Vector-like compositeness meets B-physics R_{K(*)} anomaly

Kenji Nishiwaki (KIAS) KI S S KOREA INSTITUTE FOR ADVANCED STUDY

based on collaboration with

Shinya Matsuzaki (Nagoya Univ.), Ryoutaro Watanabe (Montréal Univ.)

arXiv:1706.01463, published from JHEP

Corfu Summer Institute 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity

Talk @ Corfu Summer Institute, Workshop on the Standard Model and Beyond; Corfu, Greece, 9th September 2017

INTRODUCTION

B anomalies [review]

1/12

$$\mathbb{E} R_{K} \equiv \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036 \quad \text{for } 1 \,\text{GeV}^{2} < q^{2} < 6 \,\text{GeV}^{2}$$

$$[\text{LHCb (seminar in CERN on 18th April), arXiv:1705.05802]}$$

$$\mathbb{E} R_{K^{*}} \equiv \frac{\mathcal{B}(B \to K^{*}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{*}e^{+}e^{-})} = \begin{cases} 0.660^{+0.110}_{-0.070} \pm 0.024 & \text{for } (2m_{\mu})^{2} < q^{2} < 1.1 \,\text{GeV}^{2} \\ 0.685^{+0.113}_{-0.069} \pm 0.047 & \text{for } 1.1 \,\text{GeV}^{2} < q^{2} < 6 \,\text{GeV}^{2} \end{cases}$$

<u>suggesting lepton flavor violation (2.2-2.6σ) [~I in SM]</u>

B anomalies [review]

<u>1/12</u>

Suggestions from global fit(s) [review]

 $d\Gamma/dq^2$

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\text{NP}} &= -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i,\ell} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \,\ell} O_i^{\prime \,\ell}) + \text{h.c.} \\ O_9^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu} \ell), \quad O_9^{\prime \,\ell} = (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu} \ell), \\ O_{10}^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell), \\ O_{10}^{\prime \,\ell} &= (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell), \end{aligned}$$

[global fit result for new physics]

[W.Altmannshofer et al., arXiv:1704.05435]

Coeff	hest fit	1σ	2σ	null	
COEII.	Dest IIt	10	20	puii	(effective) vector interaction
C_9^{μ}	-1.59	[-2.15, -1.13]	[-2.90,-0.73]	4.2σ	
C^{μ}_{10}	+1.23	[+0.90, +1.60]	[+0.60, +2.04]	4.3σ	$\begin{bmatrix} in the SM \end{bmatrix}$
C_9^e	+1.58	[+1.17, +2.03]	[+0.79, +2.53]	4.4σ	I^+ $I^ I^+$
C^e_{10}	-1.30	[-1.68, -0.95]	[-2.12, -0.64]	4.4σ	
$C_{9}^{\mu} = -C_{10}^{\mu}$	-0.64	[-0.81, -0.48]	[-1.00, -0.32]	4.2σ	$\gamma, Z $
$C_9^e = -C_{10}^e$	+0.78	[+0.56, +1.02]	[+0.37, +1.31]	4.3σ	$W^- W^+$
$C_9^{\prime\mu}$	-0.00	[-0.26, +0.25]	[-0.52, +0.51]	0.0σ	$-\frac{b}{W}$ $\frac{b}{t}$ $\frac{b}{t}$
$C_{10}^{\prime \ \mu}$	+0.02	[-0.22, +0.26]	[-0.45, +0.49]	$0.1\sigma_{\Rightarrow 2}$	orders of magnitude smaller than b-gistures preserved oten
$C_9^{\prime e}$	+0.01	[-0.27, +0.31]	[-0.55, +0.62]	0.0σ	 electromagnetic penguin: C₇
$C_{10}^{\prime e}$	-0.03	[-0.28, +0.22]	[-0.55, +0.46]	0.10 ^{mp}	litudes from \circ vector $c_{lo} = c_{lo} = c_{l$

increasing dimuon mass \rightarrow

2/12

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444. Many observables: 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, Branching Pactions

Suggestions from global fit(s) [review]

 $d\Gamma/dq^2$

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\text{NP}} &= -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i,\ell} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \,\ell} O_i^{\prime \,\ell}) + \text{h.c.} \\ O_9^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu} \ell), \quad O_9^{\prime \,\ell} = (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu} \ell), \\ O_{10}^{\ell} &= (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell), O_{10}^{\prime \,\ell} = (\bar{s}\gamma_{\mu} P_R b) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell), \end{aligned}$$

[global fit result for new physics]

[W.Altmannshofer et al., arXiv:1704.05435]

Coeff.	best fit	1σ	2σ	pull
C_9^{μ}	-1.59	[-2.15, -1.13]	[-2.90, -0.73]	4.2σ
C^{μ}_{10}	+1.23	[+0.90, +1.60]	[+0.60, +2.04]	4.3σ
C_9^e	+1.58	[+1.17, +2.03]	[+0.79, +2.53]	4.4σ
C^e_{10}	-1.30	[-1.68, -0.95]	[-2.12, -0.64]	4.4σ
$C_{9}^{\mu} = -C_{10}^{\mu}$	-0.64	[-0.81, -0.48]	[-1.00, -0.32]	4.2σ
$C_9^e = -C_{10}^e$	+0.78	[+0.56, +1.02]	[+0.37, +1.31]	4.3σ
$C_9^{\prime\mu}$	-0.00	[-0.26, +0.25]	[-0.52, +0.51]	0.0σ
$C_{10}^{\prime\mu}$	+0.02	[-0.22, +0.26]	[-0.45, +0.49]	0.1σ
$C_9^{\prime e}$	+0.01	[-0.27, +0.31]	[-0.55, +0.62]	0.0σ
$C_{10}^{\prime e}$	-0.03	[-0.28, +0.22]	[-0.55, +0.46]	0.1σ

2/12

- (effective) vector interaction
- S and b should be left-handed (right-handed is irrelevant).
- Lepton part is ambiguous (vector-like, left-handed,...).

$$(C_9^{SM} = -C_{10}^{SM} \sim 4)$$

Fundamental Z' scenarios work [(with additional fermion(s) and scalar(s)].

(see talks by Mahmoudi, Crivellin, Zwicky, King, Quiros, Leontaris, Ryoutaro ...)

How about Z'? [review]

3/12

Fundamental Z' scenarios work [(with additional fermion(s) and scalar(s)].

(see talks by Mahmoudi, Crivellin, Zwicky, King, Quiros, Leontaris, Ryoutaro ...)

How about Z'? [review]

3/12

Fundamental Z' scenarios work [(with additional fermion(s) and scalar(s)].

(see talks by Mahmoudi, Crivellin, Zwicky, King, Quiros, Leontaris, Ryoutaro ...)

Q: How about composite case?

Points

0. Introduction (finished)

- **1.** Hidden "QCD" \Rightarrow multiple vector candidates for B anomaly.
- 2. Various virtues in the vector-like compositeness
- **3.** Large part of parameter space waits for being explored.

Points

0. Introduction (finished)

1. Hidden "QCD" \Rightarrow multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

3. Large part of parameter space waits for being explored.

QCD as Composite scenario [Review]

When a coupling becomes strong, composite particles appear.

4/12

QCD as Composite scenario [Review]

When a coupling becomes strong, composite particles appear.

Chiral symmetry governs low-energy composite (meson) spectrum.

M pseudo-scalars (pions) as pseudo NG bosons

Vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)v, gauged)

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215] [Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493] [reviewed by e.g., Harada,Yamawaki, arXiv:hep-ph/0302103]

<u>QCD as Composite scenario [Review]</u>

M Low-energy meson theory is managed by the chiral symmetry

New vector particles are introduced in a consistent way!

Q: Can we obtain `composite Z` for RK(*)?

<u>Chiral symmetry governs low-energy composite (meson) spectrum.</u>

M pseudo-scalars (pions) as pseudo NG bosons

Vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)v, gauged)

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215] [Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493] [reviewed by e.g., Harada, Yamawaki, arXiv:hep-ph/0302103]

Vector-like hidden "QCD" (hypercolor[HC]) <u>5/12</u>

We consider an $SU(N_{HC})$ confining gauge theory (fermion: F, gauge boson: g')

Vector-like hidden "QCD" (hypercolor[HC]) <u>5/12</u>

<u>Vector-like hidden "QCD" (hypercolor[HC])</u> <u>5/12</u>

We consider an SU(N_{HC}) confining gauge theory (fermion: F, gauge boson: g')

In a situation that ρ_{μ} "mix with" the SM gauge boson, ρ_{μ} may couple with the SM fermions in an effective way!

<u>Vector-like hidden "QCD" (hypercolor[HC])</u> <u>5/12</u>

Vector-like hidden "QCD" [HC] (cont'd)

6/12

[vector meson spectrum] NOT ONLY Z' candidates!

composite vector	constituent	color	isospin	15 in total
$ ho^{lpha}_{(8)a}$	$\frac{1}{\sqrt{2}}\bar{Q}\gamma_{\mu}\lambda^{a}\tau^{\alpha}Q$	octet	triplet 🔨	massive
$ ho_{(8)a}^0$	$rac{1}{2\sqrt{2}}ar{Q}\gamma_{\mu}\lambda^{a}Q$	octet	singlet 🖌	gluons
$ ho^{lpha}_{(3)c} \left(ar{ ho}^{lpha}_{(3)c} ight)$	$\frac{1}{\sqrt{2}}\bar{Q}_c\gamma_\mu\tau^{\alpha}L$ (h.c.)	triplet	triplet 🔨	vector
$\rho^{0}_{(3)c} \left(\bar{\rho}^{0}_{(3)c} \right)$	$\frac{1}{2\sqrt{2}}\bar{Q}_c\gamma_\mu L$ (h.c.)	triplet	singlet 🖌	<u>`leptoquarks</u>
$ ho^{lpha}_{(1)'}$	$\left \frac{1}{2\sqrt{3}}(\bar{Q}\gamma_{\mu}\tau^{\alpha}Q - 3\bar{L}\gamma_{\mu}\tau^{\alpha}L)\right $	singlet	triplet ĸ	
$ ho_{(1)'}^0$	$\frac{1}{4\sqrt{3}}(\bar{Q}\gamma_{\mu}Q - 3\bar{L}\gamma_{\mu}L)$	$\operatorname{singlet}$	singlet	> <u>Z' (and W')</u>
$ ho^lpha_{(1)}$	$\frac{1}{2}(\bar{Q}\gamma_{\mu}\tau^{\alpha}Q + \bar{L}\gamma_{\mu}\tau^{\alpha}L)$	singlet	triplet K	inciuaea

Vector-like hidden "QCD" [HC] (cont'd)

6/12

[vector meson spectrum] <u>NOT ONLY Z' candidates!</u>

Vector-like hidden "QCD" [HC] (cont'd)

[vector meson spectrum] <u>NOT ONLY Z' candidates!</u>

 (\bar{q}_i^{SM})

<u>SM gauge boson</u> structure of (q,l)∟ in SU(8)v form

The following flavor-changing interaction can be added gauge-invariantly.

<u>undetermined</u> <u>coefficients</u>

$$\overline{l}_{i}^{\mathrm{SM}}\right)_{L}\gamma^{\mu}\left(g^{\mathrm{SM}}V_{\mu}^{\mathrm{SM}}-g_{\rho}\rho_{\mu}+\cdots\right)$$

for SU(2)w-doublet SM leptons

6/12

<u>flavor indices (in gauge eigenbasis)</u>

Points

0. Introduction (finished)

1. Hidden "QCD" \Rightarrow multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

3. Large part of parameter space waits for being explored.

Important points for current pheno.

[B.Bhattacharya et al., arXiv:1609.09078]

[Our phenomenological scheme on flavor changing]

Important points for current pheno.

7/12

[B.Bhattacharya et al., arXiv:1609.09078]

[flavor-changing effective interaction]

Important points for current pheno.

7/12

[B.Bhattacharya et al., arXiv:1609.09078]

 $g_{\rho} >> g_{SM}$ is required via EW precisions. $\rightarrow g_{\rho} = 6$ (vector dominance in QCD)

(HC rho meson mass)² ~ $(m_{\rho})^2 * (I + [g_{SM}/g_{\rho}]^2)$

vector-meson spectrum being compressed

Important points for current pheno. (cont'd) 8/12

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

Important points for current pheno. (cont'd) <u>8/12</u>

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

4 (+1) couplings are relevant for (pure) HC vector- ρ phenomena:

m_ρ, **g**_{ρL} [= [g_L]³³ * g_ρ], θ_D, θ_L, (g_ρ)

Important points for current pheno. (cont'd) <u>8/12</u>

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

<u>4 (+1) couplings are relevant for (pure) HC vector-p phenomena:</u>

m_ρ, **g**_{ρL} [= [g_L]³³ * **g**_ρ], θ_D, θ_L, (g_ρ)

No dynamical EWSB (vector-like) \Rightarrow the fundamental Higgs doublet should be introduced (like the SM).

M The I25GeV Higgs signal strengths are good.

Important points for current pheno. (cont'd) <u>8/12</u>

<u>vector-like HC rho mesons \Rightarrow harmless (tree-level) oblique corrections</u>

<u>4 (+1) couplings are relevant for (pure) HC vector-p phenomena:</u>

m_ρ, **g**_{ρL} [= [g_L]³³ * **g**_ρ], θ_D, θ_L, (g_ρ)

No dynamical EWSB (vector-like) \Rightarrow the fundamental Higgs doublet should be introduced (like the SM).

M The I25GeV Higgs signal strengths are good.

Fascinating aspects:

M The candidate of Zs and their mass scale are dynamically generated.

 \mathbf{M} The C₉ = -C₁₀ texture (for b \rightarrow sll) is naturally realized.

Apparently gauge-anomaly free.

Lots of new particles (EW-safe) are 'derived'.

e.g., [T.Hur & P.Ko, arXiv:1103.2571] Scale-invariant extension (⇒ hierarchy problem)

Points

0. Introduction (finished)

- **1.** Hidden "QCD" \Rightarrow multiple vector candidates for B anomaly.
- 2. Various virtues in the vector-like compositeness
- 3. Large part of parameter space waits for being explored.

adopted C₉ (= -C₁₀) favored range: $C_9^{\mu\mu}|_{\text{best}} = -0.61$ & $C_9^{\mu\mu}|_{+3\sigma} = -0.23$

<u>adopted C₉ (= -C₁₀) favored range:</u> $C_9^{\mu\mu}|_{\text{best}} = -0.61$ & $C_9^{\mu\mu}|_{+3\sigma} = -0.23$

adopted C₉ (= -C₁₀) favored range: $C_9^{\mu\mu}|_{\text{best}} = -0.61$ & $C_9^{\mu\mu}|_{+3\sigma} = -0.23$

Situation after fixing the mixing angles ($\theta_D \sim 0$) $\frac{10/12}{2}$

☑ in scenario I

🗹 in scenario II

relevant EW constraints: AFB^(0,T), AFB^(0,µ), Rb

[Flavor-favored region] is inside [EW allowed region (2σ)].

LHC direct search: constraints/prospects

11/12

Summary

Virtues of (vector-like) composite model are (e.g.,)

- The candidate of Zs and their mass scale are dynamically generated.
- \mathbf{M} The C₉ = -C₁₀ texture (for b \rightarrow sll) is naturally realized.
- Marcently gauge-anomaly free.
- **M** Lots of new particles are 'derived'.
- **Well-defined TeV-scale vector leptoquarks**
- The R_{K(*)} anomalies are addressed consistently.

Discovering lots of new particles is expected at the LHC, distinguishable from other scenarios.

Summary

Virtues of (vector-like) composite model are (e.g.,)

- **M** The candidate of Zs and their mass scale are dynamically generated.
- \mathbf{M} The C₉ = -C₁₀ texture (for b \rightarrow sll) is naturally realized.
- Apparently gauge-anomaly free.
- **M** Lots of new particles are 'derived'.
- **Well-defined TeV-scale vector leptoquarks**
- The R_{K(*)} anomalies are addressed consistently.

Discovering lots of new particles is expected at the LHC, distinguishable from other scenarios.

BACKUPS

R_{D(*)} anomaly

$$R_D = \frac{\mathcal{B}(\bar{B} \to D\tau\bar{\nu})}{\mathcal{B}(\bar{B} \to D\ell\bar{\nu})},$$

$$(\ell = e \text{ or } \mu)$$

In our scenario, nonzero contributions to $R_{D(*)}$ are found (via W's and vector LQ). However, they are cancelled out in the degenerated ρ mass limit. \Rightarrow Only negligible effect remains.

$R_{D(*)}$ anomaly

$$R_D = \frac{\mathcal{B}(\bar{B} \to D\tau\bar{\nu})}{\mathcal{B}(\bar{B} \to D\ell\bar{\nu})},$$

$$(\ell = e \text{ or } \mu)$$

In our scenario, nonzero contributions to $\mathbf{R}_{\mathbf{D}(*)}$ are found (via W's and vector LQ). However, they are cancelled out in the degenerated ρ mass limit. ⇒ Only negligible effect remains.

[HFLAV, arXiv:1612.07233v2] $R_{D^*} = \frac{\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu})}{\mathcal{B}(\bar{B} \to D^* \ell \bar{\nu})} \quad \stackrel{\frown}{\underbrace{\otimes}}_{0.45}^{0.5}$ BaBar, PRL109,101802(2012) $\Delta \chi^2 = 1.0$ contours Belle, PRD92,072014(2015) LHCb, PRL115,111803(2015) SM Predictions Belle, PRD94,072007(2016) R(D)=0.300(8) HPQCD (2015) Belle, PRL118,211801(2017) R(D)=0.299(11) FNAL/MILC (2015) 0.4 Average R(D*)=0.252(3) S. Fajfer et al. (2012) 0.35 0.3 0.25 HFLAV Moriond 2017 $P(\chi^2) = 67.4\%$ 0.2 L 0.2 0.5 0.6 R(D)

[CERN LHC seminar, 06/06/2017,

0.4

 $R(D^*)$

$$M^2_{\pi_{(3),(8)}} \sim C_2 \alpha_s(M_\pi) \Lambda^2_{\rm HC} \ln \frac{\Lambda^2_{\rm UV}}{\Lambda^2_{\rm HC}}$$
, with $C_2 = \frac{4}{3} (3)$ for color-triplet (octet)

✓ typical spectrum (Λ_{HC}~ITeV, Λ_{UV}~I0¹⁶GeV)

$$\begin{split} M_{\pi^0_{(1)'}} &\sim \mathcal{O}(f_{\pi}) = \mathcal{O}(100) \,\text{GeV} \,, \\ M_{\pi^{\pm,3}_{(1)'}} &\sim 2 \,\text{TeV} \,, \\ M_{\pi^{\pm,3}_{(1)}} &\sim 2 \,\text{TeV} \,, \\ M_{\pi^{\pm,3,0}_{(3)}} &\sim 3 \,\text{TeV} \,, \\ M_{\pi^{\pm,3,0}_{(8)}} &\sim 4 \,\text{TeV} \,, \end{split}$$

$$\begin{split} &\overbrace{\mathcal{C}}^{(0)} (\mathbf{\rho}, \mathbf{\pi})\text{-interactions} \quad a \equiv m_{\rho}^{2}/(g_{\rho}^{2}f_{\pi}^{2}) \not\leftarrow \mathbf{\sim 2} \text{ in vector dominance} \\ & \mathcal{L}_{\rho \cdot \pi \cdot \pi} = ag_{\rho}i \operatorname{tr} \left[[\partial_{\mu}\pi, \pi] \rho^{\mu} \right], \ \not\leftarrow \ \operatorname{decay channel of } \mathbf{\rho} \\ & \mathcal{L}_{\mathcal{V} \cdot \pi \cdot \pi} = 2i \left(1 - \frac{a}{2} \right) \operatorname{tr} \left[[\partial_{\mu}\pi, \pi] \mathcal{V}^{\mu} \right], \ \not\leftarrow \mathbf{\sim 0} \\ & \mathcal{L}_{\mathcal{V} \cdot \mathcal{V} \cdot \pi \cdot \pi} = -\operatorname{tr} \left\{ [\mathcal{V}_{\mu}, \pi] \left[\mathcal{V}^{\mu}, \pi \right] \right\}, \ \not\leftarrow \ \mathbf{`gg} \rightarrow \mathbf{\pi} \mathbf{\pi'} \text{ pair production (evaded)} \\ & \mathcal{L}_{\pi \cdot \pi \cdot \pi \cdot \pi} = -\frac{3}{f_{\pi}} \operatorname{tr} \left\{ (\partial_{\mu}\pi) \left[\pi, \left[\pi, \partial^{\mu} \pi \right] \right] \right\}, \end{split}$$

✓ typical spectrum (Λ_{HC}~ITeV, Λ_{UV}~I0¹⁶GeV)

 $M_{\pi^0_{(1)'}} \sim \mathcal{O}(f_{\pi}) = \mathcal{O}(100) \,\mathrm{GeV}\,,$ $M_{\pi^{\pm,3}_{(1)'}} \sim 2 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3}_{(1)}} \sim 2 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3,0}} \sim 3 \,\mathrm{TeV}\,,$ $M_{\pi^{\pm,3,0}_{(8)}} \sim 4 \,\mathrm{TeV}\,,$ \mathbf{M} (ρ , π)-interactions $a \equiv m_{\rho}^2/(g_{\rho}^2 f_{\pi}^2)$ $\mathcal{L}_{\rho-\pi-\pi} = a g_{\rho} i \operatorname{tr} \left[\left[\partial_{\mu} \pi, \pi \right] \rho^{\mu} \right],$ $\mathcal{L}_{\mathcal{V}-\pi-\pi} = 2i\left(1 - \frac{a}{2}\right) \operatorname{tr}\left[\left[\partial_{\mu}\pi, \pi\right]\mathcal{V}^{\mu}\right],$ $\mathcal{L}_{\mathcal{V}-\mathcal{V}-\pi-\pi} = -\mathrm{tr}\left\{ \left[\mathcal{V}_{\mu}, \pi \right] \left[\mathcal{V}^{\mu}, \pi \right] \right\},\,$ $\mathcal{L}_{\pi-\pi-\pi-\pi} = -\frac{3}{f_{\pi}} \operatorname{tr} \left\{ (\partial_{\mu}\pi) \left[\pi, \left[\pi, \partial^{\mu}\pi \right] \right] \right\},\,$

	typical pionic decays
	• $\rho_{(3)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(1)'}^0 \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
	• $\rho_{(3)}^{\alpha} \to \bar{\pi}_{(3)}^{\alpha} \pi_{(1)'}^{0} \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
	• $\rho_{(8)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \mathrm{TeV} = 6 \mathrm{TeV},$
	• $\rho^{\alpha}_{(8)} \to \bar{\pi}^{0}_{(3)} \pi^{\alpha}_{(3)} : m_{\pi\pi} \sim (3+3) \mathrm{TeV} = 6 \mathrm{TeV},$
	• $\rho_{(1)'}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \mathrm{TeV} = 6 \mathrm{TeV},$
	• $\rho^{\alpha}_{(1)'} \to \bar{\pi}^{\beta}_{(1)} \pi^{\gamma}_{(1)'} : m_{\pi\pi} \sim (1+2) \mathrm{TeV} = 3 \mathrm{TeV}$
	• $\rho_{(1)}^{\alpha} \to \bar{\pi}_{(1)}^{\beta} \pi_{(1)}^{\gamma} \colon m_{\pi\pi} \sim (1+2) \mathrm{TeV} = 3 \mathrm{TeV}.$
Fo	or m _ρ <~3TeV, ρ decay width is
<u>na</u>	arrow.

M typical spectrum $(\Lambda_{HC} \sim | TeV, \Lambda_{UV} \sim | 0|^{6}GeV)$

$$\begin{split} M_{\pi_{(1)'}^{0}} &\sim \mathcal{O}(f_{\pi}) = \mathcal{O}(100) \, \text{GeV} \\ M_{\pi_{(1)'}^{\pm,3}} &\sim 2 \, \text{TeV} \, , \\ M_{\pi_{(1)}^{\pm,3,0}} &\sim 2 \, \text{TeV} \, , \\ M_{\pi_{(3)}^{\pm,3,0}} &\sim 3 \, \text{TeV} \, , \\ M_{\pi_{(8)}^{\pm,3,0}} &\sim 4 \, \text{TeV} \, , \end{split}$$
(ρ, π)-interactions $a \equiv 0$

V,

$$ar{J}$$
,

$\equiv m_{\rho}^2/(g_{\rho}^2 f_{\pi}^2)$

$$\mathcal{L}_{\rho-\pi-\pi} = ag_{\rho}i \operatorname{tr}\left[\left[\partial_{\mu}\pi,\pi\right]\rho^{\mu}\right],$$
$$\mathcal{L}_{\mathcal{V}-\pi-\pi} = 2i\left(1-\frac{a}{2}\right) \operatorname{tr}\left[\left[\partial_{\mu}\pi,\pi\right]\mathcal{V}^{\mu}\right],$$

$$\mathcal{L}_{\mathcal{V}-\mathcal{V}-\pi-\pi} = -\mathrm{tr}\left\{\left[\mathcal{V}_{\mu},\pi\right]\left[\mathcal{V}^{\mu},\pi\right]\right\},\$$
$$\mathcal{L}_{\pi-\pi-\pi-\pi} = -\frac{3}{f_{\pi}}\mathrm{tr}\left\{\left(\partial_{\mu}\pi\right)\left[\pi,\left[\pi,\partial^{\mu}\pi\right]\right]\right\},\$$

M typical pionic decays

- $\rho_{(3)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(1)'}^0 \colon m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(3)}^{\alpha} \to \bar{\pi}_{(3)}^{\alpha} \pi_{(1)'}^{0} : m_{\pi\pi} \sim (3 + \mathcal{O}(0.1)) \text{ TeV},$
- $\rho_{(8)}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0 \colon m_{\pi\pi} \sim (3+3) \,\text{TeV} = 6 \,\text{TeV},$
- $\rho_{(8)}^{\alpha} \to \bar{\pi}_{(3)}^{0} \pi_{(3)}^{\alpha} : m_{\pi\pi} \sim (3+3) \text{ TeV} = 6 \text{ TeV},$
- $\rho_{(1)'}^0 \to \bar{\pi}_{(3)}^0 \pi_{(3)}^0$: $m_{\pi\pi} \sim (3+3) \text{ TeV} = 6 \text{ TeV},$

•
$$\rho^{\alpha}_{(1)'} \to \bar{\pi}^{\beta}_{(1)} \pi^{\gamma}_{(1)'} : m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV},$$

•
$$\rho^{\alpha}_{(1)} \to \bar{\pi}^{\beta}_{(1)} \pi^{\gamma}_{(1)} : m_{\pi\pi} \sim (1+2) \,\mathrm{TeV} = 3 \,\mathrm{TeV}.$$

If this factor is less than a few, no problem.

 \mathbf{M} typical cross section of resonant π production (through WZW anomaly term)

$$\sigma(GG \to \pi^0_{(1)'} \to \gamma\gamma) \qquad \sim 0.1 \,\text{fb} \times \left[\frac{N_{\text{HC}}}{3}\right]^2 \left[\frac{\alpha_s}{0.1}\right]^2 \left[\frac{\mathcal{B}(\pi^0_{(1)'} \to \gamma\gamma)}{10^{-3}}\right] \left(\frac{M_{\pi^0_{(1)'}}}{f_{\pi}}\right)^2 \left[\frac{\mathcal{B}(\pi^0_{(1)'} \to \gamma\gamma)}{f_{\pi$$

<u>Composite scenario: QCD as showing example</u>

If a gauge theory is strongly-coupled, composite mesons (and other types) are observed (like QCD below ~IGeV).

<u>Composite scenario: QCD as showing example</u>

If a gauge theory is strongly-coupled, composite mesons (and other types) are observed (like QCD below ~IGeV).

 $\begin{array}{l} & & & & & \\ & & & \\ & & & \\$

[<u>Chiral perturbation theory</u> ⇒ effective description]

Spin-one vector mesons can be described by <u>hidden local symmetry (HLS)</u>. $SU(N_f)_L \times SU(N_f)_R \Rightarrow [SU(N_f)_L \times SU(N_f)_R]_{global} \times [SU(N_f)_V]_{gauged}$ $\rightarrow (N_f)^2 - I \# s of vector mesons are introduced.$

Form of effective Lagrangian

Basic ingredients of chiral perturbation theory (with HLS):

 $\underbrace{\bigvee}_{L} = \underbrace{e^{i\mathcal{P}/f_{\mathcal{P}}}}_{L} \cdot \underbrace{e^{\pm i\pi/f_{\pi}}}_{\text{inon-linear basis of chiral symmetries}}$ would-be NGs pions (NG bosons) for rho mesons (longitudinal d.o.f.s)

 $\checkmark \rho_{\mu} = \rho_{\mu}^{a} T^{a} (T^{a} : SU(8) \text{ generators})$ (HC rho meson fields)

Form of effective Lagrangian

Basic ingredients of chiral perturbation theory (with HLS):

Materials for constructing effective Lagrangian:

$$\rho_{\mu\nu} = \partial_{\mu}\rho_{\nu} - \partial_{\nu}\rho_{\mu} - ig_{\rho}[\rho_{\mu}, \rho_{\nu}], [\text{HC rho's field strength}]$$

$$\hat{\alpha}_{\perp\mu} = \frac{D_{\mu}\xi_{R} \cdot \xi_{R}^{\dagger} - D_{\mu}\xi_{L} \cdot \xi_{L}^{\dagger}}{2i}, \qquad \hat{\alpha}_{\parallel\mu} = \frac{D_{\mu}\xi_{R} \cdot \xi_{R}^{\dagger} + D_{\mu}\xi_{L} \cdot \xi_{L}^{\dagger}}{2i},$$

$$D_{\mu}\xi_{R(L)} = \partial_{\mu}\xi_{R(L)} - ig_{\rho}\rho_{\mu}\xi_{R(L)} + i\xi_{R(L)}\mathcal{R}_{\mu}(\mathcal{L}_{\mu}), \qquad \text{[(covariantized)})$$

$$M_{\mu}(\mathcal{L}_{\mu}) = \mathcal{L}_{\mu}(\mathcal{L}_{\mu}) + i\xi_{R(L)}\mathcal{R}_{\mu}(\mathcal{L}_{\mu}), \qquad \text{[(covariantized)})$$

[gauge transformations]

$$\begin{split} \xi_L &\to h(x) \cdot \xi_L \cdot g_L^{\dagger}(x) \,, & \xi_R \to h(x) \cdot \xi_R \cdot g_R^{\dagger}(x) \,, \\ \rho_{\mu} &\to h(x) \cdot \rho_{\mu} \cdot h^{\dagger}(x) + \frac{i}{g_{\rho}} h(x) \cdot \partial_{\mu} h^{\dagger}(x) \,, & \rho_{\mu\nu} \to h(x) \cdot \rho_{\mu\nu} \cdot h^{\dagger}(x) \,, \\ \hat{\alpha}_{\perp\mu} &\to h(x) \cdot \hat{\alpha}_{\perp\mu} \cdot h^{\dagger}(x) \,, & \hat{\alpha}_{\parallel\mu} \to h(x) \cdot \hat{\alpha}_{\parallel\mu} \cdot h^{\dagger}(x) \,, \end{split}$$

Effective Lagrangian (lowest terms):

(undetermined) 3×3 matrices

(No additional fermion/scalar is required.)