Measurement of the W-boson mass at the ATLAS experiment

Oleh Kivernyk

LAPP-CNRS

September 4, 2017 Workshop on the Standard Model and Beyond Corfu2017

Motivation

Relation in EW sector of the SM: $M_W^2(1 - M_W^2/M_Z^2) = \frac{\pi \alpha}{\sqrt{2}G_r} \cdot \frac{1}{1 - \Delta r}$ ۲ Loop corrections $\Delta r(m_t^2, \ln(M_H), M_W, M_Z, ...)$ Current world average exp. $M_W = 80.385 \pm 0.015 \text{ GeV}$ Probe consistency of the SM via M_W ۰ measurement [GeV] prediction [GeV] Мн 125.09 ± 0.24 102.8 ± 26.3 172.84 ± 0.70 176.6 ± 2.5 m_t 80.385+0.015 80.360 ± 0.008 Mw **Objective:** experimental precision of about 8 MeV Sensitive to several BSM scenarios

Global EW fit

- \rightarrow Measure SM observables
- \rightarrow Fit SM relations to precision data

Strategy of W-mass measurement

- Basic objects: single isolated lepton \vec{p}_T^{ℓ} , recoil $\vec{u}_T = \sum \vec{E}_T$ (a measure of p_T^W)
- Observables sensitive to M_W :

 $\begin{array}{ll} \text{Lepton transverse momentum} & p_T^\ell \\ \text{(Neutrino transverse energy)} & E_T^\nu = |\vec{p_T^\nu}|, \vec{p_T^\nu} = -(\vec{p_T^l} + \vec{u}) \\ \text{Transverse mass} & m_T^W = \sqrt{2p_T^\ell p_T^\nu (1 - \cos \Delta \phi_{\ell\nu})} \end{array}$

Template fit method:

- The p_{T}^{ℓ}, m_{T}^{W} and E_{T}^{miss} distributions are computed with MC for different values of M_{W}
- Each template is compared to data by means of χ^2
- The preferred value of M_W corresponds to minimum of the χ^2 function

O.Kivernyk (LAPP)

Experimental corrections

Lepton calibration

- Momentum scale and resolution corrected to match well-known M_Z distribution in $Z \rightarrow \ell \ell$ resonance
- Lepton reconstruction and selection requirements corrected using $Z \to \ell \ell$ via Tag-and-Probe method Recoil calibration
- Event activity correction (Nb of pile-up interactions, $\Sigma E_{\rm T})$
- Recoil response calibrated using p_T balance between lepton-pair and u_T in $Z \to \ell \ell$

Total lepton uncertainty: 10/14 MeV for muons/electrons Recoil uncertainty: 2.6/13.0 MeV for p_T^ℓ/m_T^W

O.Kivernyk (LAPP)

Corfu2017 3 / 10

- No available generator can describe all these effects
- As starting point, we use PowhegPythia generator
- Corrections to **PowhegPythia** are based on factorization of fully differential leptonic DY cross section into 4 pieces:
 - Variation of $d\sigma/dm$ is modeled with Breit-Wigner+EW corrections

$$rac{d\sigma}{dm}\sim rac{m^2}{(m^2-m_V^2)^2+m^4\Gamma_V^2/m_V^2}$$

- The $d\sigma/dp_T$ is modeled with parton shower MC
- The $d\sigma/dy$ and A_i (describe spin correlations) are modeled with NNLO QCD predictions
- A model in each part is constrained using experimental measurements of Z and W production

Rapidity and pseudorapidity distributions

- Modeled with NNLO QCD predictions using DYNNLO
- PDF set CT10nnlo: best agreement with 7 TeV data (sub-% precise measurement)
- Predictions validated with W^+, W^- and Z data: $\chi^2 = 45/34$ satisfactory
- Uncertainty: from CT10nnlo, envelope of CT14 and MMHT

Angular coefficients A_i

- Fully differential cross section for spin-1 boson $\frac{d\sigma}{dp_T^2 dy^2 dm^2 d\cos \theta d\phi} = \frac{3}{16\pi} \frac{d\sigma'''}{dp_T^2 dy^2 dm^2}$ production, to all orders: $\{(1 + \cos^2 \theta + \frac{1}{2}A_0) + \frac{1}{2}A_0\}$
- A_i's are modeled with NNLO QCD predictions using **DYNNLO**
- Predictions are validated by comparisons to the Z measurement at 8 TeV (arXiv:1606.00689)
- Uncertainty: experimental uncertainty + observed discrepancy for A₂

p_T^W modeling

- p_T^V easy to measure in Z
 ightarrow II events, but hard for W
 ightarrow I
 u
- Calibration W with Z: $\frac{d\sigma(W)}{dp_T} = \left[\frac{d\sigma(W)/dp_T}{d\sigma(Z)/dp_T}\right]_{pred} \times \left[\frac{d\sigma(Z)}{dp_T}\right]_{meas}$
- Use **Pythia8** parton shower, tuned to p_T^Z data at 7 TeV (AZ tune) \rightarrow tuned parameters: α_s , intrinsic k_T , Q_0

	Pythia8
Tune Name	AZ
Primordial k_T [GeV]	1.71 ± 0.03
ISR $\alpha_S^{ISR}(m_Z)$	0.1237 ± 0.0002
ISR cut-off [GeV]	0.59 ± 0.08
$\chi^2_{\rm min}/{\rm dof}$	45.4/32

- Apply model to W relying on good prediction of W/Z ratio \rightarrow validated on data
- More advanced DYRES, Resbos, Powheg MiNLO+Pythia8 are disfavoured by data
- Uncertainty: p_T^Z data, PS parameters, μ_F , heavy quark masses

Backgrounds and distributions

Missing part: backgrounds

- EW and top backgrounds are from MC
- Multijets background is estimated from data \rightarrow from control region with large activity around leptons

 \rightarrow normalized in jet-enriched region with relaxed kinematic cut(s)

10 Events / 2 GeV

10⁶

10

104

 10^{3}

10²

10

ATLAS

√s = 7 TeV. 4.6 fb

W-mass sensitive distributions:

Events / 0.5 GeV

Data / Pred.

O.Kivernyk (LAPP)

- Data

Fit result

Multijets

 $N \rightarrow ev + FW$

single top

Mass measurements

- A crucial aspect is the categorisation (p_T^{ℓ}, m_T^W) ; electrons, muons; W^+/W^- ; $|\eta|$ -bins)
- $\bullet~$ Consistent results \rightarrow validates the detector calibration and physics modeling
- Compatibility test: $\chi^2/n_{dof} = 29/27$
- Precision compatible to the single most precise measurement (CDF)

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

 $m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}$

Standard Model consistency

• Consistent with the SM prediction and with the current world average value

SM prediction for m_W assuming $m_H = 125.09 \pm 0.24$ GeV $m_t = 172.84 \pm 0.70$ GeV SM prediction for m_W vs m_t assuming $m_H = 125.09 \pm 0.24$ GeV

BACKUP

Combined results

• Good compatibility between $p_{-}^{l}, W^{+} \rightarrow l^{+} v$ m_w (Partial Comb.) partial combinations ATLAS $p^{i}, W^{-} \rightarrow \Gamma v$ Stat. Uncertainty - Full Uncertainty $p_{\tau}^{l}, W^{\pm} \rightarrow l^{\pm} v$ √s = 7 TeV, 4.1-4.6 fb⁻¹ Dominant contribution from p_T^{ℓ} ۰ - m_w (Full Comb.) $\overline{m}_{T}, \overline{W}^{*} \rightarrow \overline{I}^{*} \overline{v}$ Stat. Uncertainty Significant contribution from $m_{\tau}, W^- \rightarrow \Gamma v$ ۰ Full Uncertainty electron channel $m_{\tau},\,W^{\pm}{\rightarrow}\,I^{\pm}\nu$ $p_{-}^{l}, W^{\pm} \rightarrow e^{\pm}v$ Combination Weight $m_{_T},\,W^\pm\!\!\rightarrow e^\pm\nu$ $p_{-}^{l}, W^{\pm} \rightarrow \mu^{\pm} \nu$ Electrons 0.427 $\overset{\cdot}{m_{T}},\,W^{\pm}{\rightarrow}\,\mu^{\pm}\nu$ Muons 0.573 $m_{T}\text{-}p_{T}^{I},\,W^{*}\text{-}\text{-}I^{*}\nu$ m_{τ} - p_{-}^{I} , $W \rightarrow \dot{I}v$ 0.144 $m_{\rm T}$ $m_T - p_T^l, W^{\pm} \rightarrow f$ p_{T}^{ℓ} 0.85680280 80300 80320 80340 80360 80380 80400 80420 80440 80460 m_w [MeV] W^+ 0.519 W^{-} 0.481

Results	m_W	=	$80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$
		=	80369.5 ± 18.5 MeV,

Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EWK Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

 $m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}$

O.Kivernyk (LAPP)

Multijet background

EW and top backgrounds are from MC; MJ background is estimated from data

General method:

- Define a background dominated fit region with relaxed kinematic cut(s)

- Signal distribution from MC; background from control region with inverted lepton isolation cut (large activity around leptons)

- The multijet background is normalized with fraction fit

Variations:

- 3 observables $(p_T^{miss}, m_T^W, p_T^\ell/m_T^W)$; 2 fitting regions
- Different isolation criteria \rightarrow extrapolate to the signal region

04

p_____/p__

0.3 0.35

Cross-check: Z-mass fits

- W-like transverse mass m_T(l):
 Reconstructed from recoil and lepton
- Calibration is verified with M_Z \rightarrow compatibility within $< 1\sigma (p_T^l)$ and 1.4 $\sigma (m_T^Z)$ with the PDG value

- Theoretically more advanced resummed predictions were also tried (DYRES, ResBos, Cute)
- They predict harder p_T spectrum wrt Pythia
- Such behaviour is strongly disfavoured by the $u_{||}(I)$ distribution in data \rightarrow not used

p_T^W modeling uncertainty

- Difference between W and Z: PDF and heavy-quark effects
- $Z \rightarrow W$ extrapolation uncertainty:
 - variation of remaining parton shower parameters
 - choice of LO parton shower PDF: CTEQ6L1, CT14, MMGT2014 and NNPDF2.3
 - factorization scale (decorrelated between light and heavy quark induced production)
 - heavy quark masses ($\delta m_c = \pm 0.5$ GeV)

Summary of modeling uncertainties

- CT10nnlo PDFs (synchronized in DYNNLO and Pythia) + envelop CT10 to CT14 and MMHT: dominant uncertainty, followed by p_T^W uncertainty due to heavy-flavour-initiated production
- PDF uncertainty are **anti-correlated** between W^+ and $W^- \rightarrow$ significant reduction from the combination
- AZ tune uncertainty; parton shower PDF and factorization scale; heavy-quark mass effects
- A_i uncertainties from Z data + envelope for A_2 discrepancy

W-boson charge	W	7+	W	r —	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	$m_{\rm T}$
δm_W [MeV]					6000	
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Electroweak corrections

- Effects present in MC simulation: >>>> \rightarrow ESR modeled with Photos (dominant effect) \rightarrow ISR modeled in Pythia PS Missing effects: γ/Z γ/Z \rightarrow fermion pair emmision
 - \rightarrow NLO EW corrections

Related uncertainties estimated using dedicated MC (Winhac)

Kinematic distribution	p_T^e	$m_T^{e\nu}$	p_T^{ν}	p_T^{μ}	$m_T^{\mu\nu}$
δm_W [MeV]					
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
FSR (pair production)	3.6	0.8	< 0.1	4.4	0.8
Pure weak and IFI corrections	3.3	2.5	0.6	3.5	2.5
Total [MeV]	4.9	2.6	0.6	5.6	2.6

Challenges @LHC

Additional complications at LHC wrt TeVatron

- Higher **pile-up** environment complicates the **hadronic recoil** calibration
- Larger role of sea-quarks in W-boson production \rightarrow implies larger uncertainty on the p_T^l distribution
- Assymetric production of W^+ and $W^- \rightarrow$ charge-dependent analysis
- Large role of heavy 2^{nd} -genereation quarks \rightarrow implies larger uncertainty from modeling of p_T^W and W-polarisation

PDF uncertainty \rightarrow W polarization \rightarrow uncertainty on p_T^l

flavour decomposition of W cross sections

O.Kivernyk (LAPP)

Summary of uncertainties

	Channel	m_W	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total
	m_{T} -Fit	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
	$W^+ \rightarrow \mu\nu, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1
	$W^+ \to \mu\nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6
	$W^+ \to \mu\nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9
	$W^+ \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5
	$W^- \rightarrow \mu\nu, \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5
	$W^- \to \mu\nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7
	$W^- \rightarrow \mu\nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9
	$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9
	$W^+ \rightarrow e\nu, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8
	$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4
	$W^+ \rightarrow e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6
	$W^- \rightarrow e\nu, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1
	$W^- \to e\nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0
	$W^- \to e\nu, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3
	p_{T} -Fit										
	$W^+ \rightarrow \mu\nu, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3
	$W^+ \rightarrow \mu\nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5
	$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3
	$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2
	$W^- \rightarrow \mu\nu, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0
	$W^- \to \mu \nu, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5
	$W^- \rightarrow \mu \nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9
	$W^- \to \mu\nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6
	$W^+ \rightarrow e\nu$, $ \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7
	$W^+ \rightarrow e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4
	$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2
	$W^- \rightarrow e\nu, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2
	$W^- \rightarrow e\nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9
	$W^- \to e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0
					_						
Inl. com	$P \rightarrow \sim 15 \text{ MeV}$	5	Stron	alv		Stro	nalv		Inl	coml	o.
HI COUR				lated					1.11	0.47	
	μ → ~11 MeV	correlated				corr	erated	u	comp		

Fit ranges : $32 < p_T < 45$ GeV; $66 < m_T < 99$ GeV, minimizing total expected measurement uncertainty

Correct for imperfect knowledge of magnetic field, material, detector alignment, response:

Momentum corrections

• Momentum scale and resolution corrected to match well-known M_Z distribution in $Z \rightarrow \ell \ell$ resonance

Efficiency corrections

• Lepton reconstruction and selection requirements are corrected in MC using $Z \to \ell \ell$ with Tag-and-Probe method

Total lepton uncertainty:

10 MeV (muon) and 14 MeV (electron)

Calibration relies on momentum balance in the transverse plane

- Match event activity in data and MC (Number of pile-up interactions, $\Sigma E_{\rm T}$)
- Residual recoil scale and resolution corrections based on parallel and perpendicular projections to Z direction

Uncertainty: 2.6/13.0 MeV with p_T^{ℓ}/m_T^W

