Implications of flavour anomalies for new physics

Nazila Mahmoudi
 Lyon University \& CERN

Based on arXiv:1705.06274, arXiv:1702.02234 \& arXiv:1603.00865 Thanks to T. Hurth, S. Neshatpour, D. Martinez Santos and V. Chobanova

Corfu Summer Institute: Workshop on the Standard Model and Beyond Corfu, Greece, September 2-10, 2017

Indirect search for New Physics

I will focus on indirect hints for new physics from Flavour sector
Flavour physics is sensitive to new physics at $\Lambda_{\mathrm{NP}} \gg E_{\text {experiments }}$
\rightarrow can discover new physics or probe it before it is directly observed in experiments

Indirect search for New Physics

I will focus on indirect hints for new physics from Flavour sector
Flavour physics is sensitive to new physics at $\Lambda_{\mathrm{NP}} \gg E_{\text {experiments }}$
\rightarrow can discover new physics or probe it before it is directly observed in experiments

Rare decays in particular are very important as:

- They occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!
\rightarrow In particular: QCD corrections are known with a good precision!
- The experimental situation is very promising
\rightarrow Branching ratios can be measured precisely

Indirect search for New Physics

I will focus on indirect hints for new physics from Flavour sector
Flavour physics is sensitive to new physics at $\Lambda_{N P} \gg E_{\text {experiments }}$
\rightarrow can discover new physics or probe it before it is directly observed in experiments
Rare decays in particular are very important as:

- They occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!
\rightarrow In particular: QCD corrections are known with a good precision!
- The experimental situation is very promising
\rightarrow Branching ratios can be measured precisely

Many flavour observables under investigation!

Indirect search for New Physics

I will focus on indirect hints for new physics from Flavour sector
Flavour physics is sensitive to new physics at $\Lambda_{N P} \gg E_{\text {experiments }}$
\rightarrow can discover new physics or probe it before it is directly observed in experiments
Rare decays in particular are very important as:

- They occur at loop level
\rightarrow The SM contributions are very small and the NP contributions can have a comparable magnitude.
- The theory ingredients are known at a very good accuracy!
\rightarrow In particular: QCD corrections are known with a good precision!
- The experimental situation is very promising
\rightarrow Branching ratios can be measured precisely

Many flavour observables under investigation!

There are currently some tensions (anomalies)
Confirmations are needed, but they are still among our best bets!

Anomalies

(LHCb) Observables and Anomalies

Impressive effort in studying exclusive $b \rightarrow s \ell \ell$ transitions at LHCb with the measurements of a large number of independent angular observables!

Deviations from the SM predictions in $B \rightarrow K^{*} \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$and $R_{K^{(*)}}$: "anomalies"

Theoretical framework

Effective field theory

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left(\sum_{i=1 \cdots 10, S, P}\left(C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu)\right)\right)
$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects Operator set for $b \rightarrow s$ transitions:

$$
\mathcal{O}_{1,2} \propto\left(\bar{s} \Gamma_{\mu} c\right)\left(\bar{c} \Gamma^{\mu} b\right) \quad \mathcal{O}_{8} \propto\left(\bar{s} \sigma^{\mu \nu} T^{a} P_{R}\right) G_{\mu \nu}^{a}
$$

$\mathcal{O}_{7} \propto\left(\bar{s} \sigma^{\mu \nu} P_{R}\right) F_{\mu \nu}^{a}$

$$
\begin{gathered}
\mathcal{O}_{9}^{\ell} \propto\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right) \\
\mathcal{O}_{10}^{\ell} \propto\left(\bar{s} \gamma^{\mu} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right)
\end{gathered}
$$

+ the chirality flipped counter-parts of the above operators, \mathcal{O}_{i}^{\prime}

Wilson coefficients

The Wilson coefficients are calculated perturbatively
Two main steps:

- matching between the effective and full theories \rightarrow extraction of the $C_{i}^{\text {eff }}(\mu)$ at scale $\mu \sim M_{W}$

$$
C_{i}^{\text {eff }}(\mu)=C_{i}^{(0) e f f}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1) \text { eff }}(\mu)+\cdots
$$

- Evolving the $C_{i}^{\text {eff }}(\mu)$ to the scale relevant for B decays, $\mu \sim m_{b}$ using the RGE runnings.

The Wilson coefficients are process independent.
SM contributions to the Wilson coefficients known to NNLL: (Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

Wilson coefficients

The Wilson coefficients are calculated perturbatively
Two main steps:

- matching between the effective and full theories \rightarrow extraction of the $C_{i}^{\text {eff }}(\mu)$ at scale $\mu \sim M_{W}$

$$
C_{i}^{\text {eff }}(\mu)=C_{i}^{(0) e f f}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1) e f f}(\mu)+\cdots
$$

- Evolving the $C_{i}^{\text {eff }}(\mu)$ to the scale relevant for B decays, $\mu \sim m_{b}$ using the RGE runnings.

The Wilson coefficients are process independent.
SM contributions to the Wilson coefficients known to NNLL:
(Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$
C_{7}=-0.294 \quad C_{9}=4.20 \quad C_{10}=-4.01
$$

Hadronic quantities

To compute the amplitudes:

$$
\mathcal{A}(A \rightarrow B)=\langle B| \mathcal{H}_{\mathrm{eff}}|A\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\langle B| \mathcal{O}_{i}|A\rangle(\mu)
$$

$\langle B| \mathcal{O}_{i}|A\rangle$: hadronic matrix element
How to compute matrix elements?
\rightarrow Model building, Lattice simulations, light/heavy flavour symmetries, ...
\rightarrow Describe hadronic matrix elements in terms of hadronic quantities
Decay constants Form factors Main source of uncertainty!
\rightarrow design observables where the hadronic uncertainties cancel (e.g. ratios,...)

Prime example: $B \rightarrow K^{*} \mu^{+} \mu$
gives access to a variety of observables!

Hadronic quantities

To compute the amplitudes:

$$
\mathcal{A}(A \rightarrow B)=\langle B| \mathcal{H}_{\mathrm{eff}}|A\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\langle B| \mathcal{O}_{i}|A\rangle(\mu)
$$

$\langle B| \mathcal{O}_{i}|A\rangle$: hadronic matrix element
How to compute matrix elements?
\rightarrow Model building, Lattice simulations, light/heavy flavour symmetries, ...
\rightarrow Describe hadronic matrix elements in terms of hadronic quantities
Decay constants Form factors

Main source of uncertainty!

\rightarrow design observables where the hadronic uncertainties cancel (e.g. ratios,...)

Prime example: $B \rightarrow K^{*} \mu^{+} \mu$
gives access to a variety of observables!

Hadronic quantities

To compute the amplitudes:

$$
\mathcal{A}(A \rightarrow B)=\langle B| \mathcal{H}_{\mathrm{eff}}|A\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\langle B| \mathcal{O}_{i}|A\rangle(\mu)
$$

$\langle B| \mathcal{O}_{i}|A\rangle$: hadronic matrix element
How to compute matrix elements?
\rightarrow Model building, Lattice simulations, light/heavy flavour symmetries, ...
\rightarrow Describe hadronic matrix elements in terms of hadronic quantities
Decay constants Form factors

Main source of uncertainty!

\rightarrow design observables where the hadronic uncertainties cancel (e.g. ratios,...)

Prime example: $B \rightarrow K^{*} \mu^{+} \mu^{-}$
gives access to a variety of observables!

$B \rightarrow K^{*} \mu^{+} \mu^{-}$

The full angular distribution of the decay $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \ell^{+} \ell^{-}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right)$is completely described by four independent kinematic variables: q^{2} (dilepton invariant mass squared), $\theta_{\ell}, \theta_{K^{*}}, \phi$

Differential decay distribution:

$J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right)=\sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K^{*}}, \phi\right)$
angular coefficients J_{1-9}
functions of the transversity amplitudes $A_{0}, A_{\| l}, A_{\perp}, A_{t}$, and A_{S}
or alternatively, helicity amplitudes H_{V}, H_{A} and H_{S}
Transversity/helicity amplitudes: functions of Wilson coefficients and form factors

$B \rightarrow K^{*} \mu^{+} \mu^{-}$

The full angular distribution of the decay $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \ell^{+} \ell^{-}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right)$is completely described by four independent kinematic variables: q^{2} (dilepton invariant mass squared), $\theta_{\ell}, \theta_{K^{*}}, \phi$

Differential decay distribution:

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K^{*}} d \phi}=\frac{9}{32 \pi} J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right)
$$

$J\left(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi\right)=\sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K^{*}}, \phi\right)$
\searrow angular coefficients J_{1-9}
\searrow functions of the transversity amplitudes $A_{0}, A_{\|}, A_{\perp}, A_{t}$, and A_{S}
\searrow or alternatively, helicity amplitudes H_{V}, H_{A} and H_{S}
Transversity/helicity amplitudes: functions of Wilson coefficients and form factors

$B \rightarrow K^{*} \mu^{+} \mu^{-}$observables

Optimised observables: form factor uncertainties cancel at leading order

$$
\begin{array}{ll}
\left\langle P_{1}\right\rangle_{\text {bin }}=\frac{1}{2} \frac{\int_{\text {bin }} d q^{2}\left[J_{3}+\bar{J}_{3}\right]}{\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right]} & \left\langle P_{2}\right\rangle_{\text {bin }}=\frac{1}{8} \frac{\int_{\text {bin }} d q^{2}\left[J_{6 s}+\bar{J}_{6 s}\right]}{\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right]} \\
\left\langle P_{4}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{\mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{4}+\bar{J}_{4}\right] & \left\langle P_{5}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{2 \mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{5}+\bar{J}_{5}\right] \\
\left\langle P_{6}^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{2 \mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{7}+\bar{J}_{7}\right] & \left\langle P_{8}^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{\mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{8}+\bar{J}_{8}\right]
\end{array}
$$

with

$$
\mathcal{N}_{\text {bin }}^{\prime}=\sqrt{-\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right] \int_{\text {bin }} d q^{2}\left[J_{2 c}+\bar{J}_{2 c}\right]}
$$

+CP violating clean observables and other combinations

$$
\begin{aligned}
& \text { U. Egede et al., JHEP } 0811 \text { (2008) 032, JHEP } 1010 \text { (2010) } 056 \\
& \text { J. Matias et al., JHEP } 1204 \text { (2012) } 104 \\
& \text { S. Descotes-Genon et al., JHEP } 1305 \text { (2013) } 137
\end{aligned}
$$

Or alternatively:

$$
S_{i}=\frac{J_{i(s, c)}+\bar{J}_{i(s, c)}}{\frac{d \Gamma}{d q^{2}}+\frac{d \bar{\Gamma}}{d q^{2}}}, \quad \quad P_{4,5,8}^{\prime}=\frac{S_{4,5,8}}{\sqrt{F_{L}\left(1-F_{L}\right)}}
$$

The LHCb anomalies (1)

$B \rightarrow K^{*} \mu^{+} \mu^{-}$angular observables, in particular P_{5}^{\prime} / S_{5}
Long standing anomaly $2-3 \sigma$:

- $2013\left(1 \mathrm{fb}^{-1}\right)$: disagreement with the SM for P_{2} and P_{5}^{\prime} (PRL 111, 191801 (2013))
- March 2015 ($3 \mathrm{fb}^{-1}$): confirmation of the deviations (LhCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

LHCb, JHEP 02 (2016) 104; Belle, PRL 118 (2017); ATLAS, ATLAS-CONF-2017-023; CMS, CMS-PAS-BPH-15-008

- Also measured by ATLAS, CMS and Belle

The LHCb anomalies (2)

$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$branching fraction

- Same theoretical description as $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- Replacement of $B \rightarrow K^{*}$ form factors with the $B_{s} \rightarrow \phi$ ones
- Also consider the $B_{s}-\bar{B}_{s}$ oscillations
- June $2015\left(3 \mathrm{fb}^{-1}\right)$: the differential branching fraction is found to be 3.2σ below the SM predictions in the [1-6] GeV^{2} bin

$$
\text { JHEP } 1509 \text { (2015) } 179
$$

The LHCb anomalies (3)

Lepton flavour universality in $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$

- Theoretical description similar to $B \rightarrow K^{*} \mu^{+} \mu^{-}$, but different since K scalar
- June $2014\left(3 \mathrm{fb}^{-1}\right)$: measurement of R_{K} in the [1-6] GeV^{2} bin (PRL 113, 151601 (2014)): 2.6σ tension in [1-6] GeV^{2} bin

SM prediction very accurate (leading corrections from QED, giving rise to large logarithms involving the ratio $m_{B} / m_{\mu, e}$)

$$
\begin{aligned}
& R_{K}=B R\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) / B R\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right) \\
& R_{K}^{\exp }=0.745_{-0.074}^{+0.090}(\text { stat }) \pm 0.036(\text { syst }) \\
& R_{K}^{\mathrm{SM}}=1.0006 \pm 0.0004 \\
& \text { Bordone, Isidori, Pattori, arXiv:1605.07633 }
\end{aligned}
$$

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801
If confirmed this would be a groundbreaking discovery and a very spectacular fall of the SM

The updated analysis is eagerly awaited!

The LHCb anomalies (4)

Lepton flavour universality in $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$

- LHCb measurement (April 2017):

JHEP 08 (2017) 055

$$
R_{K^{*}}=B R\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / B R\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)
$$

- Two q^{2} regions: $[0.045-1.1]$ and $[1.1-6.0] \mathrm{GeV}^{2}$

$$
\begin{aligned}
& R_{K^{*}}^{\text {exp,bin } 1}=0.660_{-0.070}^{+0.110}(\text { stat }) \pm 0.024(\text { syst }) \\
& R_{K^{*}}^{\exp , \text { bin } 2}=0.685_{-0.069}^{+0.113}(\text { stat }) \pm 0.047(\text { syst })
\end{aligned}
$$

[^0]
The LHCb anomalies (4)

Lepton flavour universality in $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$

- LHCb measurement (April 2017):

JHEP 08 (2017) 055

$$
R_{K^{*}}=B R\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) / B R\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)
$$

- Two q^{2} regions: [0.045-1.1] and [1.1-6.0] GeV^{2}

$$
\begin{aligned}
& R_{K^{*}}^{\exp , \text { bin } 1}=0.660_{-0.070}^{+0.110}(\text { stat }) \pm 0.024(\text { syst }) \\
& R_{K^{*}}^{\exp , \text { bin2 }}=0.685_{-0.069}^{+0.113}(\text { stat }) \pm 0.047(\text { syst }) \\
& R_{K^{*}}^{\text {SM,bin1 }}=0.906 \pm 0.020_{\mathrm{QED}} \pm 0.020_{\mathrm{FF}} \\
& R_{K^{*}}^{\mathrm{SM}, \mathrm{bin} 2}=\underset{\text { Bordone, Isidori, Pattori, arXiv:1605.07633 }}{1.000 \pm 0.010_{\mathrm{QED}}}
\end{aligned}
$$

[^1]2.2-2.5 σ tension with the SM predictions in each bin

A closer look at the calculations...

Effective Hamiltonian for $b \rightarrow s \ell \ell$ transitions

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \\
\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=7,9,10} C_{i}^{(\prime)} O_{i}^{(\prime)}\right]
\end{gathered}
$$

$\left\langle\bar{K}^{*}\right| \mathcal{H}_{\text {eff }}^{\text {sl }}|\bar{B}\rangle: B \rightarrow K^{*}$ form factors $V, A_{0,1,2}, T_{1,2,3}$
Transversity amplitudes:

$$
\begin{aligned}
& A_{\perp}^{L, R} \simeq N_{\perp}\left\{\left(C_{9}^{+} \mp C_{10}^{+}\right) \frac{V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}+\frac{2 m_{b}}{q^{2}} C_{7}^{+} T_{1}\left(q^{2}\right)\right\} \\
& A_{\|}^{L, R} \simeq N_{\|}\left\{\left(C_{9}^{-} \mp C_{10}^{-}\right) \frac{A_{1}\left(q^{2}\right)}{m_{B}-m_{K^{*}}}+\frac{2 m_{b}}{q^{2}} C_{7}^{-} T_{2}\left(q^{2}\right)\right\} \\
& A_{0}^{L, R} \simeq N_{0}\left\{\left(C_{9}^{-} \mp C_{10}^{-}\right)\left[(\ldots) A_{1}\left(q^{2}\right)+(\ldots) A_{2}\left(q^{2}\right)\right]\right. \\
&\left.\quad+2 m_{b} C_{7}^{-}\left[(\ldots) T_{2}\left(q^{2}\right)+(\ldots) T_{3}\left(q^{2}\right)\right]\right\} \\
& A_{S}= N_{S}\left(C_{S}-C_{S}^{\prime}\right) A_{0}\left(q^{2}\right) \quad\left(C_{i}^{ \pm} \equiv C_{i} \pm C_{i}^{\prime}\right)
\end{aligned}
$$

00

A closer look at the calculations...

Effective Hamiltonian for $b \rightarrow s \ell \ell$ transitions

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \\
\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=1 \ldots 6} C_{i} O_{i}+C_{8} O_{8}\right] \\
\mathcal{A}_{\lambda}^{(\mathrm{had})}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle \\
\times \int d^{4} y e^{i q \cdot y}\left\langle\bar{K}_{\lambda}^{*}\right| T\left\{j^{\mathrm{em}, \mathrm{had}, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle \\
\equiv \frac{e^{2}}{q^{2}} \epsilon_{\mu} L_{V}^{\mu}[\underbrace{\mathrm{LO} \text { in } \mathcal{O}\left(\frac{\Lambda}{m_{b}}, \frac{\Lambda}{E_{K^{*}}}\right)}_{\text {Non-Fact., QCDf }}+\underbrace{h_{\lambda}\left(q^{2}\right)}_{\text {power corrections }}]
\end{gathered}
$$

Beneke et al.:

00

A closer look at the calculations...

Effective Hamiltonian for $b \rightarrow s \ell \ell$ transitions

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \\
\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=1 \ldots 6} C_{i} O_{i}+C_{8} O_{8}\right] \\
\mathcal{A}_{\lambda}^{(\mathrm{had})}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle \\
\times \int d^{4} y e^{i q \cdot y}\left\langle\bar{K}_{\lambda}^{*}\right| T\left\{j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle \\
\equiv \frac{e^{2}}{q^{2}} \epsilon_{\mu} L_{V}^{\mu}[\underbrace{\mathrm{LO} \text { in } \mathcal{O}\left(\frac{\Lambda}{m_{b}}, \frac{\Lambda}{E_{K^{*}}}\right.}_{\begin{array}{c}
\text { Non-Fact., QCDf } \\
\text { Beneke et al.: } \\
106067 ; 0412400
\end{array}})+\underbrace{\text { unknown }}_{\substack{h_{\lambda}\left(q^{2}\right) \\
\text { power corrections } \\
\text { partial calculation: Khodjamirian et al., } \\
1006.4945}}]
\end{gathered}
$$

A closer look at the calculations...

Effective Hamiltonian for $b \rightarrow s \ell \ell$ transitions

$$
\begin{array}{c}
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}+\mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}} \\
\mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left[\sum_{i=1 \ldots 6} C_{i} O_{i}+C_{8} O_{8}\right] \\
\mathcal{A}_{\lambda}^{(\mathrm{had})}=-i \frac{e^{2}}{q^{2}} \int d^{4} x e^{-i q \cdot x}\left\langle\ell^{+} \ell^{-}\right| j_{\mu}^{\mathrm{em}, \text { lept }}(x)|0\rangle \\
\times \int d^{4} y e^{i q \cdot y}\left\langle\bar{K}_{\lambda}^{*}\right| T\left\{j^{\mathrm{em}, \text { had }, \mu}(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(0)\right\}|\bar{B}\rangle \\
\equiv \frac{e^{2}}{q^{2}} \epsilon_{\mu} L_{V}^{\mu}[\underbrace{\operatorname{LO} \text { in } \mathcal{O}\left(\frac{\Lambda}{m_{b}}, \frac{\Lambda}{E_{K^{*}}}\right.}_{\begin{array}{c}
\text { Non-Fact., QCDf } \\
\text { Beneke et al.: } \\
106067 ; 0412400
\end{array}})
\end{array} \underbrace{h_{\lambda}\left(q^{2}\right)}_{\underbrace{\rightarrow \text { unnown }}_{\text {power corrections }}}]
$$

The significance of the anomalies depends on the assumptions made for the unknown power corrections!
This does not affect R_{K} and R_{K}^{*} of course, but does affect the combined fits!

Implications

Global fits

Many observables \rightarrow Global fits
NP manifests itself in shifts of individual coefficients with respect to SM values:

$$
C_{i}(\mu)=C_{i}^{\mathrm{SM}}(\mu)+\delta C_{i}
$$

\rightarrow Scans over the values of δC_{i}
\rightarrow Calculation of flavour observables

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \rightarrow K^{(*)}$ and $B_{s} \rightarrow \phi$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- Parameterisation of uncertainties from power corrections:

$$
A_{k} \rightarrow A_{k}\left(1+a_{k} \exp \left(i \phi_{k}\right)+\frac{q^{2}}{6 \mathrm{GeV}^{2}} b_{k} \exp \left(i \theta_{k}\right)\right)
$$

$\left|a_{k}\right|$ between 10 to $60 \%, b_{k} \sim 2.5 a_{k}$
Low recoil: $b_{k}=0$

$$
\Rightarrow \text { Computation of a (theory }+\exp \text {) correlation matrix }
$$

Global fits

Global fits of the observables obtained by minimisation of

$$
\chi^{2}=\left(\vec{O}^{\text {th }}-\vec{O}^{\text {exp }}\right) \cdot\left(\Sigma_{\text {th }}+\Sigma_{\text {exp }}\right)^{-1} \cdot\left(\vec{O}^{\text {th }}-\vec{O}^{\text {exp }}\right)
$$

$\left(\Sigma_{\text {th }}+\Sigma_{\text {exp }}\right)^{-1}$ is the inverse covariance matrix.
More than 100 observables relevant for leptonic and semileptonic decays:

- $\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)$
- $\operatorname{BR}\left(B \rightarrow K^{0} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}\left(B \rightarrow X_{d} \gamma\right)$
- $\Delta_{0}\left(B \rightarrow K^{*} \gamma\right)$
- $\operatorname{BR}\left(B \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{+} \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B \rightarrow K^{*} e^{+} e^{-}\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $R_{K}, R_{K^{*}}$
- $B \rightarrow K^{* 0} \mu^{+} \mu^{-}: B R, F_{L}, A_{F B}, S_{3}$, $S_{4}, S_{5}, S_{7}, S_{8}, S_{9}$
in 8 low q^{2} and 4 high q^{2} bins
- $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$
- $\mathrm{BR}^{\text {low }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $\mathrm{BR}^{\text {high }}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}: \mathrm{BR}, F_{L}, S_{3}, S_{4}, S_{7}$ in 3 low q^{2} and 2 high q^{2} bins

Computations performed using Superlso public program

New physics or hadronic effects?

Description in terms of helicity amplitudes:
$H_{V}(\lambda)=-i N^{\prime}\left\{C_{9} \tilde{V}_{L \lambda}\left(q^{2}\right)+C_{9}^{\prime} \tilde{V}_{R \lambda}\left(q^{2}\right)+\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}}\left(C_{7} \tilde{T}_{L \lambda}\left(q^{2}\right)+C_{7}^{\prime} \tilde{T}_{R \lambda}\left(q^{2}\right)\right)-16 \pi^{2} \mathcal{N}_{\lambda}\left(q^{2}\right)\right]\right\}$

$$
\begin{array}{rlr}
H_{A}(\lambda) & =-i N^{\prime}\left(C_{10} \tilde{V}_{L \lambda}\left(q^{2}\right)+C_{10}^{\prime} \tilde{V}_{R \lambda}\left(q^{2}\right)\right), \quad \mathcal{N}_{\lambda}\left(q^{2}\right)=\text { leading nonfact. }+h_{\lambda} \\
H_{S} & =i N^{\prime} \frac{\hat{m}_{b}}{m_{W}}\left(C_{S}-C_{S}^{\prime}\right) \tilde{S}\left(q^{2}\right) & \left(N^{\prime}=-\frac{4 G_{F} m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} V_{t b} V_{t s}^{*}\right)
\end{array}
$$

Helicity FFs $\tilde{V}_{L / R}, \tilde{T}_{L / R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$
A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-, 0)}\left(q^{2}\right)$:

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028
M. Cluchini et al., ater 1606 (2016) 116
and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_{7} and C_{9}
M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R) \lambda}$ and $\tilde{T}_{L(R) \lambda}$ both have a q^{2} dependence!

New physics or hadronic effects?

Description in terms of helicity amplitudes:
$H_{V}(\lambda)=-i N^{\prime}\left\{C_{9} \tilde{V}_{L \lambda}\left(q^{2}\right)+C_{9}^{\prime} \tilde{V}_{R \lambda}\left(q^{2}\right)+\frac{m_{B}^{2}}{q^{2}}\left[\frac{2 \hat{m}_{b}}{m_{B}}\left(C_{7} \tilde{T}_{L \lambda}\left(q^{2}\right)+C_{7}^{\prime} \tilde{T}_{R \lambda}\left(q^{2}\right)\right)-16 \pi^{2} \mathcal{N}_{\lambda}\left(q^{2}\right)\right]\right\}$

$$
\begin{array}{rlr}
H_{A}(\lambda) & =-i N^{\prime}\left(C_{10} \tilde{V}_{L \lambda}\left(q^{2}\right)+C_{10}^{\prime} \tilde{V}_{R \lambda}\left(q^{2}\right)\right), \quad \mathcal{N}_{\lambda}\left(q^{2}\right)=\text { leading nonfact. }+h_{\lambda} \\
H_{S} & =i N^{\prime} \frac{\hat{m}_{b}}{m_{W}}\left(C_{S}-C_{S}^{\prime}\right) \tilde{S}\left(q^{2}\right) & \left(N^{\prime}=-\frac{4 G_{F} m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} V_{t b} V_{t s}^{*}\right)
\end{array}
$$

Helicity FFs $\tilde{V}_{L / R}, \tilde{T}_{L / R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$
A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-, 0)}\left(q^{2}\right)$:

$$
\begin{array}{r}
h_{\lambda}\left(q^{2}\right)=h_{\lambda}^{(0)}+\frac{q^{2}}{1 G e V^{2}} h_{\lambda}^{(1)}+\frac{q^{4}}{1 G e V^{4}} h_{\lambda}^{(2)} \\
\text { S. Jäger and J. Camalich, Phys.Rev. D93 (2016) } 014028 \\
\text { M. Ciuchini et al., JHEP } 1606 \text { (2016) } 116
\end{array}
$$

It seems

$$
h_{\lambda}^{(0)} \longrightarrow C_{7}^{N P}, \quad h_{\lambda}^{(1)} \longrightarrow C_{9}^{N P}
$$

and $h_{\lambda}^{(2)}$ terms cannot be mimicked by C_{7} and C_{9}
M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R) \lambda}$ and $\tilde{T}_{L(R) \lambda}$ both have a q^{2} dependence!

○O

New physics or hadronic effects?

$\Longrightarrow q^{4}$ terms can rise due to terms which multiply Wilson coefficients $\Longrightarrow C_{7}^{\mathrm{NP}}$ and C_{9}^{NP} can each cause effects similar to $h_{\lambda}^{(0,1,2)}$

New physics or hadronic effects?

Hadronic power correction effect:

$$
\delta H_{V}^{\text {p.c. }}(\lambda)=i N^{\prime} m_{B}^{2} \frac{16 \pi^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)=i N^{\prime} m_{B}^{2} \frac{16 \pi^{2}}{q^{2}}\left(h_{\lambda}^{(0)}+q^{2} h_{\lambda}^{(1)}+q^{4} h_{\lambda}^{(2)}\right)
$$

New Physics effect:

$$
\delta H_{V}^{c_{9}^{N P}}(\lambda)=-i N^{\prime} \tilde{V}_{L}\left(q^{2}\right) C_{9}^{N P}=i N^{\prime} m_{B}^{2} \frac{16 \pi^{2}}{q^{2}}\left(a_{\lambda} C_{9}^{N P}+q^{2} b_{\lambda} C_{9}^{N P}+q^{4} c_{\lambda} C_{9}^{\mathrm{NP}}\right)
$$

and similarly for C_{7}
\Rightarrow NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities $h_{+,-, 0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_{i}^{\text {NP }}$ (2 or 4 parameters))

Due to this embedding the two fits can be compared with the Wilk's test

Wilk's test

SM vs 2 parameters and 4 parameters p-values were independently computed through 2D profile likelihood integration, and they give similar results
q^{2} up to $8 \mathrm{GeV}^{2}$

	$2\left(\delta C_{9}\right)$	$4\left(\delta C_{7}, \delta C_{9}\right)$	$18\left(h_{+,-, 0}^{(0,1,2)}\right)$
0	$3.7 \times 10^{-5}(4.1 \sigma)$	$6.3 \times 10^{-5}(4.0 \sigma)$	$6.1 \times 10^{-3}(2.7 \sigma)$
2	-	$0.13(1.5 \sigma)$	$0.45(0.76 \sigma)$
4	-	-	$0.61(0.52 \sigma)$

\rightarrow Adding δC_{9} improves over the SM hypothesis by 4.1σ
\rightarrow Including in addition δC_{7} or hadronic parameters improves the situation only mildly
\rightarrow One cannot rule out the hadronic option

Adding 16 more parameters does not really improve the fits
The situation is still inconclusive

NP Fit results: single operator

Best fit values considering all observables
besides R_{K} and $R_{K^{*}}$
(under the assumption of 10% non-factorisable power corrections)

	b.f. value	$\chi_{\min }^{2}$	Pull $_{\text {SM }}$
ΔC_{9}	-0.24	70.5	4.1σ
ΔC_{9}^{\prime}	-0.02	87.4	0.3σ
ΔC_{10}	-0.02	87.3	0.4σ
ΔC_{10}^{\prime}	+0.03	87.0	0.7σ
ΔC_{9}^{μ}	-0.25	68.2	4.4σ
ΔC_{9}^{e}	+0.18	86.2	1.2σ
ΔC_{10}^{μ}	-0.05	86.8	0.8σ
ΔC_{10}^{e}	-2.14	86.3	1.1σ
+0.14			

$\rightarrow C_{9}$ and C_{9}^{μ} solutions are favoured with SM pulls of 4.1 and 4.4σ
\rightarrow Primed operators have a very small SM pull
$\rightarrow C_{10}$-like solutions do not play a role

NP Fit results: single operator

Best fit values considering all observables besides R_{K} and $R_{K^{*}}$
(under the assumption of 10% non-factorisable power corrections)

	b.f. value	$\chi_{\min }^{2}$	Pull $_{\text {SM }}$
ΔC_{9}	-0.24	70.5	4.1σ
ΔC_{9}^{\prime}	-0.02	87.4	0.3σ
ΔC_{10}	-0.02	87.3	0.4σ
ΔC_{10}^{\prime}	+0.03	87.0	0.7σ
ΔC_{9}^{μ}	-0.25	68.2	4.4σ
ΔC_{9}^{e}	+0.18	86.2	1.2σ
ΔC_{10}^{μ}	-0.05	86.8	0.8σ
ΔC_{10}^{e}	-2.14	86.3	1.1σ
+0.14			

$\rightarrow C_{9}$ and C_{9}^{μ} solutions are favoured with SM pulls of 4.1 and 4.4σ
\rightarrow Primed operators have a very small SM pull
$\rightarrow C_{10}$-like solutions do not play a role

Best fit values in the one operator fit considering only R_{K} and $R_{K^{*}}$

	b.f. value	$\chi_{\min }^{2}$	Pull
ΔC_{9}	-0.48	18.3	0.3σ
ΔC_{9}^{\prime}	+0.78	18.1	0.6σ
ΔC_{10}	-1.02	18.2	0.5σ
ΔC_{10}^{\prime}	+1.18	17.9	0.7σ
ΔC_{9}^{μ}	-0.35	5.1	3.6σ
ΔC_{9}^{e}	+0.37	3.5	3.9σ
ΔC_{10}^{μ}	-1.66	2.7	4.0σ
	-0.34		
ΔC_{10}^{e}	-2.36	2.2	4.0σ

\rightarrow NP in $C_{9}^{e}, C_{9}^{\mu}, C_{10}^{e}$, or C_{10}^{μ} are favoured by the $R_{K^{(*)}}$ ratios (significance: $3.6-4.0 \sigma$)
\rightarrow NP contributions in primed operators do not play a role.

Fit results for two operators

The two sets are compatible at least at the 2σ level.

1) Unknown power corrections

- Significance of the anomalies depends on the assumptions on the power corrections
- Towards a calculation...
- Problem: they are not calculable in QCD factorisation
- Alternative approaches exist based on light cone sum rule techniques

Khodjamirian et al. JHEP 1009 (2010) 089
Dimou, Lyon, Zwicky PRD 87, 074008 (2012), PRD 88, 094004 (2013)
A more recent approach based on the analyticity structure: Bobeth et al. arXiv:1707.07305
2) Cross-check with inclusive modes

Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)
\rightarrow Belle-II will check the NP interpretation with theoretically clean modes
T. Hurth, FM, JHEP 1404 (2014) 097
T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

How to resolve the issue?

3) Cross-check with other $R_{\mu / e}$ ratios

- R_{K} and $R_{K^{*}}$ ratios are theoretically very clean
- The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

	Predictions assuming $12 \mathrm{fb}^{-1}$ luminosity			
Obs.	C_{9}^{μ}	C_{9}^{e}	C_{10}^{μ}	C_{10}^{e}
$R_{F_{L}}^{[1.1,6.0]}$	[0.785, 0.913]	[0.909, 0.933]	[1.005, 1.042]	[1.001, 1.018]
$R_{A_{F B}}^{[1.1,6.0]}$	[6.048, 14.819]	[-0.288, -0.153]	[0.816, 0.928]	[0.974, 1.061]
$R_{S_{5}}^{[1.1,6.0]}$	[$-0.787,0.394$]	[0.603, 0.697]	[0.881, 1.002]	[1.053, 1.146]
$R_{F_{L}}^{[15,19]}$	[0.999, 0.999]	[0.998, 0.998]	[0.997, 0.998]	[0.998, 0.998]
$R_{A_{F B}}^{[15,19]}$	[0.616, 0.927]	[1.002, 1.061]	[0.860, 0.994]	[1.046, 1.131]
$R_{S_{5}}^{[15,19]}$	[0.615, 0.927]	[1.002, 1.061]	[0.860, 0.994]	[1.046, 1.131]
$R_{K^{*}}^{[15,19]}$	[0.621, 0.803]	[0.577, 0.771]	[0.589, 0.778]	[0.586, 0.770]
$R_{K}^{[15,19]}$	[0.597, 0.802]	[0.590, 0.778]	[0.659, 0.818]	[0.632, 0.805]
$R_{\phi}^{[1.1,6.0]}$	[0.748, 0.852]	[0.620, 0.805]	[0.578, 0.770]	[0.578, 0.764]
$R_{\phi}^{[15,19]}$	[0.623, 0.803]	[0.577, 0.771]	[0.586, 0.776]	[0.583, 0.769]

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!

How to resolve the issue?

4) Future LHCb upgrade

Global fits using the angular observables only (NO theoretically clean R ratios)
Considering several luminosities, assuming the current central values

LHCb will be able to establish new physics within the angular observables even in the pessimistic case that there will be no theoretical progress on non-factorisable power corrections!

Pull ${ }_{\text {SM }}$ for the fit to ΔC_{9}^{μ} based on the ratios R_{K} and $R_{K^{*}}$ for the LHCb upgrade Assuming current central values remain.

ΔC_{9}^{μ}	Syst. Pull $_{\text {SM }}$	Syst./2 Pull $_{\text {SM }}$	Syst./3 Pull
$12 \mathrm{fb}^{-1}$	$6.1 \sigma(4.3 \sigma)$	$7.2 \sigma(5.2 \sigma)$	$7.4 \sigma(5.5 \sigma)$
$50 \mathrm{fb}^{-1}$	$8.2 \sigma(5.7 \sigma)$	$11.6 \sigma(8.7 \sigma)$	$12.9 \sigma(9.9 \sigma)$
$300 \mathrm{fb}^{-1}$	$9.4 \sigma(6.5 \sigma)$	$15.6 \sigma(12.3 \sigma)$	$19.5 \sigma(16.1 \sigma)$

(): assuming 50\% correlation between each of the R_{K} and $R_{K^{*}}$ measurements

Only a small part of the $50 \mathrm{fb}^{-1}$ is needed to establish NP in the $R_{K^{(*)}}$ ratios even in the pessimistic case that the systematic errors are not reduced by then at all.

This is independent of the hadronic uncertainties!

Conclusion

- The full LHCb Run 1 results still show some tensions with the SM predictions
- Significance of the anomalies depends on the assumptions on the power corrections
- Model independent fits point to about 25% reduction in C_{9}, and new physics in muonic C_{9}^{μ} is preferred
- Comparing the fits for NP and hadronic parameters through the Wilk's test shows that at the moment adding the hadronic parameters does not improve the fit compared to the new physics fit, but the situation is inconclusive
- The recent measurement of $R_{K^{*}}$ supports the NP hypothesis, but the experimental errors are still large and the update of R_{K} is eagerly awaited!
- The LHCb upgrade will have enough precision to distinguish between NP and hadronic effects

○O

Backup

Backup

Global fit results

Fit with 2 parameters (complex C_{9})

About 3σ tension for $\operatorname{Re}\left(\delta C_{9}\right)$

Global fit results

Fit with 2 parameters (complex C_{9})

Fit with 4 parameters (complex C_{7} and C_{9}) low q^{2} bins (up to $8 \mathrm{GeV}^{2}$)

About 3σ tension for $\operatorname{Re}\left(\delta C_{9}\right)$

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

Fit results for four operators: $\left\{C_{9}^{\mu}, C_{9}^{e}, C_{10}^{\mu}, C_{10}^{e}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Considering 4 operator fits considerably relaxes the constraints on the Wilson coefficients leaving room for more diverse new physics contributions which are otherwise overlooked.

Fit results for four operators: $\left\{C_{9}^{\mu}, C_{9}{ }^{\mu}, C_{9}^{e}, C_{9}{ }^{\prime}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

Fit results for four operators: $\left\{C_{9}, C_{9}^{\prime}, C_{10}, C_{10}^{\prime}\right\}$

No reason that only 2 Wilson coefficients receive contributions from new physics

Larger ranges are allowed for the Wilson coefficients

[^0]: BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

[^1]: BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

