Review of Unitarity Triangle and Spectroscopy Measurements with LHCb

University of Oxford

On behalf of the LHCb Collaboration

2017

Corfu Summer Institute

17th Hellenic School and Warkshops on Elementary Particle Physics and Gravity Corfu, Greece 2017

September 5th

LHCD

Outline

- General introduction
- The LHCb detector and running conditions
- A review of LHCb's measurements of the Unitarity Triangle parameters
 - The angle β
 - The triangle sides
 - The angle γ
- Recent measurements on spectroscopy
- Summary and outlook

The CKM matrix

- The CKM matrix is unitary, and reduces to three rotation angles and one phase.
- The Wolfenstein parameterisation is commonly used to expand in orders of λ , the sine of the Cabibbo angle: $\lambda \sim 0.22$
- The phase gives rise to CP violation in the SM

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (1 - \rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Measured magnitudes:

 $V_{\rm CKM} = \begin{pmatrix} 0.97434^{+0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\ 0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\ 0.00875^{+0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005 \end{pmatrix}$

http://pdg.lbl.gov/2016/reviews/rpp2016-rev-ckm-matrix.pdf

Corfu Summer Institute

The Unitarity Triangle

- 6 unitarity conditions of the CKM matrix
- Gives 6 triangles in the complex plane
- 2 of these triangles do not have a side much shorter than the other two:

Unitarity triangle measurements

 Amazing progress in the last 20 years; the SM remains intact, but still a whole lot still to learn

LHCb data taking

- Nominal luminosity = 2 × 10³² cm⁻² s⁻¹ (50 times less than ATLAS/CMS) : moreover, LHCb learned to run at >2 times this
 - I fb⁻¹ @ 7 TeV in 2010-11
 - 2 fb⁻¹ @ 8 TeV in 2012
 - 2.6 fb⁻¹ @ 13 TeV in 2015-17

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Corfu Summer Institute

Measurement of angle β

 Interference between B⁰ decay to J/ψK⁰_S directly and via B⁰ B⁰ oscillation gives rise to a CP violating phase

$$\phi = \phi_{Mixing} - 2 \phi_{Decay} = 2\beta$$

Corfu Summer Institute

LHCb measurement of sin(2β)

 $\begin{aligned} \sin(2\beta) \text{ from } \mathbb{B}^{0} \to J/\psi \mathbb{K}^{0}_{S} & \text{Phys. Rev. Lett } 115,031601 (2015) \\ \mathcal{A}_{J/\psi \mathbb{K}^{0}_{S}}(t) &\equiv \frac{\Gamma(\overline{B}^{0}(t) \to J/\psi \mathbb{K}^{0}_{S}) - \Gamma(B^{0}(t) \to J/\psi \mathbb{K}^{0}_{S})}{\Gamma(\overline{B}^{0}(t) \to J/\psi \mathbb{K}^{0}_{S}) + \Gamma(B^{0}(t) \to J/\psi \mathbb{K}^{0}_{S})} \\ &= S_{J/\psi \mathbb{K}^{0}_{S}} \sin(\Delta m_{d}t) - C_{J/\psi \mathbb{K}^{0}_{S}} \cos(\Delta m_{d}t). \end{aligned}$

where $S_{J/\psi KS} = sin(2\beta)$ assuming $C_{J/\psi KS} (\equiv penguin contribution) = 0$

Corfu Summer Institute

5 September 2017

N. Harnew

The sides of the triangle

Corfu Summer Institute

5 September 2017

N. Harnew

11

 Length of side from ratio of B_d and B_s : mixing frequencies extracted with input from lattice QCD (systematics cancel)

Corfu Summer Institute

5 September 2017

N. Har

' td

 Δm_d

V_{ub} measurement for side opposite to β

- Closure test of UT mainly limited by |V_{ub}|
- Side opposite to β proportional to $|V_{ub}| / |V_{cb}|$
- V_{ud} and V_{cd} very well known. $|V_{cb}|$ known to better than 3%
- $|V_{ub}|^2$ is directly proportional to the decay rate $B \rightarrow X_u lv$ and then calculated using HQET

Corfu Summer Institute

Inclusive vs exclusive measurements of |V_{ub}|

- Babar & Belle drive the current measurements of |V_{ub}| which have an internal inconsistency between
 - Exclusive measurement: $B^0 \rightarrow \pi^- \mu^+ \nu$
 - + Inclusive measurement : $B^0/B^+ \rightarrow X_u \ \mu^+ \ \nu$

LHCb measurement of |V_{ub}|

- |V_{ub}| / |V_{cb}| difficult at hadron colliders due to presence of neutrino
- LHCb measures $\Lambda_b \rightarrow p \ \mu^- \nu$
- Measurement relies on $\Lambda_b \rightarrow p$ form factors from the lattice)

$$|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06 (|V_{cb}|) \times 10^{-3}$$

Nature Physics 10 (2015) 1038

Corfu Summer Institute

Tension between inclusive and exclusive $|V_{ub}|$ persists : limits the precision on UT side

Corfu Summer Institute

0.7

Corfu Summer Institute

γ – why this is a key measurement

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically very clean
 JHEP 01 (2014) 051, PRD 92(3):033002 (2015)

* assuming no significant New Physics in tree decays

Corfu Summer Institute

5 September 2017

N. Harnew 19

γ : Indirect vs direct determinations

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

Combination of all direct measurements (summer 2016)

$$\gamma = (72.2^{+5.3}_{-5.8})^{\circ}$$

Reaching degree level precision from direct measurements is crucial

Corfu Summer Institute

Determination from CKM fit excluding

all direct measurements of γ

$$\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$$

EPJC (2016) 76 197

Uncertainties from LQCD, expect to reduce over the next decade

Several methods to measure γ **B**[±] (and $\overrightarrow{B^0}$) decays : the "time-integrated",

direct CP-violation modes $B^{\pm} \rightarrow D^{0}K^{\pm}$

Gronau & London, PLB 253 (1991) 483, Gronau & Wyler PLB 265 (1991) 172

Atwood, Dunietz & Soni PRL 78 (1997) 3257, Atwood, Dunietz & Soni PRD 63 (2001) 036005 Focus on new measurements

GGSZ Giri, Gronau, Soffer & Zupan, PRD 68 (2003) 054018

• $B_s^0 \rightarrow D_s K$ time dependent analysis

Dunietz & Sachs Phys. Rev. D37(1988) 3186, R.Aleksan, I. Dunietz & B. Kayser, Z. Phys. C54 (1992) 653

Corfu Summer Institute

GLW

ADS

The time-integrated mode: $B^- \rightarrow D^0 K^-$

- Interference possible if $\overline{D^0}$ and D^0 decay to same final state
- Branching fraction for favoured B decay ~10⁻⁴
 - Measurements require high statistics

Corfu Summer Institute

Weak phase changes sign for equiv B⁺ diagram, thickness of arrows indicate relative strengths

 $\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{CP+} = \frac{1}{R_{CP+}} 2r_B (2F_+ - 1)\sin(\delta_B)\sin(\gamma)$ $\frac{N(B \to [KK]_D K) \times \Gamma(D \to K\pi)}{N(B \to [K\pi]_D K) \times \Gamma(D \to KK)} = R_{CP+} = 1 + r_B^2 + 2r_B (2F_+ - 1)\cos(\delta_B)\cos(\gamma)$

For CP+ eigenstates e.g KK, $\pi \pi$, $F_+ = I$; For non CP eigenstates, F_+ measured at CLEOCorfu Summer Institute5 September 2017N. Harnew23

Corfu Summer Institute

24

method _i(δ_B-γ) [π-K+]_⊂K $e^{i(\delta_D)}$

Weak phase changes sign for equivalent $B^{\scriptscriptstyle +}$ diagram

- Decay into flavour-specific final states
- Larger interference effects than for GLW as both amplitudes of similar sizes.
- r_B, δ_B hadronic parameters again to be determined alongside γ ($r_B \sim 0.1$)
- Additional two parameters r_D , δ_D . External inputs from charm mixing $(r_D \sim 0.06)$

$$\frac{N(B^{-}) - N(B^{+})}{N(B^{-}) + N(B^{+})} = A_{ADS} = \frac{1}{R_{ADS}} 2r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma)$$
$$\frac{N(B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}]_D K^{\pm})}{N(B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}]_D K^{\pm})} = R_{ADS} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\gamma)$$

Again, a counting experiment : observing the rate of B⁻ vs. B⁺ decaysCorfu Summer Institute5 September 2017N. Harnew25

Corfu Summer Institute

5 September 2017

N. Harnew

26

26

Combination from different modes

- Includes the following updates since last combination:
 - B[±]→D⁰K^{*±} ADS/GLW [LHCb-CONF-2016-014]

 - $B_s^0 \rightarrow D^{+-}K^{-+}$ TD [LHCb-CONF-2016-015] I fb⁻¹ \rightarrow 3 fb⁻¹
 - $B^{\pm} \rightarrow D^{0}K^{\pm}$ GLW [LHCb-PAPER-2017-021]

3 fb⁻¹ \rightarrow 5 fb⁻¹

Combination of different modes

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements are dominated by statistical uncertainties

Combination of different modes

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements are dominated by statistical uncertainties

γ prospects : Run I \rightarrow Run 2 \rightarrow upgrade

- Run I target of 8° attained : (analyses now mostly complete)
- Run 2 data incoming
- Run 2 : target 4° (7-8 fb⁻¹)
- LHCb Upgrade : target
 0.9° (~50 fb⁻¹)

EPJC (2013) 73:2373

$$\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$$
 (preliminary)

Spectroscopy highlights

Corfu Summer Institute

Pentaquarks

1.8

1.4

1.6

2.0

 m_{Kp} [GeV]

2.2

2.4

Observed in 2015 \rightarrow LHC Run I data : 3 fb⁻¹

Pentaquarks – full amplitude analysis

Corfu Summer Institute

Pentaquarks J^P assignments

- The preferred J^P assignments are of opposite parity, with $P_c^+(4380)$ having $3/2^-$ and the $P_c^+(4450)$ having $5/2^+$
- Good evidence for the resonant character of P_c⁺(4450)
 Too large errors for P_c⁺(4380) : hard to make a definitive conclusion

Corfu Summer Institute

5 September 2017

N. Harnew

34

Pentaguarks in A_{μ}

- Search for additional Pentaquark candidates in other production channels
- $\Lambda_b \rightarrow (J/\psi p) \pi^-$ (Cabbibo suppressed ≈ 15 times smaller statistics)
- Contributions from:

 $N^* \rightarrow p \pi^ P_c(4380)^+ \rightarrow J/\psi p$ $P_{c}(4450)^{+} \rightarrow J/\psi p$ $Z_c(4200)^- \rightarrow J/\psi \pi^-$

Fit with 2 pentaguarks + Z_{c} (4200) tetraquark : favoured by 3σ compared to no exotic contributions

Corfu Summer Institute

PRL 115 (2015) 072001

Observation of Ω_c excited states

- Single charmed baryons predicted to form SU(3) baryon multiplets: $3 \otimes 3 = \overline{3} \oplus 6$ (Jaffe, Phys. Rep. 409 (2005) 1)
- All ground states have been observed, as have excited states $\Lambda_{\rm c}$, $\Sigma_{\rm c}$ and $\Xi_{\rm c}$

LHCb: 3 fb⁻¹ Run I + 0.3 fb⁻¹ Run II pp collisions data

Corfu Summer Institute

5 September 2017

N. Harnew

Observation of five new narrow Ω_c^0 **excited states**

Masses and widths

LHCb, PRL 118 (2017) 182001

Resonance	Mass~(MeV)	$\Gamma (MeV)$
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$
		$< 1.2\mathrm{MeV}, 95\%$ CL
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
		$<2.6{\rm MeV},95\%$ CL
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$

- 5 narrow states & evidence for 6th broader state at high mass
- Assignment of J^P states in the quark model (see backup slides) (M. Karliner, J.L. Rosner, PR D95, 114012 (2017))
- Suggestion the 2 narrowest states might be pentaquarks ? (Michał Praszałowicz et al Phys.Rev. D96 (2017) 014009)
- Confirmation of states awaits spin-parity assignments

Corfu Summer Institute

Search for the doubly charmed baryon Ξ_{cc}^{++}

- The quark model predicts three weakly decaying C = 2 $J^{P} = \frac{1}{2^{+}}$ states: $\Xi_{cc}^{+}(ccd), \Xi_{cc}^{++}(ccu), and \Omega_{cc}^{+}(ccs)$
- $\int^{P} = \frac{1}{2^{+}}$ states decay weakly with a *c* quark to lighter quarks
- $J^P = {}^{3}/{}^{+}_{2}$ states expected to decay to ${}^{1}/{}^{+}_{2}$ states via strong or EM interaction

Decay mode of Ξ_{cc}^{++}

Search in decay mode : Ξ⁺⁺_{cc} → Λ_c K⁻π⁺π⁺ Branching fraction can be significant (10%) (Yu et al., arXiv:1703.09086)
 Run 2 data sample: √s=13 TeV, ~1.7 fb⁻¹

Observation of Ξ_{cc}^{++}

$\Xi^{++} \text{ is } \Lambda_{c} \text{-mass corrected} :$ $m_{cand}(\Xi_{cc}^{++}) = m(\Lambda_{c}^{+}K^{-}\pi^{+}) - m(\Lambda_{c}^{+}) + m_{PDG}(\Lambda_{c}^{+})$

- Signal yield: 313 ± 33 events
- Width 6.6±0.8 MeV, consistent with resolution
- Local significance > 12σ
- Peaking structure remains significant (> 12 σ) after requiring minimum decay time, $t > 5\sigma_t \rightarrow$ weak decay _n

Corfu Summer Institute

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^+) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^+) = 1134.94 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \text{ MeV}$

Summary and Outlook

- The LHCb experiment is performing spectacularly well
- So far all UT measurements are in good agreement with the Standard Model
 - \rightarrow new physics is becoming constrained in the flavour sector
- LHCb is a fantastic platform for spectroscopy measurements: charm baryonic resonance formation was not even in LHCb's original physics portfolio.
- Up to 2018 we expect 7-8 fb⁻¹ of data, much of this will be at √s = 13 TeV at ~twice the 8 TeV heavy-flavour production cross-section
- Still much room for new physics, but higher precision required → preparing for LHCb Upgrade beyond 2020 !

Corfu Summer Institute

Corfu Summer Institute

LHCb Run 2 trigger

LHCb 2015 Trigger Diagram 40 MHz bunch crossing rate L0 Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz h± μ/μμ e/y Software High Level Trigger Partial event reconstruction, select displaced tracks/vertices and dimuons Buffer events to disk, perform online detector calibration and alignment Full offline-like event selection, mixture of inclusive and exclusive triggers 12.5 kHz (0.6 GB/s) to storage ptember 2017

 After LHCb's hardware trigger, events are buffered.

- LHCb's automated real-time alignment and calibration runs :
 - Full detector alignment and calibration in minutes.
- Full event reconstruction in software trigger
 - Exclusive decay modes and calibration modes fully reconstructed,
 - Results stored and used as basis for analysis.
- See LHCb-PROC-2015-011

Measurement of α

- Constraints on α from B $\rightarrow \pi \pi$, $\rho \pi$ and $\rho \rho$ (Babar and Belle)
- $\alpha = (87.6^{+3.5}_{-3.3})^{\circ}$ world average measurement
- Compared to the prediction from the global CKM fit (not including the α -related measurements) $\alpha = (90.6 + 3.9 - 1.1)^{\circ}$ http://ckmfitter.in2p3.fr $\alpha \equiv \arg \left[-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}} \right]$
- As yet there has been no LHCb 'standalone' measurement of α
- LHCb can provide useful input to B-factories measurements to constrain alpha.

Corfu Summer Institute

Possible assignment of excited Ω_c states

 Matching between observed peaks and predictions requires spin-parity information

Comparisons with SELEX

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^{-}, p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
- Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$

LHCb Upgrade : timescale

- Full upgrade in LS2
- Run at higher luminosity from 2021 onwards (~4 x 10^{32} cm⁻²s⁻¹ \rightarrow 2 x 10^{33} cm⁻²s⁻¹)
- L0 hardware trigger \rightarrow software trigger
 - Increase efficiency for hadronic modes
- External inputs will benefit from BES-III data

LHCb upgrade projection (50 fb⁻¹) for γ is 0.9°

EPJC (2013) 73:2373

This precision will pin down all UT parameters : and hopefully New Physics

Corfu Summer Institute

5 September 2017

N. Harnew