Snyder-type spacetimes, twisted Poincaré algebra and addition of momenta

Rina Štrajn
In collaboration with D. Meljanac, S. Meljanac and S. Mignemi

Ruđer Bošković Institute,
Division of Theoretical Physics

Corfu, 17 September 2017

Contents

I Introduction

II The generalised addition of momenta, coproduct and star product
III The twist operator for the Snyder realisation
IV First order expansion
V Remarks and outlook

Introduction

The Snyder model

- The first proposed version of a noncommutative spacetime
- Preserves Lorentz invariance
- Given by the commutation relations

$$
\begin{align*}
& {\left[\hat{x}_{\mu}, \hat{p}_{\nu}\right]=i\left(\eta_{\mu \nu}+\beta^{2} \hat{p}_{\mu} \hat{p}_{\nu}\right),} \\
& {\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta^{2} \hat{J}_{\mu \nu},} \\
& {\left[\hat{p}_{\mu}, \hat{p}_{\nu}\right]=0,} \tag{1}
\end{align*}
$$

where $\hat{x}_{\mu}, \hat{p}_{\mu}$ and $\hat{J}_{\mu \nu}$ correspond to the generators of position, momentum and angular momenta, respectively, $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$ and β is a coupling constant assumed to be of order one in Planck units.
$\hat{J}_{\mu \nu}$ satisfy the usual commutation relations

$$
\begin{align*}
& {\left[\hat{J}_{\mu \nu}, \hat{J}_{\rho \sigma}\right]=i\left(\eta_{\nu \rho} \hat{J}_{\mu \sigma}-\eta_{\mu \rho} \hat{J}_{\nu \sigma}-\eta_{\sigma \mu} \hat{J}_{\rho \nu}+\eta_{\sigma \nu} \hat{J}_{\rho \mu}\right),} \tag{2}\\
& {\left[\hat{J}_{\mu \nu}, \hat{p}_{\mu}\right]=i\left(\eta_{\nu \lambda} \hat{p}_{\mu}-\eta_{\mu \lambda} \hat{p}_{\nu}\right), \quad\left[\hat{J}_{\mu \nu}, \hat{x}_{\mu}\right]=i\left(\eta_{\nu \lambda} \hat{x}_{\mu}-\eta_{\mu \lambda} \hat{x}_{\nu}\right)}
\end{align*}
$$

- A deformation of phase space, generated by $\hat{x}_{\mu}, \hat{p}_{\mu}$ and $\hat{J}_{\mu \nu}$, which satisfy

$$
\begin{align*}
& {\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta^{2} \hat{J}_{\mu \nu} \psi\left(\beta^{2} \hat{p}^{2}\right), \quad\left[\hat{p}_{\mu}, \hat{p}_{\nu}\right]=0, \quad\left[\hat{p}_{\mu}, \hat{x}_{\nu}\right]=-i \varphi_{\mu \nu}\left(\beta^{2} \hat{p}^{2}\right)} \\
& {\left[\hat{J}_{\mu \nu}, \hat{J}_{\rho, \sigma}\right]=i\left(\eta_{\mu \nu} \hat{J}_{\nu \sigma}-\eta_{\mu \sigma} \hat{J}_{\nu \rho}+\eta_{\nu \rho} \hat{J}_{\mu \sigma}-\eta_{\nu \sigma} \hat{J}_{\mu \rho}\right)} \\
& {\left[\hat{J}_{\mu \nu}, \hat{p}_{\lambda}\right]=i\left(\eta_{\mu \nu}-\eta_{\lambda \nu} \hat{x}_{\mu}\right), \quad\left[\hat{J}_{\mu \nu}, \hat{x}_{\lambda}\right]=i\left(\eta_{\mu \nu}-\eta_{\lambda \nu} \hat{x}_{\mu}\right)} \tag{3}
\end{align*}
$$

- $\psi\left(\beta^{2} \hat{p}^{2}\right), \varphi_{\mu \nu}\left(\beta^{2} \hat{p}^{2}\right)$ - constrained by the requirement that the Jacobi identities hold
- $\psi=$ const.\longrightarrow the original Snyder model
- A realisation of $\hat{x}_{\mu}, \hat{p}_{\mu}$ and $\hat{J}_{\mu \nu}$ in terms of commutative coordinates x_{μ} and p_{μ}

$$
\begin{align*}
& \hat{x}_{\mu}=x_{\mu} \varphi_{1}\left(\beta^{2} p^{2}\right)+\beta^{2} x \cdot p p_{\mu} \varphi_{2}\left(\beta^{2} p^{2}\right)+\beta^{2} p_{\mu} \chi\left(\beta^{2} p^{2}\right) \tag{4}\\
& \hat{p}_{\mu}=p_{\mu}, \quad \hat{J}_{\mu \nu} \equiv J_{\mu \nu}=x_{\mu} p_{\nu}-x_{\nu} p_{\mu} \tag{5}\\
\Longrightarrow \varphi_{\mu \nu}= & \eta_{\mu \nu} \varphi_{1}+\beta^{2} p_{\mu} p_{\nu} \varphi_{2}, \quad \psi=-2 \varphi_{1} \varphi_{1}^{\prime}+\varphi_{1} \varphi_{2}-2 \beta^{2} p^{2} \varphi_{1}^{\prime} \varphi_{2}
\end{align*}
$$

The generalised addition of momenta, coproduct and star product
The generalised addition of momenta and the coproduct

- It can be shown that

$$
\begin{align*}
e^{i k \cdot \hat{x}} \triangleright 1 & =e^{i K(k) \cdot x+i g(k)} \tag{6}\\
e^{i k \cdot \hat{x}} \triangleright e^{i q \cdot x} & =e^{i \mathcal{P}(k, q) \cdot x+i \mathcal{Q}(k, q)} \tag{7}
\end{align*}
$$

with $\mathcal{P}_{\mu}(k, 0)=K_{\mu}(k), \quad \mathcal{P}_{\mu}(0, q)=q_{\mu}$

- From

$$
\begin{gather*}
e^{-i \lambda k \cdot \hat{x}} p_{\mu} e^{i \lambda k \cdot \hat{x}} \triangleright e^{i q \cdot x}=\mathcal{P}_{\mu}(\lambda k, q) e^{i q \cdot x} \tag{8}\\
\frac{d \mathcal{P}_{\mu}(\lambda k, q)}{d \lambda}=k_{\alpha} \varphi_{\mu}^{\alpha}(\mathcal{P}(\lambda k, q)), \tag{9}
\end{gather*}
$$

- The generalised addition of momenta is defined as

$$
\begin{equation*}
k_{\mu} \oplus q_{\mu}=\mathcal{D}_{\mu}(k, q) \tag{10}
\end{equation*}
$$

where $\mathcal{D}_{\mu}(k, 0)=k_{\mu}, \mathcal{D}_{\mu}(0, q)=q_{\mu}$, and

$$
\begin{equation*}
\mathcal{D}_{\mu}(k, q)=\mathcal{P}_{\mu}\left(K^{-1}(k), q\right) \tag{11}
\end{equation*}
$$

- The coproduct of the momenta is defined as

$$
\begin{equation*}
\Delta p_{\mu}=\mathcal{D}_{\mu}(p \otimes 1,1 \otimes p) \tag{12}
\end{equation*}
$$

The star product

- It can be shown that

$$
\begin{equation*}
e^{i k \cdot x}=e^{i K^{-1}(k) \cdot \hat{x}-i g\left(K^{-1}(k)\right)} \triangleright 1 \tag{13}
\end{equation*}
$$

\Longrightarrow The star product of two plane waves is given by

$$
\begin{align*}
e^{i k \cdot x} * e^{i q \cdot x} & =e^{i K^{-1}(k) \cdot \hat{x}-i g\left(K^{-1}(k)\right)} \triangleright e^{i q \cdot x} \\
& =e^{i \mathcal{P}\left(K^{-1}(k), q\right) \cdot x+i \mathcal{Q}\left(K^{-1}(k), q\right)-i g\left(K^{-1}(k)\right)} \tag{14}
\end{align*}
$$

where $g(k)=\mathcal{Q}(k, 0)$

- Defining

$$
\begin{equation*}
\mathcal{G}(k, q)=\mathcal{Q}\left(K^{-1}(k), q\right)-\mathcal{Q}\left(K^{-1}(k), 0\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
e^{i k \cdot x} * e^{i q \cdot x}=e^{i \mathcal{D}(k, q) \cdot x+i \mathcal{G}(k, q)} \tag{16}
\end{equation*}
$$

- It can be shown that

$$
\begin{equation*}
\frac{d \mathcal{Q}(\lambda k, q)}{d \lambda}=k_{\alpha} \chi^{\alpha}(\mathcal{P}(\lambda k, q)) \tag{17}
\end{equation*}
$$

with $\mathcal{Q}(0, q)=0$ and $\chi^{\alpha} \equiv p^{\alpha} \chi\left(\beta^{2} p^{2}\right)$

The twist operator for the Snyder realisation

The Twist

- A bidifferential operator that relates the deformed and undeformed coproducts

$$
\begin{equation*}
\Delta p_{\mu}=\mathcal{F} \Delta_{0} p_{\mu} \mathcal{F}^{-1} \tag{18}
\end{equation*}
$$

- it uniquely determines the realisation of the deformed space

$$
\begin{equation*}
\hat{x}_{\mu}=m\left(\mathcal{F}^{-1}(\triangleright \otimes 1)\left(x_{\mu} \otimes 1\right)\right) \tag{19}
\end{equation*}
$$

- defines the noncommutative star-product between functions

$$
\begin{equation*}
(f * g)(x)=m\left(\mathcal{F}^{-1}(\triangleright \otimes \triangleright)(f \otimes g)\right) \tag{20}
\end{equation*}
$$

- It can be show that it is given by

$$
\begin{equation*}
\mathcal{F}^{-1}=: \exp \left\{i\left(1 \otimes x^{\alpha}\right)\left(\Delta-\Delta_{0}\right) p_{\alpha}+\mathcal{G}(p \otimes 1,1 \otimes p)\right\}: \tag{21}
\end{equation*}
$$

The twist operator for the Snyder space

- The Snyder realisation

$$
\begin{equation*}
\hat{x}_{\mu}=x_{\mu}+\beta^{2} x \cdot p p_{\mu} \tag{22}
\end{equation*}
$$

- The corresponding coproduct of the momenta
$\Delta p_{\mu}=\frac{1}{1-\beta^{2} p_{\alpha} \otimes p^{\alpha}}\left(p_{\mu} \otimes 1-\frac{\beta^{2}}{1+\sqrt{1+A}} p_{\mu} p_{\alpha} \otimes p^{\alpha}+\sqrt{1+A} \otimes p_{\mu}\right)$,
with $A=\beta^{2} p^{2}$
- The coproduct is expanded with respect to the deformation parameter $\beta^{2}, \Delta p_{\mu}=\sum_{k=0}^{\infty} \Delta_{k} p_{\mu}$, with $\Delta_{k} p_{\mu} \propto\left(\beta^{2}\right)^{k}$
- We look for the twist operator in the form

$$
\begin{equation*}
\mathcal{F}=e^{f_{1}+f_{2}+f_{3}+\ldots} \tag{24}
\end{equation*}
$$

where $f_{k} \propto\left(\beta^{2}\right)^{k}$

- For each order we obtain the equation that f_{k} needs to satisfy

$$
\begin{align*}
& {\left[f_{1}, \Delta_{0} p_{\mu}\right]=\Delta_{1} p_{\mu}} \\
& {\left[f_{2}, \Delta_{0} p_{\mu}\right]=\Delta_{2} p_{\mu}-\frac{1}{2}\left[f_{1},\left[f_{1}, \Delta_{0} p_{\mu}\right]\right]} \tag{25}
\end{align*}
$$

\Longrightarrow

$$
\begin{align*}
f_{1} & =-i \beta^{2}\left(p^{2} \otimes x \cdot p+\frac{1}{2} p_{\alpha} p_{\beta} \otimes x^{\alpha} p^{\beta}+p_{\alpha} \otimes x \cdot p p^{\alpha}\right) \\
f_{2} & =i \frac{\beta^{4}}{2}\left(\frac{1}{2} p^{4} \otimes x \cdot p+\frac{1}{2} p_{\alpha} p_{\beta} p^{2} \otimes x^{\alpha} p^{\beta}+p_{\alpha} p^{2} \otimes x \cdot p p^{\alpha}\right) \tag{26}
\end{align*}
$$

For the closed form of the twist we get

$$
\begin{align*}
\mathcal{F}= & \exp \left\{-i\left(\frac{1}{2} p^{2} \otimes x \cdot p+\frac{1}{2} p_{\alpha} p_{\beta} \otimes x^{\alpha} p^{\beta}+p_{\alpha} \otimes x \cdot p p^{\alpha}\right) \times\right. \\
& \left.\left(\frac{\ln \left(1+\beta^{2} p^{2}\right)}{p^{2}} \otimes 1\right)\right\} \tag{27}
\end{align*}
$$

- This twist gives the right realisation of the Snyder space

$$
\begin{equation*}
m\left(\mathcal{F}^{-1} \triangleright x_{\mu} \otimes 1\right)=x_{\mu}+\beta^{2} x \cdot p p_{\mu} \tag{28}
\end{equation*}
$$

- An independent verification - starting from (21) \longrightarrow the results agree
- For the Lorentz generators \longrightarrow primitive coproduct (as it should be)

$$
\begin{equation*}
\Delta J_{\mu \nu}=\mathcal{F}\left(\Delta_{0} J_{\mu \nu}\right) \mathcal{F}^{-1}=\Delta_{0} J_{\mu \nu} \tag{29}
\end{equation*}
$$

- The coproduct for the Snyder space is non-co-associative \Longrightarrow the twist for the Snyder space does not satisfy the cocycle condition

First order expansion of the general form

- The realisation

$$
\begin{equation*}
\hat{x}_{\mu}=x_{\mu}+\beta^{2}\left(s_{1} x_{\mu} p^{2}+s_{2} x \cdot p p_{\mu}+c p_{\mu}\right)+O\left(\beta^{4}\right) \tag{30}
\end{equation*}
$$

The commutation relations

$$
\begin{align*}
& {\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \beta^{2} s J_{\mu \nu}+O\left(\beta^{4}\right)} \tag{31}\\
& {\left[p_{\mu}, \hat{x}_{\nu}\right]=-i\left(\eta_{\mu \nu}\left(1+\beta^{2} s_{1} p^{2}\right)+\beta^{2} s_{2} p_{\mu} p_{\nu}\right)+O\left(\beta^{4}\right)}
\end{align*}
$$

$s_{1}=0, s_{2}=1 \longrightarrow$ the exact Snyder realisation
$s_{1}=-1 / 2, s_{2}=0 \longrightarrow$ the first order expansion of the Maggiore realisation
$s_{2}=2 s_{1}$ commutative spacetime to first order in β^{2}

- The generalised addition of momenta

$$
\begin{align*}
(k \oplus q)_{\mu}=\mathcal{D}_{\mu}(k, q)= & k_{\mu}+q_{\mu}+\beta^{2}\left(s_{2} k \cdot q q_{\mu}+s_{1} q^{2} k_{\mu}\right. \tag{32}\\
& \left.+\left(s_{1}+\frac{s_{2}}{2}\right) k \cdot q k_{\mu}+\frac{s_{2}}{2} k^{2} q_{\mu}\right)+O\left(\beta^{4}\right)
\end{align*}
$$

for $s_{2}=2 s_{1} \neq 0, s=0$, spacetime is commutative up to the first order in β^{2}, but the addition of momenta is deformed

$$
\begin{equation*}
(k \oplus q)_{\mu} \neq k_{\mu}+q_{\mu} \tag{33}
\end{equation*}
$$

- The coproduct

$$
\begin{align*}
\Delta p_{\mu}= & \Delta_{0} p_{\mu}+\beta^{2}\left(s_{1} p_{\mu} \otimes p^{2}+s_{2} p_{\alpha} \otimes p^{\alpha} p_{\mu}\right. \tag{34}\\
& \left.+\left(s_{1}+\frac{s_{2}}{2}\right) p_{\mu} p_{\alpha} \otimes p^{\alpha}+\frac{s}{2} p^{2} \otimes p_{\mu}\right)+O\left(\beta^{4}\right)
\end{align*}
$$

- The twist operator

$$
\begin{equation*}
\mathcal{F}^{-1}=1 \otimes 1+i\left(1 \otimes x_{\alpha}\right)\left(\Delta-\Delta_{0}\right) p^{\alpha}+i c \beta^{2} p_{\alpha} \otimes p^{\alpha}+O\left(\beta^{4}\right) \tag{35}
\end{equation*}
$$

Remarks and outlook

- In general:
- the twist will not satisfy the cocycle condition
- the corresponding star product will be non-associative
- the coproducts $\Delta p_{\mu}, \Delta J_{\mu \nu}$ will be non-coassociative exception: $s_{2}=2 s_{1}$ (the commutative case) \longrightarrow the star product is commutative and associative, but not local and the corresponding coproduct Δp_{μ} is cocommutative and coassociative
- Using the twist (35) to calculate the coproduct of $J_{\mu \nu} \longrightarrow$ $\Delta J_{\mu \nu}=\Delta_{0} J_{\mu \nu}+O\left(\beta^{4}\right)$
- An important development of the work is the study of quantum field theory in Snyder spaces (free, interacting)
- A future work is the precise elaboration of the Hopf algebroid structure of the Snyder spacetime
- ...

Thank you for your attention!

