A.Ternov,
neutrino-spin self-polarization effect in the matter
A.Lobanov, A.Studenikin, Phys.Lett.B 564 (2003) 27;

Phys.Lett.B 601 (2004) 171

Phys.Lett.B 608 (2005) 107;
Phys.Lett.B 622 (2005) 199;
Grav. \& Cosm. 14 (2005) 132;

- V quantum states in
dense magnetized matter

$\boldsymbol{\nu}$ in matter treated within «method of exact solutions» (Dirac equation with matter potential for $\mathcal{\nu}$)

New mechanism of

 electromagnetic interactions ...
electromagnetic radiation

I. Balantsev, A. Studenikin, "Spin Light of Electron in dense Neutrino fluxes", arXiv: 1405.6598,
"Spin light of relativistic electrons in neutrino fluxes", arXiv: 1502.05346,
"From electromagnetic neutrinos to new electromagnetic radiation mechanism in neutrino fluxes", Int.J.Mod.Phys. A3O (2015) 17, 1530044

2015 the YEAR of LIGHT ... (United Nations)

I. Balantsev, A. Studenikin

"From electromagnetic neutrinos to new electromagnetic radiation mechanism in neutrino fluxes" Int. J. Mod. Phys. A 30 (2015) 1530044

SLD Spin light of electron in SLe

 dense neutrino fluxesI.Balantsev, A.Studenikin, I

Int.J.Mod.Phys. A 30 (2015) 17, 1530044, arXiv: 1405.6598 , arXiv: 1502.05346

- Electrons in background matter potential $\quad f^{\mu}=G(n, 0,0, n)$ (ultra-relativistic ν flux)

$$
n=\frac{n_{e}+n_{\mu}+n_{\tau}}{3}
$$

$$
\left(\gamma_{\mu} p^{\mu}+\gamma_{\mu} \frac{c+\delta_{e} \gamma^{5}}{2} f^{\mu}-m\right) \Psi(x)=0
$$

$$
c=\delta_{e}-12 \sin ^{2} \theta_{W}
$$

$$
\delta_{e}=\frac{n_{\mu}+n_{\tau}-n_{e}}{n}
$$

Energy spectrum of electrons in relativistic ν flux

Fig. 1. The dependence of the electron energies in two different spin states, $E_{+}(\boldsymbol{p})$ and $E_{-}(\boldsymbol{p})$, on the momentum component p_{3}.

$$
E_{s}^{\varepsilon}(\boldsymbol{p})=\varepsilon \sqrt{m^{2}+\boldsymbol{p}_{\perp}^{2}+\left(p_{3}+A\right)^{2}}-A A=\frac{G n}{2}(c-s \delta), \delta=\left|\delta_{e}\right|
$$

Wave function of electrons

$$
\begin{aligned}
& \psi_{i}(\boldsymbol{r}, t)=\mathrm{e}^{i\left(-E_{+} t+\boldsymbol{p r}\right)} \tilde{\psi}_{i}, \quad \psi_{f}(\boldsymbol{r}, t)=\mathrm{e}^{i\left(-E_{-} t+\boldsymbol{p r}\right)} \tilde{\psi}_{f} \\
& \tilde{\psi}_{i}=\frac{1}{L^{\frac{3}{2}} C_{+}}\left(\begin{array}{c}
0 \\
m \\
p_{\perp} \mathrm{e}^{-i \phi} \\
E_{+}-p_{3}
\end{array}\right), \quad \tilde{\psi}_{f}=\frac{1}{L^{\frac{3}{2}} C_{-}}\left(\begin{array}{c}
E_{-}-p_{3} \\
-p_{\perp} e^{i \phi} \\
m \\
0
\end{array}\right) \quad C_{ \pm}=\sqrt{m^{2}+p_{\perp}^{2}+\left(E_{ \pm}-p_{3}\right)^{2}}
\end{aligned}
$$

$S L e_{\nu}$ in case of relativistic electrons in dense ν fluxes at supernovae environment
C. Frohlich, P. Hauser, M. Liebendorfer, G. Martinez-Pinedo, F.-K. Thielemann et al., Composition of the innermost supernova ejecta, Astrophys.J. 637, 415 (2006).
H.-T. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo and B. Mueller, Theory of core-collapse supernovae, Phys.Rept. 442, 38 (2007).
each second a reasonable part of ν flux energy can be transformed to gamma-rays
I.Balantsev, A.Studenikin, Int.J.Mod.Phys. A 30 (2015) 17, 1530044

- new mechanism of electromagnetic radiation in the Year of Light

Spin Light

(end)

ν spin and flavor oscillations in

 arbitrary magnetic fields $\vec{B}=\vec{B}_{\perp}+\vec{B}_{11}$- A. Studenikin,
- A. Grigoriev
R. Fabbricatore
A. Studenikin
"Neutrino electromagnetic properties: three" new effects in neutrino spin oscillations" EPJ Web Conf. 125 (2016) 04018, arXiv:1705.05944
"Neutrino spin-flavour oscillations, derived from the mass basis" J. Phys.: Conf. Ser. 718 (2016) 062058 TAUP 2015 (2016) arXiv:1604.01245
"Neutrino electromagnetic properties: new approach to oscillations in arbitrary magnetic field"

$$
\text { arxXiv: } 1506.05311
$$

Two \mathcal{V} mass states with two helicities in $B=\vec{B}_{\perp}+\vec{B}_{11}$

Electromagnetic interaction of ν with $\mu_{\nu}\left(\alpha, \alpha^{\prime}=1,2\right)$

$$
H_{E M}=\frac{1}{2} \mu_{\alpha \beta} \bar{v}_{\beta} \sigma_{\mu \nu} v_{\alpha} F^{\mu v}+\text { h.c. }
$$

with constant $\vec{B}=\vec{B}_{\perp}+\vec{B}_{11}$

$$
H_{E M}=-\mu_{\alpha \alpha^{\prime}} \bar{v}_{\alpha^{\prime}} \boldsymbol{\Sigma} \mathbf{B} v_{\alpha}+\text { h.c., } \quad \Sigma_{i}=\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right)
$$

- Consider two ν mass states $\left(\alpha, \alpha^{\prime}=1,2\right)$ with two helicities ($s= \pm 1$) arXiv:1604.01245

Evolution equation

$$
i \frac{d}{d t} v_{m}(t)=H_{e f f} v_{m}(t)
$$

where effective oscillation Ham
and $H_{B}=\left\langle v_{\alpha, s}\right| H_{E M}\left|v_{\alpha^{\prime}, s^{\prime}}\right\rangle$
free ν helicity states $v_{\alpha, s}=C_{\alpha} \sqrt{\frac{E_{\alpha}+m_{\alpha}}{2 E_{\alpha}}}\left(\begin{array}{c}u_{s} \\ \sum_{\alpha}+m_{\alpha} \\ E_{s}\end{array}\right) e^{\mathbf{i p}_{\alpha} x}, \quad \begin{aligned} & u_{s=1}=\left(\begin{array}{l}0 \\ u_{s-1}\end{array}=\binom{0}{1} .\right.\end{aligned}$

For two $\nu \underset{\rightarrow}{\text { massstates }}\left(\alpha, \alpha^{\prime}=1,2\right)$ with two helicities $(s= \pm 1)$ in $B=B_{\perp}+B_{11}$

- Evolution equation (ν mass states)
arXiv:1705.05944 arXiv:1604.01245

$$
E_{\alpha}=\sqrt{\mathbf{p}^{2}+m_{\alpha}^{2}} \approx|\mathbf{p}|+\frac{m_{\alpha}^{2}}{2|\mathbf{p}|}, \quad \alpha=1,2 . \quad \quad \gamma_{\alpha \alpha}^{-1}=\frac{1}{2}\left(\frac{m_{\alpha}}{E_{\alpha}}+\frac{m_{\alpha}}{E_{\alpha}}\right)
$$

- mixings between two different helicity states are due to B_{\perp}
- couplings with B_{11} shift \mathcal{V} energies
- mixing between different mass states is due to transition magnetic moment interactions with $\mathbf{B}_{\mathbf{1}}$

Two $\nu \underset{\rightarrow}{\operatorname{mass} s t a t e s}\left(\alpha, \alpha^{\prime}=1,2\right)$ with two helicities $(s= \pm 1)$ in $B=B_{\perp}+B$
Effective oscillation Hamiltonian $\quad H_{e m}=H_{v a c}+H_{\mu}$

$$
H_{\mu_{\nu}}=-\frac{1}{2} \mu_{\alpha \alpha} \bar{\nu}_{\alpha^{\prime}} \sigma_{\mu \nu} \nu_{\alpha} F^{\mu \nu}+\text { h.c. }=-\frac{1}{2} \mu_{\alpha \alpha^{\prime}} \bar{\nu}_{\alpha^{\prime}} \boldsymbol{\Sigma} \boldsymbol{B}_{\alpha}+\text { h.c. } . \gamma_{\gamma_{\alpha \alpha}^{\prime}}^{\prime}=\frac{1}{2}\left(\frac{m_{\alpha}}{E_{\alpha}}+\frac{m_{\alpha}}{E_{\alpha}}\right)
$$

Evolution equation (mass states) $E_{\alpha}=\sqrt{\mathbf{p}^{2}+m_{\alpha}^{2}} \approx|\mathbf{p}|+\frac{m_{\alpha}^{2}}{2 \mid \mathbf{p}^{2}}, \quad \alpha=1,2$
$i \frac{d}{d t}\left(\begin{array}{c}v_{1, s=1} \\ v_{1, s=-1} \\ v_{2, s=1} \\ v_{2, s=-1}\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}E_{1}+\mu_{11} \frac{B_{\|}}{\gamma_{11}} & \mu_{11} B_{\perp} & \mu_{12} \frac{B_{\|}}{\gamma_{\|}} & \mu_{12} B_{\perp} \\ \mu_{11} B_{\perp} & E_{1}-\mu_{11} \frac{B_{1}}{\gamma_{11}} & \mu_{12} B_{\perp} & -\mu_{12} \frac{B_{\|}}{\gamma_{12}} \\ \mu_{12} \frac{B_{\|}}{\gamma_{12}} & \mu_{12} B_{\perp} & E_{2}+\mu_{22} \frac{B_{\|}}{\gamma_{22}} & \mu_{22} B_{\perp} \\ \mu_{12} B_{\perp} & -\mu_{12} \frac{B_{\|}}{\gamma_{12}} & \mu_{22} B_{\perp} & E_{2}-\mu_{22} \frac{B_{\|}}{\gamma_{22}}\end{array}\right)\left(\begin{array}{c}v_{1, s=1} \\ v_{1, s=-1} \\ v_{2, s=1} \\ v_{2, s=-1}\end{array}\right)$

- mixings between two different helicity states are due to B_{\perp} - couplings with B_{11} shift \mathcal{V} energies
- mixing between different mass states is due to transition magnetic moment interactions with arXiv:1604.01245
- Evolution equation (flavour states) $\quad \nu_{f}=U \nu_{m}$

For relativistic $v_{f}=\left(v_{e}^{R}, v_{e}^{L}, v_{\mu}^{R}, v_{\mu}^{L}\right)^{T}$
(flavour chiral states)
$\nu_{e}^{R, L}=\nu_{1, s= \pm 1} \cos \theta+\nu_{2, s= \pm 1} \sin \theta, \quad \nu_{\mu}^{R, L}=-\nu_{1, s= \pm 1} \sin \theta+\nu_{2, s= \pm 1} \cos \theta$

- Magnetic moment interaction Hamiltonian for flavour \mathcal{V}

$$
\tilde{H}_{B}^{f}=\left(\begin{array}{cccc}
\left(\frac{\mu}{\gamma}\right)_{e e} B_{\|} & \mu_{e e} B_{\perp} & \left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} & \mu_{e \mu} B_{\perp} \\
\mu_{e e} B_{\perp} & -\left(\frac{\mu}{\gamma} e_{e e} B_{\|}\right. & \mu_{e \mu} B_{\perp} & -\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} \\
\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} & \mu_{e \mu} B_{\perp} & \left(\frac{\mu}{\gamma}\right)_{\mu \mu} B_{\|} & \mu_{\mu \mu} B_{\perp} \\
\mu_{e \mu} B_{\perp} & -\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} & \mu_{\mu \mu} B_{\perp} & -\left(\frac{\mu}{\gamma}\right)_{\mu \mu} B_{\|}
\end{array}\right)
$$

$$
\begin{aligned}
& \mu_{e e}=\mu_{11} \cos ^{2} \theta+\mu_{22} \sin ^{2} \theta+\mu_{12} \sin 2 \theta \\
& \mu_{e \mu}=\mu_{12} \cos 2 \theta+\frac{1}{2}\left(\mu_{22}-\mu_{11}\right) \sin 2 \theta \\
& \mu_{\mu \mu}=\mu_{11} \cos ^{2} \theta+\mu_{22} \sin ^{2} \theta-\mu_{12} \sin 2 \theta
\end{aligned}
$$

arXiv:1604.01245

$$
\begin{aligned}
\left(\frac{\mu}{\gamma}\right)_{e e} & =\frac{\mu_{11}}{\gamma_{11}} \cos ^{2} \theta+\frac{\mu_{22}}{\gamma_{22}} \sin ^{2} \theta+\frac{\mu_{12}}{\gamma_{12}} \sin 2 \theta \\
\left(\frac{\mu}{\gamma}\right)_{e \mu} & =\frac{\mu_{12}}{\gamma_{12}} \cos 2 \theta+\frac{1}{2}\left(\frac{\mu_{22}}{\gamma_{22}}-\frac{\mu_{11}}{\gamma_{11}}\right) \sin 2 \theta \\
\left(\frac{\mu}{\gamma}\right)_{\mu \mu} & =\frac{\mu_{11}}{\gamma_{11}} \cos ^{2} \theta+\frac{\mu_{22}}{\gamma_{22}} \sin ^{2} \theta-\frac{\mu_{12}}{\gamma_{12}} \sin 2 \theta
\end{aligned}
$$

Flavour mixing and oscillations in $\mathbf{B}_{\boldsymbol{I l}}: \nu_{e}^{L} \Leftrightarrow \nu_{\mu}^{L}$ (in case $\mathbf{B}=\mathbf{B}_{\|} \nu_{e, \mu}^{L}$ decouple from $\nu_{e, \mu}^{R}$) neutrino flavor evolution equation:
 $$
i \frac{d}{d t}\binom{\nu_{e}^{L}}{\nu_{\mu}^{L}}=\left(\begin{array}{cc} -\frac{\Delta m^{2}}{4 E} \cos 2 \theta-\left(\frac{\mu}{\gamma}\right)_{e e} B_{\|} & \frac{\Delta m^{2}}{4 A^{2}} \sin 2 \theta-\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} \\ \frac{\Delta m^{2}}{4 E} \sin 2 \theta-\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|} & \frac{\Delta m^{2}}{4 E} \cos 2 \theta-\left(\frac{\mu}{\gamma}\right)_{\mu \mu} B_{\|} \end{array}\right)\binom{\nu_{e^{L}}^{L}}{\nu_{\mu}^{L}}
$$

- Probability of neutrino flavour oscillations:

$$
\begin{aligned}
& P_{\nu_{e}^{L} \rightarrow \nu_{\mu}^{L}}=\frac{\left(\frac{\Delta m^{2}}{2 E} \sin 2 \theta-2\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|}\right)^{2}}{\left(\frac{\Delta m^{2}}{2 E} \sin 2 \theta-2\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\|}\right)^{2}+\left(\frac{\Delta m^{2}}{2 E} \cos 2 \theta+2 \frac{\mu_{12}}{\gamma_{12}} B_{\|} \sin 2 \theta\right)^{2}} \sin ^{2}\left(\frac{1}{2} \sqrt{D} x\right) \\
& \left(\frac{\mu}{\gamma}\right)_{e \mu}=\frac{\mu_{12}}{\gamma_{12}} \cos 2 \theta+\frac{1}{2}\left(\frac{\mu_{22}}{\gamma_{22}}-\frac{\mu_{11}}{\gamma_{11}}\right) \sin 2 \theta D=\left(\frac{\Delta n^{2}}{2 E} \sin 2 \theta-2\left(\frac{\mu}{\gamma}\right)_{e \mu} B_{\| 1}\right)^{2}+\left(\frac{\mu^{2}}{2 E} \cos 2 \theta+2 \frac{\mu_{12}}{\gamma_{1}} B_{\| \|} \sin 2 \theta\right)^{2}
\end{aligned}
$$

- effective magnetic moment in flavour basis
arXiv:1604.01245 arXiv:1705.05944
B_{11} generates flavour mixing and also can produce resonance amplification of oscillations

