ATLAS latest results and future prospects

ATLAS Letter of Intent. 1 October 1992

Introduction

- This talk covers selected highlights of ATLAS results
 - More details in many other dedicated talks during this workshop [see next slide]
- Running conditions and performance in Run 2
 - Pileup mitigation
- Measurements
 - Electroweak, QCD, top physics, Higgs boson.
 - Emphasis on some personal favourites
- Searches for SUSY and other BSM physics
 - Spoiler: no new hints of signals
- Future prospects with upgrades
 - More pileup!

More information

- ATLAS Public Results <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- Overview talks including ATLAS results
 - Recent Standard Model results in ATLAS and CMS (Beauchemin)
 - Top physics in ATLAS and CMS (Diez Pardos)
 - Higgs (SM and BSM) in ATLAS and CMS (Coadou)
 - Physics Prospects for HL-LHC with the ATLAS detector (Iconomidou-Fayard)
 - Recent SUSY results in ATLAS (Mamuzic)
 - Recent Exotics and beyond the SM results in ATLAS and CMS (Pigazzini)
- ATLAS young Scientist talks
 - Search for ttH production in the 3 lepton final state at ATLAS (Wang)
 - Search for dark matter in the jet+missing transverse momentum topology with ATLAS (Ratti)
 - Measurement of the W-boson mass at the ATLAS experiment (Kivernyk)
 - Measurement of $H \rightarrow \tau \tau$ in the semileptonic final state using the ATLAS detector (De Maria)

LHC and ATLAS performance

- Peak lumi in 2017
 1.74x10³⁴cm⁻²s⁻¹
- 2016: 1.38x10³⁴cm⁻²s⁻¹
- Goal for 2017 and 2018: 45/fb per year at 13 TeV with ~50% stable beam time
- Design pileup <µ>~23

 Algorithms for pileup mitigation needed at trigger level to keep low thresholds

Pippa Wells

Physics object performance with pileup

- Continuous work to refine calibrations and trigger performance
 - Examples: Level 1 and high level trigger E_{T}^{miss} in $W \rightarrow \mu v$ events (2017) 0.0 0.09 0.08

• High μ (30 < μ < 35)-

 \oplus Low μ (15 < μ < 20)

ATLAS Preliminary

2016 calibrated data

5

Fraction 6 90.0 20.0 20.0

 \sqrt{s} =13 TeV, L = 33.9 fb⁻¹

Mass of $Z \rightarrow ee$ events (2016 high vs. low μ and 2017 vs. 2016)

0.04 0.03 Efficiency 0.02 0.0 88 90 92 94 96 98 100 m_{ee} [GeV] 0.8 7000 Events / 0.5 GeV **ATLAS** Preliminary ATLAS Preliminary Data 2017 (0.5 fb⁻¹) 0.6 6000 Data 2016 Data 2017 \sqrt{s} = 13 TeV, Z \rightarrow ee (normalized to 0.5 fb $\sqrt{s} = 13 \text{ TeV}, 1.3 \text{ fb}^{-1}$ 5000 E_{τ}^{miss} (offline, no muons) >150 GeV 4000 0.4 $W \rightarrow \mu \nu$ 3000 L1 XE50 2000 0.2 HLT_xe110_mht_L1XE50 1000 0. 10 0_70 80 75 85 90 95 100 105 110 20 30 40 50 60 m_{ee} [GeV] **Pippa Wells ATLAS Highlights** 5

Standard Model measurements

Standard Model Production Cross Section Measurements

Status: July 2017

Pippa Wells

ATLAS Highlights

7

Electroweak standard model

SM prediction is more precise than direct W mass measurement

Pippa Wells

New W mass from ATLAS

- Template fits to lepton p_T or transverse mass of lv system (7 TeV pp)
 - $Z \rightarrow II$ events also used for calibration
 - Experimental challenge calibrate leptons and hadronic recoil
 - Multijet background from fits in bins of lepton isolation
- Physics modelling uncertainties dominate
- Closure tests: comparison of W+,W-,e, μ , p_T fit or m_T fit

Physics modelling for W mass

W mass uncertainties

- Alternative p_T^W models are not used
- Total uncertainties

Uncertainty	[MeV]
Statistical	7
Experimental systematic	11
QCD	8
PDF	9
QED	6
p _T (W)	n/a

<u>W mass result</u>

• Combined result: $m_W = 80370 \pm 7(stat) \pm 11(exp) \pm 14(mod) = 80370 \pm 19 \text{ MeV}$

Pippa Wells

<u>W mass result</u>

- Combined result: $m_W = 80370 \pm 7(stat) \pm 11(exp) \pm 14(mod) = 80370 \pm 19 \text{ MeV}$
- Compare total uncertainty: CDF \pm 19 MeV, D0 \pm 23 MeV

https://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4208.html

Light-by-light scattering

- Evidence for $\gamma\gamma \rightarrow \gamma\gamma$ in the large electromagnetic fields of colliding lead ions at $\sqrt{s_{NN}}=5.02$ TeV
 - 13 events with 2.6 \pm 0.7 background; 4.4 σ significance

Pippa Wells

ATLAS Highlights

arXiv:1702.01625

Ultra peripheral Pb-Pb collision

Run: 287931 Event: 461251458 2015-12-13 09:51:07 CEST

Jets at 13 TeV

- Double differential inclusive and dijet cross sections from 2015 data
 - Compared to NLO pQCD predictions with different PDFs & scales
 - Inclusive cross sections also compared to NNLO (level of agreement depends on choice of scale).

• Dijet distributions also used in searches - see later

Pippa Wells

tt(+X) inclusive cross-section

Measured in eµ channel at 13 TeV with 2015 data Also differential measurements eg. pT(t), pT(tt), m(tt)

Pippa Wells

Top mass

- Latest measurements from Run 1
 - Sub GeV precision from 8 TeV dilepton result
 - Compare pole mass from cross-section measurements

Pippa Wells

Single top quark production

- Cross-sections agree with SM prediction, |V_{tb}| consistent with 1
- t-channel, Wt and s-channel shown here

Pippa Wells

ATLAS-CONF-2017-052

Single top with a Z

- Events with 3-leptons, two jets one tagged as b-jet
- Several kinematic variables in neural net
- Signal significance 4.2 σ observed (5.4 σ expected)
- Cross section 600 \pm 170 (stat) \pm 140 (syst) fb

Higgs boson measurements

Higgs Boson Production

0000000

Pippa Wells, CERN

q

• Measure associated production with jets, leptons... to distinguish production modes

HL-LHC Physics

Higgs Boson Production & Decay

HL-LHC Physics

Pippa Wells, CERN

Status at the end of Run 1

- Run 1 legacy overall production rate known to 10%
 - $\mu = \sigma / \sigma_{SM} = 1.09 \pm 0.11$
 - VBF and $H \rightarrow \tau \tau$ observed when combining ATLAS and CMS
 - Want to establish ttH and $H \rightarrow bb$ with Run 2 data

Pippa Wells

- Full 2015+2016 data
- Total rate, also fiducial and differential cross sections

• Divided into categories to fit production modes.

Combined

- $H \rightarrow \gamma \gamma$ and $ZZ \rightarrow 4l$ cross section
 - Compared to N3LO prediction
 - Global signal strength µ=1.09±0.12

New mass measurement

ATLAS-CONF-2017-046 ATLAS-CONF-2017-047

Pippa Wells

Evidence for H→bb

- Search for VH with $H \rightarrow bb$ and $Z \rightarrow vv$, $W \rightarrow vl$ or $Z \rightarrow ll$
 - Variables such as m(bb), $p_T(V)$ included in BDT
- Simultaneous fit to signal and control regions to constrain background processes
 - Eg. High p_T signal regions m(bb) distribution

Pippa Wells

arXiv:1708.03299

Cross check of VZ, $Z \rightarrow bb$

- BDT tuned for each region •
- Combined yield as a function of S/B •
- Clear excess: Obs. 5.8 σ (expected 5.3 σ) •

Pippa Wells

ATLAS Highlights

WZ

77

0

1

-1

2

3

4

7

Best fit $\mu_{VZ}^{b\overline{b}}$

8

(-0.11, -0.19)

6

-0.22

5

<u>VH, H→bb result</u>

- Run 2 significance observed
 3.8 σ, expected 2.8 σ
- With Run 1: 3.6 σ (obs) 4.0 σ (exp)

Pippa Wells

WH→evbb candidate event

Run: 303499

Event: 2810362531 2016-07-09 03:06:16 CEST

Pippa Wells

New Phenomena

Dark matter searches

- Search for SM particle + E_T^{miss}
 - Photon, vector boson, Higgs boson
 - High p_T jet, b/bb etc.
- Example, E_T^{miss} in mono- γ events
 - Main backgrounds Z/W+γ

• Interpretation in simplified models vs. mediator and DM masses

Pippa Wells

Dark matter in dijet decays

- Dijet bump searches re-interpreted as constraint on mediator mass
 - Trigger level analysis (TLA) to extend to lower mass region
 - Recoil of dijet against ISR jet for the lowest masses

Comparison with DM direct searches

- Model dependent DM-nucleon cross-section to compare with direct searches
 - Spin dependent or Spin-independent
 - Couplings of mediator to DM

Pippa Wells

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	-1] Mass limit $\sqrt{s} = 7$,	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \text{(compressed)} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s}, \tilde{s}, \tilde{s}, \tilde{s} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s}, \tilde{s}, \tilde{s}, \tilde{s} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s}, \tilde{s} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s}, \tilde{s},$	0-3 $e, \mu/1-2 \tau$ 0 mono-jet 0 3 e, μ 0 1-2 τ + 0-1 ℓ 2 γ γ 2 $e, \mu(Z)$ 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 3.2 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	\$\vec{q}\$.\$\vec{k}\$ 1.85 TeV \$\vec{q}\$ 1.57 TeV \$\vec{q}\$ 608 GeV \$\vec{k}\$ 2.02 TeV \$\vec{k}\$ 2.01 TeV \$\vec{k}\$ 2.01 TeV \$\vec{k}\$ 2.01 TeV \$\vec{k}\$ 1.825 TeV \$\vec{k}\$ 2.0 TeV \$\vec{k}\$ 1.825 TeV \$\vec{k}\$ 2.0 TeV \$\vec{k}\$ 1.8 TeV \$\vec{k}\$ 1.65 TeV \$\vec{k}\$ 1.37 TeV \$\vec{k}\$ 900 GeV \$\vec{k}\$ 900 GeV \$\vec{k}\$ 900 GeV	$\begin{split} & m(\vec{q})\!=\!m(\vec{z}) \\ & m(\vec{k}^{0}_{1})\!<\!200~GeV,~m(1^{st}~gen,\vec{q})\!=\!m(2^{nd}~gen,\vec{q}) \\ & m(\vec{q})\!-\!m(\vec{k}^{0}_{1})\!<\!5~GeV \\ & m(\vec{k}^{0}_{1})\!<\!200~GeV \\ & m(\vec{k}^{0}_{1})\!<\!200~GeV,~m(\vec{k}^{*})\!=\!0.5(m(\vec{k}^{0}_{1})\!+\!m(\vec{g})) \\ & m(\vec{k}^{0}_{1})\!<\!400~GeV \\ & m(\vec{k}^{1}_{1})\!<\!400~GeV \\ & cr(NLSP)\!<\!0.1~mm \\ & m(\vec{k}^{0}_{1})\!<\!860~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!<\!0 \\ & m(\vec{k}^{0})\!>\!480~GeV,~cr(NLSP)\!=\!0.1~mm,~\mu\!>\!0 \\ & m(\vec{k})\!>\!1.8\times10^{-4}~eV,~m(\vec{g})\!=\!n(\vec{q})\!=\!1.5~TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	ğ 1.92 TeV ğ 1.97 TeV ğ 1.37 TeV	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}$	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to t\tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to b\tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(n \text{tatural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + h \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ (\text{SS})\\ 0\mathchar`-2\ e,\mu\\ 0\mathchar`-2\ e,\mu\\ 0\\ 2\ e,\mu\ (Z)\\ 3\ e,\mu\ (Z)\\ 1\mathchar`-2\ e,\mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/36.1 3.2 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV 71 117-170 GeV 200-720 GeV 71 90-198 GeV 205-950 GeV 71 90-323 GeV 150-600 GeV 72 150-600 GeV 200-720 GeV 73 90-323 GeV 150-600 GeV 74 90-323 GeV 320-880 GeV	$\begin{split} & m(\tilde{k}_{1}^{0}) < 420 GeV \\ & m(\tilde{k}_{1}^{0}) < 200 GeV, m(\tilde{k}_{1}^{+}) = m(\tilde{k}_{1}^{0}) + 100 GeV \\ & m(\tilde{k}_{1}^{0}) = 2m(\tilde{k}_{1}^{0}), m(\tilde{k}_{1}^{0}) = 55 GeV \\ & m(\tilde{k}_{1}^{0}) = 1 GeV \\ & m(\tilde{k}_{1}^{0}) = 5 GeV \\ & m(\tilde{k}_{1}^{0}) = 150 GeV \\ & m(\tilde{k}_{1}^{0}) = 0 GeV \\ & m(\tilde{k}_{1}^{0}) = 0 GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
E W direct	$ \begin{array}{l} \tilde{d}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{-1} \tilde{\chi}_{1}^{-1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{1}^{-1}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu_{\ell}^{-1} \ell(\ell \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} \lambda_{1}^{0} \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W}_{1}^{0} \lambda_{1}^{0} \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W}_{1}^{0} \lambda_{1}^{0} \\ \tilde{\chi}_{1}^{+1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{W}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{-1} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \rightarrow \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} 1 \ e, \mu + \gamma \\ \gamma \tilde{G} 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) {=} 0 \\ & m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ & cr < 1 \text{ mm} \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493
Long-lived particles	$\begin{array}{l} \label{eq:constraints} \hline \text{Direct} \Tilde{\chi}_1^+ \Tilde{\chi}_1^- \ \text{prod., long-lived} \Tilde{\chi}_1^\pm \\ \hline \text{Direct} \Tilde{\chi}_1^+ \Tilde{\chi}_1^- \ \text{prod., long-lived} \Tilde{\chi}_1^\pm \\ \ \text{Stable, stopped} \Tilde{g} \ R\text{-hadron} \\ \hline \text{Stable} \Tilde{g} \ R\text{-hadron} \\ \hline \text{Metastable} \Tilde{g} \ R\text{-hadron} \\ \hline \text{GMSB, stable} \ Tilde{g} \ R^- \ \text{hadron} \\ \hline \text{GMSB, \Tilde{\chi}_1^0 \to \gamma \Tilde{\zeta}, \ \text{long-lived} \Tilde{\chi}_1^0 \\ \ \Tilde{g} \Tilde{\chi}_1^0 \to \gamma \Tilde{\zeta}, \ \text{long-lived} \Tilde{\chi}_1^0 \\ \ \Tilde{g} \Tilde{\chi}_1^0 \to 2 \Tilde{\zeta} \\ \hline \text{GGM} \ \Tilde{g} \ \Tilde{\chi}_1^0 \to 2 \Tilde{\zeta} \\ \hline \Tilde{g} \ \Tilde{g} \ \Tilde{\chi}_1^0 \to 2 \Tilde{\zeta} \\ \hline \Tilde{g} \ \Tilde{g} \ \Tilde{\chi}_1^0 \to 2 \Tilde{\zeta} \\ \hline \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \\ \hline \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \ \Tilde{g} \\ \hline \Tilde{g} \ \Tilde{g}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - - τ τ ts -	Yes Yes - - - Yes - Yes	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	[*] / ₁ [*] / ₁ [*] / ₁ ⁴³⁰ GeV [*] / ₂ [*] / ₁ [*]	$\begin{split} & m(\tilde{x}_1^+)\!\!-\!m(\tilde{x}_1^0)\!\!-\!160\;MeV, \tau(\tilde{x}_1^+)\!\!=\!\!0.2\;ns\\ & m(\tilde{x}_1^+)\!\!-\!\!m(\tilde{x}_1^0)\!\!-\!\!160\;MeV, \tau(\tilde{x}_1^+)\!\!<\!15\;ns\\ & m(\tilde{x}_1^0)\!\!=\!\!100\;GeV, 10\;\mus\!\!<\!\!\tau(\tilde{g})\!\!<\!\!1000\;s\\ & m(\tilde{x}_1^0)\!\!=\!\!100\;GeV, \tau\!\!>\!\!10\;ns\\ & 10\!\!<\!\!tan\beta\!\!<\!\!50\\ & 1\!\!<\!\!r(\tilde{x}_1^0)\!\!<\!\!3ns,SPS8\;model\\ & 1\!\!<\!\!\tau(\tilde{x}_1^0)\!\!<\!\!3ns,SPS8\;model\\ & 7\!\!<\!\!ret(\tilde{x}_1^0)\!\!<\!\!30mm,m(\tilde{g})\!\!=\!\!1.3\;TeV\\ & 6\!\!<\!\!c\tau(\tilde{x}_1^0)\!\!<\!\!480\;mm,m(\tilde{g})\!\!=\!\!1.1\;TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
ЧН	$ \begin{array}{c} LFV \ pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\muv, \mu\mu\nu \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau\tau v_e, e\tau v_\tau \\ \bar{g} \tilde{g}, \bar{g} \rightarrow qqq \\ \tilde{g} \tilde{g}, \bar{g} \rightarrow q\bar{q} q \\ \tilde{g} \tilde{g}, \bar{g} \rightarrow d\bar{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g} \tilde{g}, \bar{g} \rightarrow t\bar{\chi}_1^-, \tilde{\chi}_1^- \rightarrow qsq \\ \tilde{g} \tilde{g}, \bar{g} \rightarrow t\bar{\chi}_1^-, \tilde{\chi}_1^- \rightarrow ds \\ \tilde{f}_1 \tilde{f}_1, \tilde{f}_1 \rightarrow bs \\ \tilde{f}_1 \tilde{f}_1, \tilde{f}_1 \rightarrow b\ell \end{array} $	$e\mu,e\tau,\mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4 1 e, μ 8 1 e, μ 8 0 2 e, μ		Yes Yes Yes ets - ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}_r\$ 1.9 TeV \$\vec{v}_r\$ 1.45 TeV \$\vec{x}_1^+\$ 1.44 TeV \$\vec{x}_1^+\$ 1.14 TeV \$\vec{x}_1^+\$ 1.14 TeV \$\vec{x}_1^+\$ 1.08 TeV \$\vec{x}_2\$ 1.55 TeV \$\vec{x}_2\$ 1.65 TeV \$\vec{x}_1\$ 410 GeV 450-510 GeV \$\vec{t}_1\$ 0.4-1.45 TeV	$\begin{split} \lambda_{311}^{\prime}=&0.11, \lambda_{132/133/233}=&0.07\\ &m(\tilde{q})=&m(\tilde{g}), c_{T,SP}<1 \text{ mm}\\ &m(\tilde{k}_{1}^{0})>&400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)\\ &m(\tilde{k}_{1}^{0})>&0.2\times m(\tilde{k}_{1}^{1}), \lambda_{133}\neq 0\\ &\text{BR}(\iota)=&\text{BR}(\iota)=&\text{BR}(\iota)=&0\%\\ &m(\tilde{k}_{1}^{0})=&000 \text{ GeV}\\ &\textbf{W}(\tilde{k}_{1}^{0})=&1 \text{ TeV}, \lambda_{122}\neq 0\\ &m(\tilde{k}_{1})=&1 \text{ TeV}, \lambda_{323}\neq 0\\ &\text{BR}(\tilde{t}_{1}\rightarrow be/\mu)>&20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other *Only	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ a selection of the available ma	0 Iss limits on I	2 c new state	Yes s or	20.3 1	² 510 GeV	m(\tilde{t}_{1}^{0})<200 GeV	1501.01325
phen simpi	omena is snown. Many of the lified models, c.f. refs. for the a Pippa Well s	iimits are ba assumptions S	sed on made.		I	ATLAS Highlights	TeV ^{wass scale [1ev]}	36

ATLAS Preliminary

ATLAS-CONF-2017-022

SUSY searches - squarks and gluinos

- "Classic" SUSY search with 0 lepton, 2-6 jets and E_T^{miss}
- Squarks up to 1.6 TeV and gluinos up to 2.0 TeV excluded

Pippa Wells

SUSY third generation

- Higgs mass can be protected with a light scalar top quark
- Many dedicated searches to cover stop-LSP mass ranges
- Many t/b quarks in the final state
- Probing scalar top mass up to 950 GeV

SUSY electroweak production

- Benefits more from increasing luminosity (lower cross section)
- Leptons and E_T^{miss} in the final state

• Consider different mediators resulting in different final state combinations

ATLAS-CONF-2017-017

Long lived particles

• Compressed spectra and/or RPV can give rise to long lived particles eg. Disappearing tracks from chargino decay.

- Pixel tracklets with r<12cm
- Exclusion depends on lifetime
- Electroweak prod chargino < 430 GeV
- Strong production gluino < 1.6 TeV

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss}	∫£ dt[fb	⁻¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\gamma$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	$1-4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $1J$ $\geq 2b, \geq 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	MD 7.75 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 1.75 TeV KK mass 1.6 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{PI} &= 0.1 \\ k/\overline{M}_{PI} &= 1.0 \\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; V' \to WV \to qqqq \; \mathrm{model} \\ \mathrm{HVT}\; V' \to WH/ZH \; \mathrm{model} \; \mathrm{B} \\ \mathrm{LRSM}\; W'_R \to tb \\ \mathrm{LRSM}\; W'_R \to tb \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $B 0 e, \mu$ multi-channe $1 e, \mu$ $0 e, \mu$	$\begin{array}{c} - \\ - \\ 2 \text{ b} \\ \geq 1 \text{ b}, \geq 1 \text{ J} \\ - \\ 2 \text{ J} \\ \text{el} \\ 2 \text{ b}, 0\text{-}1 \text{ j} \\ \geq 1 \text{ b}, 1 \text{ J} \end{array}$	_ _ 2j Yes Yes _ Yes _	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
C	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e, μ 2(SS)/≥3 e,μ	2 j _ µ ≥1 b, ≥1 j	– – Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ & \textbf{40.1 TeV} \\ C_{RR} = 1 \end{array} \eta_{LL}^- \end{array}$	1703.09217 ATLAS-CONF-2017-027 1504.04605
ΜQ	Axial-vector mediator (Dirac DM Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	l) 0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1-4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.5 TeV m _{med} 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q {=} 0.25, \ g_\chi {=} 1.0, \ m(\chi) < 400 \ {\rm GeV} \\ g_q {=} 0.25, \ g_\chi {=} 1.0, \ m(\chi) < 480 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ _ Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \beta &= 0 \end{split}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 2 \ J \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J \\ \geq 4 \ j \end{array}$	j Yes j Yes 2j Yes j Yes - 2j Yes Yes	13.2 36.1 20.3 20.3 36.1 20.3	T mass1.2 TeVT mass1.16 TeVT mass1.35 TeVB mass700 GeVB mass790 GeVB mass0.25 TeVQ mass690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV * mass 3.0 TeV ** mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ 2,3,4 e, μ (SS 3 e, μ , τ 1 e, μ - - - $\sqrt{s} = 8 \text{ TeV}$	2 j S) - 1 b - - √s = 1:	- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$\begin{split} & m(W_R) = 2.4 \text{ TeV, no mixing} \\ & \text{DY production} \\ & \text{DY production, } \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ & a_{\text{non-res}} = 0.2 \\ & \text{DY production, } q = 5e \\ & \text{DY production, } g = 1g_D, \text{ spin } 1/2 \\ & \text{Mass scale [TeV]} \end{split}$	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059
*On †Sn	ly a selection of the availabl nall-radius (large-radius) jets	le mass limi s are denoté	its on nev ed by the	v states letter j	or pher (J).	omena is shown. 1 TeV 10	TeV	

Pippa Wells

arXiv:1703.09127

- dijet mass and angular distributions show no deviations (37/fb)
 - QBH>8.9 TeV. q*>6.0 TeV, W'>3.7 TeV
 - Contact interaction scale $\Lambda > 13 29$ TeV
- W' \rightarrow lv, M(W')>5.1 TeV, Z' \rightarrow ll, M(Z')>3.4 4.1 TeV (13/fb)
 - Contact interaction scale $\Lambda > 17 25$ TeV (3.2/fb)

Pippa Wells

arXiv:1707.06958

ATLAS Preliminary

Jet p_ > 350 GeV

Top-tagged

150

Large-R Jet Combined Mass [GeV]

200

√s = 13 TeV, 36.5 fb⁻¹

Trimmed anti-k, R=1.0

 $\Delta R(\text{large jet, } b\text{-jet}) < 1.0$

250

1800

1600

1400

1200E

1000

800F

600

400F

200

1.5

0.5

Ō

Data/Pred

Data 2015+2016 *tt* (top)

VV, Z+jets, QCD

 $t\overline{t}(W)$

tt (other)

W+jets

50

100

Single Top

Stat. uncert. Stat. ⊕ syst. uncert.

Events / 5 GeV

Boosted hadronic decays

- Low backgrounds for high mass objects. Exploit hadronic decays.
 - Jet substructure (and b-tagging) to tag top quarks, W/Z and Higgs bosons
 - eg. Jet mass of top-tagged sample
- Search for heavy resonance decaying to VH
 - ATLAS 3.3σ local, 2.1σ global excess around 3 TeV in qqbb channel
 - Not seen in VH→leptons+b-jets

High mass di-photon resonance

JHEP 09 (2016) 1 arXiv:1707.04147

The hint that went away

Pippa Wells

The future - near and far

LHC / HL-LHC Plan

Full exploitation of LHC is top priority in Europe & US for high energy physics Operate HL-LHC with 5 (nominal) to 7.5 (ultimate) $x10^{34}$ cm⁻²s⁻¹ to collect 3000/fb in order ten years.

Pippa Wells

ATLAS Phase 1 upgrades

- Phase 1 (for Run 3, after LS2)
 - FTK (fast track trigger gradual implementation)
 - NSW (muon new small wheel reject background in trigger)
 - L1 calo (finer granularity for trigger)
 - Trigger-DAQ upgrades (trigger, higher through put)

Phase 2 for HL-LHC

- New all-silicon tracker ITk
 - Extending to |η| < 4.0
 - L1 track trigger
- Calorimeter electronics upgrade (full info at trigger level)

- Muon system upgrades (fill gaps in trigger coverage with new inner barrel chambers; new front-end electronics)
- Trigger-DAQ upgrades
- Options:
 - High granularity timing detector for the forward region
 - Muon high-η tagger

Pippa Wells

Higgs boson

- Example coupling plots from Run 1 and for HL-LHC
 - Typical precision improves from 10% (300/fb) to 4% (3000/fb)
 - $H \rightarrow \mu \mu$ observed with >7 σ significance

Higgs boson pair production

• ~factor 2 increase in cross section if $\lambda \rightarrow 0$

NNLO σ^{SM} =40.8 fb

- Will have to combine several decay modes and both experiments to have evidence
- More generally explore electroweak symmetry breaking in Vector Boson Scattering

Channel	Events in 3/ab	Significance for HH (λ=1)
bbbb	40000	0.6 σ
bbWW	30000	(ttbar backgr)
bbττ	9000	0.6 σ
WWWW	6000	
γγbb	320	1.05 σ
γγγγ	1	

Pippa Wells, CERN

HL-LHC Physics

Search reach (300/fb vs 3000/fb)

- Electroweak SUSY, extend from 500-600 GeV to 800-900 GeV
- Scalar top/bottom, few 100 GeV increase in reach

ATL-PHYS-PUB-2014-010, 2015-032

ATL-PHYS-PUB-2013-011

HL-LHC studies in progress

- Present efforts are focussing on TDRs for each Phase 2 upgrade
 - Demonstrate that the detector and trigger choices meet the required performance
 - ITk layout from the Strip TDR improves in $H \rightarrow \mu\mu$ mass resolution

 More comprehensive physics prospects planned for Update of European Strategy for Particle Physics

Pippa Wells

ATLAS Highlights

53

Conclusions

- Measurements recent highlights include
 - W mass measurement with 7 TeV data 19 MeV precision
 - Evidence for light-by-light scattering in Pb-Pb
 - Evidence for $H \rightarrow bb$ decays
- Searches
 - SUSY being probed up to 2 TeV
 - No hints yet of BSM new physics
- Future prospects
 - Well defined path for experiment upgrades to match (HL-)LHC
 - Precise measurements of Higgs boson properties. Probe electroweak symmetry breaking.
 - Increase reach for high mass or weakly coupled new particles
- A rich and diverse programme to keep us busy for years and even decades to come

Extras

Heavy Flavours

<u>B→K*µµ angular analysis</u>

 Multiparameter fit to B→K*µµ, K*->Kıı as a function of lepton pair invariant mass squared (q²)

• P'₅ should be less sensitive to hadronic uncertainties

(artwork from talk by Mauro Dinardo @ Moriond-EW)

<u> $B \rightarrow K^* \mu \mu$ angular analysis</u>

• New results from ATLAS in the region q²<6 GeV²

Pippa Wells

Heavy Ion collisions

Heavy Ion collisions

Hard probes created in the early stage of collision may be modified by • the Quark Gluon Plasma

 R_{AA} for Z bosons - flat: no interaction in the medium

 R_{AA} for jets and hadrons: significant suppression •

```
Pippa Wells
```