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Introduction and Motivations

Background-indep. approaches to QG (e.g., LQG, SF and GFT) share a
very radical picture of the microscopic quantum structure of spacetime.
At the Planck scale, space and time dissolve into pre-geometric,
combinatorial and algebraic objects (spin networks).

→ How can spacetime emerge from its fundamental constituents?

Entanglement is expected to play a key role in the reconstruction of
spacetime geometry!

I AdS/CFT: Ryu-Takayanagi formula (’06 arXiv:hep-th/0603001), bulk
space from boundary entanglement (Van Raamsdonk ’10
arXiv:hep-th/1005.3035);

I entanglement from gluing of spin networks (Donnelly ’08
arXiv:gr-qc/0802.0880);

I reconstructing quantum geometry from quantum information (Livine,
Terno ’06 arXiv:gr-qc/0603008);

I spin networks as generalized tensor networks (Chirco, Oriti, Zhang ’17
arXiv:gr-qc/1701.01383).



Spin Network States of Quantum Geometry

Spin network basis ≡ graphs with links labelled by SU(2) irreps
and nodes by invariant tensors (intertwiners) ensuring gauge
invariance of the states:

ψΓ,~j ,~i [A] =
L⊗
`=1

D(j`)(h`(A))·
V⊗

v=1

iv

Spin networks diagonalize geometric observables such as area and
volume which admit a discrete spectrum, e.g.:

Â(S)ψΓ,~j ,~i [A] =
∑
`∈S∩Γ

~
√
γ2 j`(j` + 1)ψΓ,~j ,~i [A]

⇒ Quanta of (Space) Geometry !



Geometric Quantum Mechanics: Pure States

For a given quantum system, the space of pure states D1(H)
(identified with the complex projective space CP(H)) naturally
inherits a Kähler structure from H0 = H− {0}.

Indeed, by means of the momentum map

µ : H0 −→ u∗(H) ⊃ D1(H) , |ψ〉 7−→ ρ =
|ψ〉 〈ψ|
〈ψ|ψ〉

we define

Hermitian (0,2)−tensor

K = Tr(ρdρ⊗ dρ)
µ∗

99K

Fubini−Study tensor

〈dψ ⊗ dψ〉
〈ψ|ψ〉

− 〈ψ|dψ〉
〈ψ|ψ〉

⊗ 〈dψ|ψ〉
〈ψ|ψ〉

whose real and imaginary parts define a metric (quantum Fisher
information metric) and a symplectic structure, respectively.



Tensorial Characterization of Entanglement

For a bipartite system H = HA ⊗HB
∼= Cn ⊗ Cn, we identify orbit

submanifolds of unitarily related quantum states (i.e., with fixed amount
of entanglement):

O :=
{
ρ(g) = U(g)ρ0U

−1(g) , U(g) = (UA(gA)⊗ 1) · (1⊗ UB(gB))
}

The pulled-back Hermitian tensor encodes all the information about
entanglement:

Kjk = K(jk) + iK[jk] =

(
A C
C B

)
+ i

(
DA 0
0 DB

)
ρ0 separable ⇔ C = 0 , ρ0 max. ent. ⇔ DA,B = 0

The off-diagonal blocks allow to define an entanglement monotone
interpreted as a distance with respect to the separable state:

Tr(R†R) =
1

n4
Tr(CTC ) , R = ρ0 − ρA0 ⊗ ρB0



Local Correlations: Single Link Graph

For fixed j , we regard the single link Hilbert space as H(j)
γ
∼= V(j) ⊗ V(j)∗

with V(j) = span{|j ,m〉}−j≤m≤j . Hence G ≡ SU(2)× SU(2) and

Cab = Tr(ρ0Ja ⊗ Jb)− Tr(ρ0Ja ⊗ 1)Tr(ρ01⊗ Jb)

I Maximally entangled state:

|0〉 =
1√

2j + 1

∑
k

|j , k〉 ⊗ 〈j , k |

⇒ DA = DB = 0 , Tr(CTC ) =
1

3
[j(j + 1)]2

I Separable state:

|0〉 = |j1, k1〉 ⊗ 〈j2, k2|

⇒ DA,DB 6= 0 , C = 0 ⇒ Tr(CTC ) = 0



Correlations between Two Non-Adjacent Regions of a SN

Correlations induced by the intermediate region of quantum space
modeled as a single node graph (no curvature case) intertwining the
edges dual to the boundaries of the two regions

unfolded into two coupled N-level systems with N given by the
degeneracies of the unfolded nodes.

⇒ ρ0 =
∑

αα′ββ′

cαβ c̄α′β′τ
(A)
αα′ ⊗ τ (B)

ββ′ , ταα′ ≡ |α〉 〈α′|

ρ0 cαβ Tr
(
K(AB) TK(AB)

)
separable λαλβ 0
max. ent. δαβ/

√
N< 1− 1

N2
<

f (α)δαβ , f (α) ∈ C
∑
α f (α)2

∑
α′ f (α′)2 −

∑
α |f (α)|6

entangled
f (α)δαβ , f (α) ∈ R 1−

∑
α |f (α)|6



Conclusions

The main achievements of our work are:

I A purely relational interpretation of the link as an elementary
process describing quantum correlations between its endpoints and
thus generating the minimal element of geometry;

I A quantitative characterization of graph connectivity by means of
the entanglement monotone constructed from the metric tensor;

I A preliminary connection between the GQM formalism and the
(simplicial) geometric properties of SN states through entanglement.

Interpretation: Spin networks as information graphs whose connectivity
encodes, both at the local and non-local level, quantum correlations
between regions of space.



Future Perspectives

I Include curvature excitations: reduced graph with loopy degrees of
freedom enconding information about a non-trivial topology of the
region of space;

I Entanglement of mixed states: Quantum metric from relative
entropy with possible application to Gibbs states for black holes;

I Semiclassical states: classical limit and further connection with the
Fisher-Rao metric of Information Geometry;

I Analogies with General Boundary Formalism: Hermitian tensor as a
(spin foam) path integral amplitude, i.e., a process generating a
region of space-time.

Thank you for your attention!


