Flavor in SUSY after LHC

Oscar Vives

workshop on the Standard Model and Beyond Corfu, 2-10/09/2017

D. Das, M.L. López-Ibáñez, M.J. Perez and O.V., Phys. Rev. D **95**, no. 3, 035001 (2017), arXiv:1607.06827

M.L. López-Ibáñez, A. Melis, M.J. Perez and O.V., arXiv:1709.xxxx

Standard Model

All Observed *Flavour transitions* can be accomodated in Yukawa couplings:

$$\mathcal{L}_{Y}^{-} = H \bar{Q}_{i} Y_{ij}^{d} d_{j} + H^{*} \bar{Q}_{i} Y_{ij}^{u} u_{j}$$

Only masses and CKM mixings, V_{CKM}, observable...

But... ⇒ a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

Standard Model

All Observed *Flavour transitions* can be accommodated in Yukawa couplings:

$$\mathcal{L}_Y = H \bar{Q}_i Y_{ij}^d d_j + H^* \bar{Q}_i Y_{ij}^u u_j$$

Only masses and CKM mixings, V_{CKM}, observable...

But... \Rightarrow a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

New flavour observables needed !!

Standard Model

All Observed *Flavour transitions* can be accomodated in Yukawa couplings:

$$\mathcal{L}_Y = H \bar{Q}_i Y_{ij}^d d_j + H^* \bar{Q}_i Y_{ij}^u u_j$$

Only masses and CKM mixings, V_{CKM}, observable...

But... ⇒ a) what is the origin of the Yukawa structures?? b) why is there a CP-violating phase in CKM??

New flavour observables needed !!

New Physics

New flavour structures generically present ⇒ measure of new observables provides new information on flavour origin...

SUSY Flavour (and CP) problems

Soft masses fixed by $m_{3/2}$. $O(m_{3/2})$ elements in soft matrices.

⇒ Severe FCNC problem !!!

CP broken, we can expect all complex paramaters have O(1) phases. \Rightarrow Too large EDMs !!!

SUSY Flavour (and CP) problems

Soft masses fixed by $m_{3/2}$. $O(m_{3/2})$ elements in soft matrices.

⇒ Severe FCNC problem !!!

CP broken, we can expect all complex paramaters have O(1) phases. \Rightarrow Too large EDMs !!!

SM Flavour and CP

Fermion masses fixed by M_W . If O(1) elements in Yukawa matrices and O(1) phases

Impossible reproduce masses, mixings and CP observables !!!

Flavour symmetries in SUSY

- Very different elements in Yukawa matrices: $y_t \simeq 1$, $y_u \simeq 10^{-5}$
- Expect couplings in a "fundamental" theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements.

Flavour symmetries in SUSY

- Very different elements in Yukawa matrices: $y_t \simeq 1$, $y_u \simeq 10^{-5}$
- Expect couplings in a "fundamental" theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements. Example: $U(1)_{fl}$

- Flavour symmetry explains masses and mixings in Yukawas.
- Yukawa couplings forbidden by symmetry, generated only after Spontaneous Symmetry Breaking.
- Unbroken symmetry applies both to fermion and sfermions.
- Diagonal soft masses allowed by symmetry.
- Nonuniversality in soft terms proportional to symm. breaking.

- Flavour symmetry explains masses and mixings in Yukawas.
- Yukawa couplings forbidden by symmetry, generated only after Spontaneous Symmetry Breaking.
- Unbroken symmetry applies both to fermion and sfermions.
- Diagonal soft masses allowed by symmetry.
- Nonuniversality in soft terms proportional to symm. breaking.

We can <u>relate</u> the structure in <u>Yukawa matrices</u> to the nonuniversality in <u>Soft Breaking masses</u> !!!

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

• Yukawa couplings in W_{eff} after integration of heavy states.

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

ullet Yukawa couplings in $W_{
m eff}$ after integration of heavy states.

• Similar with corrections to kinetic terms and soft masses.

• Similar with corrections to kinetic terms and soft masses.

• Similar with corrections to kinetic terms and soft masses.

Abelian Flavour symmetry

• "Simple" Abelian model with charges

$$\begin{array}{llll} Q_1 \sim {\bf 3}, & Q_2 \sim {\bf 2}, & Q_3 \sim {\bf 0}, & d_1^c \sim {\bf 1}, & d_2^c \sim {\bf 0}, & d_3^c \sim {\bf 0}, \\ u_1^c \sim {\bf 3}, & u_2^c \sim {\bf 2}, & u_3^c \sim {\bf 0}, & \phi_1 \sim -{\bf 1} & {\rm with} & \frac{\langle \phi_1 \rangle}{M} = \lambda_c \end{array}$$

ullet Yukawa couplings proportional to: $Y_{ij} = \left(\langle \phi_1
angle / M
ight)^{(q_1^i + q_1^j)}$

$$M^d = \langle H_1 \rangle \left(\begin{array}{ccc} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{array} \right), \quad M^u = \langle H_2 \rangle \left(\begin{array}{ccc} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array} \right).$$

Abelian Flavour symmetry

• "Simple" Abelian model with charges

$$Q_1 \sim 3$$
, $Q_2 \sim 2$, $Q_3 \sim 0$, $d_1^c \sim 1$, $d_2^c \sim 0$, $d_3^c \sim 0$, $u_1^c \sim 3$, $u_2^c \sim 2$, $u_3^c \sim 0$, $\phi_1 \sim -1$ with $\frac{\langle \phi_1 \rangle}{M} = \lambda_c$

• Yukawa couplings proportional to: $Y_{ij} = (\langle \phi_1 \rangle / M)^{(q_1^i + q_1^i)}$

$$M^d = \langle H_1 \rangle \left(\begin{array}{ccc} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{array} \right), \quad M^u = \langle H_2 \rangle \left(\begin{array}{ccc} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array} \right).$$

• Trilinear couplings::

$$Y_d^A = \left(\begin{array}{ccc} 9\lambda^4 & 7\lambda^3 & 7\lambda^3 \\ 7\lambda^3 & 5\lambda^2 & 5\lambda^2 \\ 3\lambda & 1 & 1 \end{array}\right), \quad Y_u^A = \left(\begin{array}{ccc} 13\lambda^6 & 11\lambda^5 & 7\lambda^3 \\ 11\lambda^5 & 9\lambda^4 & 5\lambda^2 \\ 7\lambda^3 & 5\lambda^2 & 1 \end{array}\right).$$

Abelian Flavour symmetry

"Simple" Abelian model with charges

$$\begin{array}{llll} Q_1 \sim {\bf 3}, & Q_2 \sim {\bf 2}, & Q_3 \sim {\bf 0}, & d_1^c \sim {\bf 1}, & d_2^c \sim {\bf 0}, & d_3^c \sim {\bf 0}, \\ u_1^c \sim {\bf 3}, & u_2^c \sim {\bf 2}, & u_3^c \sim {\bf 0}, & \phi_1 \sim -{\bf 1} & {\rm with} & \frac{\langle \phi_1 \rangle}{M} = \lambda_c \end{array}$$

• Yukawa couplings proportional to: $Y_{ij} = (\langle \phi_1 \rangle / M)^{(q_1^i + q_1^l)}$

$$M^d = \langle H_1 \rangle \left(\begin{array}{ccc} \lambda^4 & \lambda^3 & \lambda^3 \\ \lambda^3 & \lambda^2 & \lambda^2 \\ \lambda & 1 & 1 \end{array} \right), \quad M^u = \langle H_2 \rangle \left(\begin{array}{ccc} \lambda^6 & \lambda^5 & \lambda^3 \\ \lambda^5 & \lambda^4 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array} \right).$$

Trilinear couplings::

$$Y_d^A = \left(\begin{array}{ccc} 9\lambda^4 & 7\lambda^3 & 7\lambda^3 \\ 7\lambda^3 & 5\lambda^2 & 5\lambda^2 \\ 3\lambda & 1 & 1 \end{array}\right), \quad Y_u^A = \left(\begin{array}{ccc} 13\lambda^6 & 11\lambda^5 & 7\lambda^3 \\ 11\lambda^5 & 9\lambda^4 & 5\lambda^2 \\ 7\lambda^3 & 5\lambda^2 & 1 \end{array}\right).$$

In <u>SCKM</u> basis trilinear couplings not diagonalized, preserve the structure of <u>Yukawas</u> in <u>flavour basis!!!</u>

- Soft mass coupling $\phi_i^{\dagger}\phi_i$ invariant under all symmetries \Rightarrow flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ii}^2=m_0^2\;(\langle\phi_1\rangle/M)^{|q_1^i-q_1^i|}$

- Soft mass coupling $\phi_i^{\dagger}\phi_i$ invariant under all symmetries \Rightarrow flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ii}^2=m_0^2\;(\langle\phi_1\rangle/M)^{|q_1^i-q_1^i|}$

$$M_{\tilde{Q}}^2 \sim M_{\tilde{U}_R}^2 \sim M_{\tilde{D}_R}^2 \sim m_0^2 \left(egin{array}{ccc} 1 & 6 \, \lambda^3 & 6 \, \lambda^3 \ 6 \, \lambda^3 & 1 & \lambda^2 \ 6 \, \lambda^3 & \lambda^2 & 1 \end{array}
ight)$$

- Soft mass coupling $\phi_i^{\dagger}\phi_i$ invariant under all symmetries \Rightarrow flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses equal with single F_x as required by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs, $M_{ii}^2=m_0^2\;(\langle\phi_1\rangle/M)^{|q_1^i-q_1^i|}$

$$M_{\tilde{Q}}^2 \sim M_{\tilde{U}_R}^2 \sim M_{\tilde{D}_R}^2 \sim m_0^2 \left(egin{array}{ccc} 1 & 6 \, \lambda^3 & 6 \, \lambda^3 \ 6 \, \lambda^3 & 1 & \lambda^2 \ 6 \, \lambda^3 & \lambda^2 & 1 \end{array}
ight)$$

After canonical normalization:

$$M_{\tilde{Q}}^2 \sim M_{\tilde{U}_R}^2 \sim M_{\tilde{D}_R}^2 \sim m_0^2 \left(egin{array}{ccc} 1 & 4\,\lambda^3 & 4\,\lambda^3 \ 4\,\lambda^3 & 1 & rac{3}{2}\lambda^4 \ 4\,\lambda^3 & rac{3}{2}\lambda^4 & 1 \end{array}
ight)$$

(Flavour Observables)

• $K - \overline{K}$ and $B - \overline{B}$ mixing most sensitive observables

Flavour Observables

• $K - \overline{K}$ and $B - \overline{B}$ mixing most sensitive observables

Red area excuded by $K-\overline{K}$, gray rectangle LHC direct searches, black lines average squark masses.

Discrete Non-Abelian symmetries: A4

• A4, Z_4 , $U(1)_R$ charges for leptons:

Field	ν^{c}	1	e ^c	μ^{c}	τ^c	h _d	h _u	$\varphi_{\mathcal{T}}$	ξ'	$\varphi_{\mathcal{S}}$	ξ
A_4	3	3	1	1	1	1	1	3	1'	3	1
Z_4	-1	i	1	i	-1	1	i	i	i	1	1
$U(1)_R$	1	1	1	1	1	0	0	0	0	0	0

with
$$\langle \varphi_T \rangle = (0, v_T, 0), \langle \xi \rangle = u, \langle \varphi_S \rangle = v_S \times (1, 1, 1), \langle \xi \rangle = u'$$

• Dirac and Majorana masses, $\frac{v_T}{\lambda} \sim \frac{u}{\Lambda} = \varepsilon, \frac{v_S}{\Lambda} \sim \frac{u'}{\Lambda} = \varepsilon'$:

$$Y_D^{
u} \sim y_{
u} \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight), \; M_{
u_R} \sim \left(egin{array}{ccc} M' + 2bv_S & -bv_S & -bv_S \ -bv_S & 2bv_S & M' - bv_S \ -bv_S & M' - bv_S & 2bv_S \end{array}
ight)$$

Discrete Non-Abelian symmetries: A4

• A4, Z_4 , $U(1)_R$ charges for leptons:

Field	ν^{c}	1	e ^c	μ^{c}	τ^c	h _d	hu	φ_T	ξ'	$\varphi_{\mathcal{S}}$	ξ
A_4	3	3	1	1	1	1	1	3	1'	3	1
Z_4	-1	i	1	i	-1	1	i	i	i	1	1
$U(1)_R$	1	1	1	1	1	0	0	0	0	0	0

with
$$\langle \varphi_T \rangle = (0, v_T, 0), \langle \xi \rangle = u, \langle \varphi_S \rangle = v_S \times (1, 1, 1), \langle \xi \rangle = u'$$

• Dirac and Majorana masses, $\frac{v_T}{\lambda} \sim \frac{u}{\Lambda} = \varepsilon, \frac{v_S}{\Lambda} \sim \frac{u'}{\Lambda} = \varepsilon'$:

$$\varepsilon = 0.06, \ \varepsilon' = 0.03, \ \tan \beta = 5, \qquad U_{PMNS} = \left(\begin{array}{ccc} 0.83 & -0.53 & 0.15 \\ -0 - 31 & -0.71 & -0.62 \\ -0.44 & -0.47 & 0.77 \end{array} \right)$$

• Charged-lepton-Higgs matrices:

$$Y_{l} \sim \varepsilon \left(egin{array}{ccc} arepsilon^{2} & arepsilon^{2} arepsilon' & arepsilon^{2} arepsilon^{2} & a$$

Soft mass matrices,

• Charged-lepton-Higgs matrices:

$$Y_{l} \sim \varepsilon \left(egin{array}{ccc} arepsilon^{2} & arepsilon^{2} arepsilon' & arepsilon^{2} arepsilon^{2} & a$$

Soft mass matrices.

$$\mathit{M}_{\widetilde{l}_{R}}^{2} \sim \mathit{m}_{3/2}^{2} \left(\begin{array}{ccc} 1 + 2(\varepsilon^{2} + \varepsilon^{\prime\,2}) & 2\varepsilon^{\prime2} & 2\varepsilon^{\prime2} \\ 2\varepsilon^{\prime2} & 1 + 2(\varepsilon^{2} + \varepsilon^{\prime\,2}) & 2\varepsilon^{\prime2} \\ 2\varepsilon^{\prime2} & 2\varepsilon^{\prime2} & 1 + 2(\varepsilon^{2} + \varepsilon^{\prime\,2}) \end{array} \right)$$

• Charged-lepton-Higgs matrices:

$$Y_{l} \sim \varepsilon \left(\begin{array}{ccc} \varepsilon^{2} & \varepsilon^{2}\varepsilon' & \varepsilon^{2}\varepsilon' \\ \varepsilon\varepsilon' & \varepsilon & \varepsilon\varepsilon' \\ \varepsilon' & \varepsilon' & 1 \end{array} \right), \quad Y_{l}^{A} \sim m_{3/2} \, \varepsilon \left(\begin{array}{ccc} 7\varepsilon^{2} & 9\varepsilon^{2}\varepsilon' & 9\varepsilon^{2}\varepsilon' \\ 7\varepsilon\varepsilon' & 5\varepsilon & 7\varepsilon\varepsilon' \\ 5\varepsilon' & 5\varepsilon' & 3 \end{array} \right)$$

Soft mass matrices.

$$M_{\tilde{l}_R}^2 \sim m_{3/2}^2 \left(\begin{array}{ccc} 1 + 2(\varepsilon^2 + \varepsilon'^{\,2}) & 2\varepsilon'^2 & 2\varepsilon'^2 \\ 2\varepsilon'^2 & 1 + 2(\varepsilon^2 + \varepsilon'^{\,2}) & 2\varepsilon'^2 \\ 2\varepsilon'^2 & 2\varepsilon'^2 & 1 + 2(\varepsilon^2 + \varepsilon'^{\,2}) \end{array} \right)$$

After canonical normalization and SCKM basis:

$$M_{\tilde{l}_L}^2 \sim m_{3/2}^2 \left(\begin{array}{ccc} 1 & -0.006 & 0.005 \\ -0.006 & 1 & -0.006 \\ 0.005 & -0.006 & 1 \end{array} \right)$$

Lepton Flavour Violation

ullet $\mu
ightarrow e \gamma$ and $\mu
ightarrow 3e$ very sensitive even with heavy sfermions

Lepton Flavour Violation

 $\bullet~\mu o e \gamma$ and $\mu o 3e$ very sensitive even with heavy sfermions

Present bounds on $\mu \to e \gamma$ and $\mu \to 3e$, gray rectangle LHC direct searches.

Conclusions

- Flavour symmetries solve the CP and flavour problems both in New Physics (SUSY) and in the SM.
- New flavour structures will provide valuable information on the origin of flavour
- In SUSY, non-universality always present in soft-breaking terms.
- Flavour structures of soft masses and trilinears remember structures in flavour basis.
- Large reach of flavour observables in realistic flavour models, beyond LHC.
- Lepton Flavour Violation and Kaon sector very sensitive to SUSY flavour structures.

Backup 1

Mediator Superpotential

$$\begin{split} W \supset g \sum_{q_{i}} \left(\psi_{q_{i}} \bar{\chi}_{-q_{i}+1} \phi + \chi_{q_{i}} \bar{\chi}_{-q_{i}+1} \phi + \chi_{q_{i}-1} \bar{\chi}_{-q_{i}} \bar{\phi} + \bar{\chi}_{-q_{i}} \psi^{c}_{r,q_{i}} H \right) \\ + M \sum_{q_{i}} \chi_{q_{i}} \bar{\chi}_{-q_{i}} + M \phi \bar{\phi} + \dots \end{split}$$

Backup 1

Mediator Superpotential

$$\begin{split} W \supset g \sum_{q_{i}} \left(\psi_{q_{i}} \bar{\chi}_{-q_{i}+1} \phi \ + \ \chi_{q_{i}} \bar{\chi}_{-q_{i}+1} \phi \ + \ \chi_{q_{i}-1} \bar{\chi}_{-q_{i}} \bar{\phi} \ + \ \bar{\chi}_{-q_{i}} \psi^{c}_{r,q_{i}} H \right) \\ + \ M \sum_{q_{i}} \chi_{q_{i}} \bar{\chi}_{-q_{i}} \ + \ M \phi \bar{\phi} \ + \ \dots \end{split}$$

Diagrams in components

