Matching	Merging	NLO in PS	Conclusions

Parton shower matching and merging

Marek Schönherr

Universität Zürich

Tools 2017, Corfu

Matching	Merging	NLO in PS	Conclusions

The SHERPA event generator framework

JHEP02(2009)007

- hard interaction (ME)
- parton evolution (PS)
- multiple interactions
- hadronisation
- hadron decays

Matching and merging aims at improving the perturbative description of the event description (ME+PS)

Matching	Merging	NLO in PS	Conclusions

Outline

1 Matching (N)NLO matrix elements to parton showers

2 Multijet merging

3 NLO corrections in PS

Matching	Merging	NLO in PS	Conclusions

Matching (N)NLO matrix elements to parton showers

1 Matching (N)NLO matrix elements to parton showers

2 Multijet merging

3 NLO corrections in PS

4 Conclusions

Matching	Merging	NLO in PS	Conclusions

Matching (N)NLO matrix elements to parton showers NLOPs

- well established and standard tools
 - MC@NLO Frixione, Webber JHEP06(2002)029
 - POWHEG Frixione, Nason, Oleari, Ridolfi JHEP11(2007)070
 - variants thereof

- Höche, Krauss, MS, Siegert JHEP09(2012)049 Plätzer, Gieseke EPJC72(2012)2187
- · available for all processes of interest
- ⇒ NLO for production ME emission properties described at LOPS accuracy only

NNLOPS

- only exist for singlet production
 - MiNLO-based Hamilton, Nason, Re, Zanderighi JHEP10(2013)222
 - UN²LOPS Höche, Li, Prestel Phys.Rev.D91(2015)074015
 - GENEVA

- Alioli et.al. Phys.Rev.D92(2015)094020
- ⇒ NNLO for production ME emission properties described at NLOPS accuracy

Matching	Merging	NLO in PS	Conclusions

NLOPS: How does it work?

Höche, Krauss, MS, Siegert JHEP09(2012)049

Aim: Keep NLO accuracy in expansion of α_S Keep full logarithmic accuracy of parton shower resummation

Both MC@NLO and POWHEG follow the same paradigm

- parton shower's resummation kernels used for IR subtraction
- define resummation region

$$\begin{split} \langle O \rangle^{\mathsf{NLOPS}} &= \int \mathrm{d} \Phi_B \Big[\mathrm{B} + \mathrm{V} + \mathrm{I}_{\mathrm{K}} \Big] (\Phi_B) \left[\Delta_{\mathrm{D}_{\mathrm{K}}} (\mu_Q^2, t_c) \, O(\Phi_B) \right. \\ &+ \int \mathrm{d} t' \, \frac{\mathrm{D}_{\mathrm{K}}}{\mathrm{B}} \, \Delta_{\mathrm{D}_{\mathrm{K}}} (\mu^2, t') \, \mathrm{PS}_R(t', O) \Big] \\ &+ \int \mathrm{d} \Phi_R \, \Big[\mathrm{R} - \mathrm{D}_{\mathrm{K}} \Big] (\Phi_R) \, \mathrm{PS}_R(t_R, O) \end{split}$$

- schemes differ in choices for form of kernels $D_{\rm K}$ and resummation region (limited by $\mu_{\it Q})$
- variants address various problems inherent in both approaches

Matching	Merging	NLO in PS	Conclusions

NLOPS: How does it work?

Höche, Krauss, MS, Siegert JHEP09(2012)049

Aim: Keep NLO accuracy in expansion of α_S Keep full logarithmic accuracy of parton shower resummation

Both MC@NLO and POWHEG follow the same paradigm

- parton shower's resummation kernels used for IR subtraction
- define resummation region

$$\langle O \rangle^{\mathsf{NLOPS}} = \int \mathrm{d} \Phi_B \, \overline{\mathrm{B}} \, (\Phi_B) \, \widetilde{\mathrm{PS}}_B(\mu_Q^2, O)$$

$$+\int \mathrm{d}\Phi_R \operatorname{H}(\Phi_R) \operatorname{PS}_R(t_R, O)$$

- schemes differ in choices for form of kernels $D_{\rm K}$ and resummation region (limited by $\mu_{\it Q})$
- variants address various problems inherent in both approaches

Matching	Merging	NLO in PS	Conclusions

Description of emission spectrum:

$$\langle O_{\rm em} \rangle^{\rm NLOPS} = \int d\Phi_B d\Phi_1 \,\overline{\rm B}(\Phi_B) \, \frac{{\rm D}_{\rm K}(\Phi_B \cdot \Phi_1)}{{\rm B}(\Phi_B)} \, O(\Phi_R) \\ + \int d\Phi_R \, \Big[{\rm R} - {\rm D}_{\rm K} \Big] (\Phi_R) \, O(\Phi_R)$$

In the resummation region $\mathrm{D_K}pprox\mathrm{R}$

ightarrow the emission spectrum is enhanced with ${
m B/B}$

Mc@Nlo Powheg

 $\begin{array}{ll} \textbf{Powheg:} \\ \textbf{split} \quad R = R_{\textbf{soft}} + R_{\textbf{hard}} \\ \textbf{with} \end{array}$

$$\mathbf{R}_{\mathsf{soft}} = \frac{h^2}{p_\perp^2 + h^2} \,\mathbf{R}$$

Matching	Merging	NLO in PS	Conclusions

Description of emission spectrum:

$$\langle O_{em} \rangle^{\mathsf{NLOPS}} = \int \mathrm{d}\Phi_B \mathrm{d}\Phi_1 \, \frac{\overline{\mathrm{B}}(\Phi_B)}{\mathrm{B}(\Phi_B)} \mathrm{D}_{\mathrm{K}}(\Phi_B \cdot \Phi_1) \, O(\Phi_R)$$

 $+ \int \mathrm{d}\Phi_R \, \Big[\mathrm{R} - \mathrm{D}_{\mathrm{K}}\Big](\Phi_R) \, O(\Phi_R)$

In the resummation region $\mathrm{D_K}pprox\mathrm{R}$

ightarrow the emission spectrum is enhanced with ${
m B}/{
m B}$

MCONLO POWHEG

 $\begin{array}{ll} \textbf{Powheg:} \\ \textbf{split} \quad R = R_{\textbf{soft}} + R_{\textbf{hard}} \\ \textbf{with} \end{array}$

$$\mathbf{R}_{\mathsf{soft}} = \frac{h^2}{p_{\perp}^2 + h^2} \, \mathbf{R}$$

Matching	Merging	NLO in PS	Conclusions

Description of emission spectrum:

$$\langle \mathcal{O}_{em} \rangle^{\mathsf{NLOPS}} = \int \mathrm{d} \Phi_{\mathcal{R}} \, \left[\mathrm{R} + \left(\frac{\overline{\mathrm{B}}(\Phi_{\mathcal{B}})}{\mathrm{B}(\Phi_{\mathcal{B}})} - 1 \right) \mathrm{D}_{\mathrm{K}} \right] (\Phi_{\mathcal{R}}) \, \mathcal{O}(\Phi_{\mathcal{R}})$$

In the resummation region $D_{\rm K}\approx R$

 \rightarrow the emission spectrum is enhanced with $\overline{\mathrm{B}}/\mathrm{B}$

$$\label{eq:constraint} \begin{array}{c|c} & \operatorname{MC@NLO} & \operatorname{Pow} \\ \hline & & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ &$$

Matching	Merging	NLO in PS	Conclusions

Description of emission spectrum:

$$\langle \mathcal{O}_{em} \rangle^{\mathsf{NLOPS}} = \int \mathrm{d} \Phi_R \, \left[\mathrm{R} + \left(\frac{\overline{\mathrm{B}}(\Phi_B)}{\mathrm{B}(\Phi_B)} - 1 \right) \mathrm{D}_\mathrm{K} \right] (\Phi_R) \, \mathcal{O}(\Phi_R)$$

In the resummation region $D_{\rm K}\approx R$

 \rightarrow the emission spectrum is enhanced with $\overline{\mathrm{B}}/\mathrm{B}$

Matching	Merging	NLO in PS	Conclusions

Description of emission spectrum:

$$\langle \mathcal{O}_{em} \rangle^{\mathsf{NLOPS}} = \int \mathrm{d} \Phi_R \, \left[\mathrm{R} + \left(\frac{\overline{\mathrm{B}}(\Phi_B)}{\mathrm{B}(\Phi_B)} - 1 \right) \mathrm{D}_\mathrm{K} \right] (\Phi_R) \, \mathcal{O}(\Phi_R)$$

In the resummation region $D_{\rm K}\approx R$

 \rightarrow the emission spectrum is enhanced with $\overline{\mathrm{B}}/\mathrm{B}$

Matching	Merging	NLO in PS	Conclusions

NLOPS

Höche, Krauss, MS, Siegert Phys.Rev.Lett.110(2013)052001

- $\textit{pp} \rightarrow \textit{W} + 1, 2, 3 \text{ jets}$
 - 3 separate samples/calculations
 - NLO accuracy for inclusive observables of respective jet multiplicity
 - resummation of softest/LO jet, i.e. 4th jet in $pp \rightarrow W + 3$ jets
 - no resummation of sample-defining jet multiplicity, i.e. first 3 jets in $pp \rightarrow W + 3$ jets

ATLAS data Phys.Rev.D85(2012)092002

Matching	Merging	NLO in PS	Conclusions

Kardos, Nason, Oleari JHEP04(2014)043

NLOPS

• $pp \rightarrow 3j$ production

Matching	Merging	NLO in PS	Conclusions

NLOPS

van Deurzen et.al. Eur.Phys.J.C76 (2016) no.4, 221

Matching	Merging	NLO in PS	Conclusions

NLOPS

- for complicated processes small event selection efficiencies can render increased running time of NLOPS prohibative
- detailed validation studies needed to use LOPS as proxy

Moretti, Petrov, Pozzorini, Spannowsky Phys.Rev. D93 (2016) 014019

Matching	Merging	NLO in PS	Conclusions

NLOPS for resonant processes

Processes with resonances

- standard IR subtractions do not preserve shape of resonances
- standard parton showers do not preserve shape of resonances
- \Rightarrow schemes for resonance identification
- \Rightarrow modify recoil in parton shower
- \Rightarrow consistency in matching

arXiv:1509.09071, arXiv:1603.01178, arXiv:1607.04538

Marek Schönherr

Matching	Merging	NLO in PS	Conclusions

NLOPS for EW corrections

Bernaciak, Wackeroth Phys.Rev.D85(2012)093003 Barze, Montagna, Nason, Nicrosini, Piccinini, Vicini Eur.Phys.J.C73(2013)no.6, 2474 Mück, Oymanns JHEP05(2017)090

- first process specific solutions for NLOPS for EW corrections
- results very dependent on specifics of resonance treatment
- plenty of development still needed

Matching	Merging	NLO in PS	Conclusions
New A Da			

NNLOPS

- · available only for production of colourless final states
- inclusive observables at NNLO accuracy
- emission sensitive observables only at NLOPS

Höche, Li, Prestel arXiv:1407.3773

Matching	Merging	NLO in PS	Conclusions
New a Da			

NNLOPS

- available only for production of colourless final states
- inclusive observables at NNLO accuracy
- emission sensitive observables only at NLOPS

UN LOPS

NNLO

Höche, Li, Prestel arXiv:1405.3607

m./2<u <2m

Matching	Merging	NLO in PS	Conclusions

(N)NLOPS

Available tools

- aMc@Nlo + Herwig/Pythia Mc@Nlo
- Powheg-Box + Herwig/Pythia Powheg / NnloPs
- MADGRAPH/LOOPPROVIDER+HERWIG7 MC@NLO/ POWHEG variant / KRKNLO
- Sherpa+LoopProvider MC@NLO variant / NNLOPS
- Geneva + Pythia NnloPs

Matching	Merging	NLO in PS	Conclusions

Multijet merging

1 Matching (N)NLO matrix elements to parton showers

2 Multijet merging

O NLO corrections in PS

4 Conclusions

Matching	Merging	NLO in PS	Conclusions

Multijet merging

LOPS, NLOPS and NNLOPS describe observables dominated by topologies of a single multiplicity very well.

Goal: Describe observables that receive contributions from many final state multiplicities consistently at the higherst available precision.

Examples: H_T , p_{\perp} , $\Delta \phi$ etc.

 $\mathsf{NLOPS},$ for example, will describe the low end at NLO accuracy, an intermediate region at LO accuracy, and the high end at PS accuracy only

\Rightarrow multijet merging

At the same time, multijet merged samples provide the LHC experiments with largest freedom of projecting these samples onto observables without the loss of accuracy.

Matching	Merging	NLO in PS	Conclusions

Parton showers

resummation of (soft-)coll. limit \rightarrow intrajet evolution

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space, separate by Q_{cut}
- MEPS combines multiple LOPS keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

Matching	Merging	NLO in PS	Conclusions
Multijet n	nerging at LO		
		Matrix elements	5
		fixed-order in α_s	

- \rightarrow hard wide-angle emissions
- \rightarrow interference terms

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space, separate by Q_{cut}
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

Matching	Merging	NLO in PS	Conclusions
Multijet me	rging at LO		
		MEPs (CKKW,MLM	I)
		Catani, Krauss, Kuhn, Webber	JHEP11(2001)063
Xe & X	· · · · ·	Lönnblad	JHEP05(2002)046
		Mangano, Moretti, Pittau	NPB632(2002)343
	-	Höche, Krauss, Schumann, Siegert	JHEP05(2009)053
:		Lönnblad, Prestel	JHEP03(2012)019
		Plätzer	JHEP08(2013)114
• matrix	elements (ME) and pa	orton showers (PS) are approxim	ations

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space, separate by Q_{cut}
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to Q_{n+1} < Q_{cut}
- LOPS pp → h + jet for Q_{n+1} > Q_{cut}
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LoPs $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LOPs $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LOPs $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LOPs $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LoPs $pp \rightarrow h+2$ jets for $Q_{n+2} > Q_{\text{cut}}$

• iterate

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LoPs $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

• iterate

Matching	Merging	NLO in PS	Conclusions

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{cut}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LoPs $pp \rightarrow h+2$ jets for $Q_{n+2} > Q_{\text{cut}}$

• iterate

Matching	Merging	NLO in PS	Conclusions

Transverse momentum of the Higgs boson $d\sigma/dp_{\perp}$ [pb/GeV] $pp \rightarrow h + jets$ $--- pp \rightarrow h + 0i$ $---- pp \rightarrow h+1j$ $-\cdots - vv \rightarrow h+2i$ $\cdots pp \rightarrow h+3j$ 10^{-2} 10-3 10^{-4} 50 100 150 200 250 300 $p_{\perp}(h)$ [GeV]

- first emission by PS, restrict to $Q_{n+1} < Q_{cut}$
- LOPs $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- LoPs $pp \rightarrow h+2$ jets for $Q_{n+2} > Q_{\text{cut}}$

iterate

Matching	Merging	NLO in PS	Conclusions

Resummation properties in ME region

Multiply with Sudakov factors according to reconstructed history **Example: Drell-Yan production in association with jets**

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k*_t-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

Resummation properties in ME region

Multiply with Sudakov factors according to reconstructed history **Example: Drell-Yan production in association with jets**

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k_t*-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$
Matching	Merging	NLO in PS	Conclusions

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k_t*-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k_t*-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k*_t-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k_t*-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

- cluster external particles using inverse parton shower → flavour conscious, initial state aware, probabilistic jet algorithm
- often use *k_t*-algorithm as simple approximation
- identify a shower history (probabilistically), determine scale t_i up to predefined t_i

• apply
$$\prod_{i=1}^{n} \Delta(t_i, t_{i-1})$$
 and $\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\text{core}}^2) \prod_{i=1}^{n} \alpha_s(t_i)$

Matching	Merging	NLO in PS	Conclusions

Merging systematics

Merging cut Q_{cut} dependence in $pp \rightarrow Z + \text{jets}$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{
 m cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large Q_{cut}
- all samples are identical for $Q < Q_{\rm cut}^{\rm smallest}$ and $Q > Q_{\rm cut}^{\rm largest}$ by construction

Matching	Merging	NLO in PS	Conclusions

Merging systematics

Merging cut Q_{cut} dependence in $pp \rightarrow Z + \text{jets}$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{
 m cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large Q_{cut}
- all samples are identical for $Q < Q_{\rm cut}^{\rm smallest}$ and $Q > Q_{\rm cut}^{\rm largest}$ by construction

Matching	Merging	NLO in PS	Conclusions

Merging systematics

Merging cut Q_{cut} dependence in $pp \rightarrow Z + \text{jets}$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{
 m cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large Q_{cut}
- all samples are identical for $Q < Q_{\rm cut}^{\rm smallest}$ and $Q > Q_{\rm cut}^{\rm largest}$ by construction

Matching	Merging	NLO in PS	Conclusions

NLOPS (MC@NLO, POWHEG)

Frixione, Webber JHEP06(2002)029 Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070 Höche, Krauss, MS, Siegert JHEP09(2012)049

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- Multijet merging at LO combines multiple LOPS
- NLOPS elevate LOPS to NLO accuracy
- First steo supplements core NLOPS with higher multiplicities LOPS
- Multijet merging at NLO combines multiple NLOPS

Matching	werging	NEO IN PS	Conclusions
Multijet mer	ging at NLO →		
		Multijet merging	
La 32		Hamilton, Nason JH	IEP06(2010)039
NLO		Höche, Krauss, MS, Siegert JH	IEP08(2011)123
± ́ t≡		Gehrmann, Höche, Krauss, MS, Siegert JF	IEP01(2013)144
• matrix e	elements (ME) and p	arton showers (PS) are approximat	ions

- matrix elements (ME) and parton showers (PS) are approximatio in different regions of phase space
- Multijet merging at LO combines multiple LOPs
- NLOPS elevate LOPS to NLO accuracy
- First steo supplements core NLOPS with higher multiplicities LOPS
- Multijet merging at NLO combines multiple NLOPS

Matching	Merging	NLO in PS	Conclusions
Multijet me	rging at NLO →		
		Multijet merging a	t NLO
3	•	Lavesson, Lönnblad	JHEP12(2008)070
NLO 3		Hoche, Krauss, MS, Siegert	: JHEP04(2013)027
e Te	-	Fredrerix, Frixione	: JHEP12(2012)061
		Lönnblad, Preste	I JHEP03(2013)166
		Plätzer	r JHEP08(2013)114
• matrix	elements (ME) and n	arton showers (PS) are approxim	ations

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- Multijet merging at LO combines multiple LOPs
- NLOPS elevate LOPS to NLO accuracy
- First steo supplements core NLOPS with higher multiplicities LOPS
- Multijet merging at NLO combines multiple NLOPS

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
 - sum all contributions

Matching	Merging	NLO in PS	Conclusions

• first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$

• NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$

- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

iterate

 sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
 - $pp \rightarrow h + 2$ jets for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

sum all contributions

Matching	Merging	NLO in PS	Conclusions

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{cut}$
- NLOPS $pp \rightarrow h + \text{jet for}$ $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions

Matching	Merging	NLO in PS	Conclusions

Multijet merging

- multijet merging replaces emission spectrum of (N)LOPS above some merging scale by higher order calculation
 → MEPS/MEPS@NLO, MLM/FxFx, UMEPS/UNLOPS
- can be thought of as improving splitting functions of (N)LOPS by higher order and beyond-logarithmic corrections above merging scale
- does not improve resummation properties

Höche, Krauss, Maierhöfer, Pozzorini, MS, Siegert in PLB748(2015)74-78

Matching	Merging	NLO in PS	Conclusions

Multijet merging at NLO lepton + MET production

Matching	Merging	NLO in PS	Conclusions

Multijet merging at NLO lepton pair production

Marek Schönherr

Parton shower matching and merging

Matching	Merging	NLO in PS	Conclusions

diphoton production

Matching	Merging	NLO in PS	Conclusions

Higgs production

• $pp \rightarrow h + 0, 1, 2, 3j$ @ NLO including top mass effects

à la Buschmann, Goncalves, Kuttimalai, MS, Krauss, Plehn JHEP02(2015)038

Matching	Merging	NLO in PS	Conclusions

State-of-the-art

Les Houches 2015

• observable specific calculations NNLOPS, NLO multijet merging

Matching	Merging	NLO in PS	Conclusions

State-of-the-art

Les Houches 2015

Marek Schönherr

Matching	Merging	NLO in PS	Conclusions

State-of-the-art

Les Houches 2015

• observable specific calculations, NNLOPS, NLO multijet merging

Matching	Merging	NLO in PS	Conclusions

Multijet merging of loop induced processes

Goncalves et.al. PRD94(2016)no.5,053014

Loop induced processes

- $LOOP^2$ production of $X + 0, 1, \dots$ jets
- works schematically as merging at LO
- contribution of LOOP² often depends on observable

Matching	Merging	NLO in PS	Conclusions

Available implementations

- Alpgen+Herwig/Pythia MLM (LO)
- MADGRAPH/LOOPPROVIDER+HERWIG7 UNLOPS (NLO), UMEPS (LO)
- MADGRAPH+PYTHIA FxFx (NLO), UNLOPS (NLO), MLM (LO), UMEPS (LO), MLM@LOOP² (LO)
- SHERPA+LOOPPROVIDER MEPS@NLO (NLO), MEPS (LO), MEPS@LOOP² (LO)

Matching	Merging	NLO in PS	Conclusions

- complicated processes and small event selection efficiencies can render increased running time of NLO multijet merging prohibative
- detailed validation studies needed to use LO merging as proxy

Moretti, Petrov, Pozzorini, Spannowsky Phys.Rev. D93 (2016) 014019

Matching	Merging	NLO in PS	Conclusions

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Matching	Merging	NLO in PS	Conclusions

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\mbox{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}(\Phi_n)$$
exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Matching	Merging	NLO in PS	Conclusions

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n) + B_{n,mix}(\Phi_n)$$
exact virtual contribution
approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Matching	Merging	NLO in PS	Conclusions

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Matching	Merging	NLO in PS	Conclusions

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\mbox{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Matching	Merging	NLO in PS	Conclusions

 $pp \rightarrow \ell^- \bar{\nu} + \text{jets}$

Kallweit, Lindert, Maierhöfer, Pozzorini, MS JHEP04 (2016) 021

 \Rightarrow particle level events including dominant EW corrections
Matching	Merging	NLO in PS	Conclusions

 $pp \rightarrow \ell^- \bar{\nu} + \text{jets}$

 $\Rightarrow NLO \ QCD \times EW_{VI} \otimes YFS \ very \ well \ reproduces \ full \ calculation \ also \ for \ processes \ with \ very \ rich \ EW \ structure$

Matching	Merging	NLO in PS	Conclusions

1 Matching (N)NLO matrix elements to parton showers

2 Multijet merging

3 NLO corrections in PS

4 Conclusions

Matching	Merging	NLO in PS	Conclusions

Höche, Krauss, Prestel arXiv:1705.00982

- LO parton showers already include terms $\propto 1/(1-z) \times \Gamma(2)$ Catani, Marchesini, Webber Nucl.Phys. B349, 635 (1991)
- include NLO corrections in DGLAP evolution use NLO collinear splitting functions

$$P_{ab}(z) = P_{ab}^{(0)}(z) + \frac{\alpha_S}{2\pi} P_{ab}^{(1)}(z)$$

Curci, Furmanski, Petronzio Nucl.Phys. B175, 27 (1980) Furmanski, Petronzio Phys.Lett. B97, 437 (1980)

- includes triple-collinear splitting functions Höche, Prestel arXiv:1705.00742
- contains flavour changes q
 ightarrow q' and q
 ightarrow ar q
- does not include higher order corrections to soft evolution yet
- include also soft terms $\propto 1/(1-z) imes \Gamma(3)$
- still leading colour, as no exponentiation of off-diagonal colour MEs
- this is generally not the same as achieving a higher logarithmic accuracy, not even for the PS evolution variable

Matching	Merging	NLO in PS	Conclusions

Höche, Krauss, Prestel arXiv:1705.00982

- small effects in event shapes at e^+e^-
- reduced scale uncertainty (commonly not assessed in LO parton showers)

Matching	Merging	NLO in PS	Conclusions

Höche, Krauss, Prestel arXiv:1705.00982

- larger effects in Sudakov shapes in pp
- reduced scale uncertainty (commonly not assessed in LO parton showers)

Matching	Merging	NLO in PS	Conclusions

Höche, Krauss, Prestel arXiv:1705.00982

- larger effects in Sudakov shapes in pp
- reduced scale uncertainty (commonly not assessed in LO parton showers)

Matching	Merging	NLO in PS	Conclusions

Conclusions

- NLOPS are the commonly used tools
- NNLOPS available for key processes
 - \rightarrow parton shower improvements necessary for $\mathit{V}+j$ <code>NNLOPS</code>
- multijet merging improves relative description of multi-emission kinematics and is the highest available precision at the moment → feasible for up to 3*j* at NLO, 6*j* at LO
 - \rightarrow approximate EW corrections can be incorporated
- first developments to include higher order corrections to the splitting functions in parton showers
 - \rightarrow NLO collinear DGLAP evolution
 - \rightarrow PS does not yet contain full logarithmic structure for matching to NNLO

Matching	Merging	NLO in PS	Conclusions

Thank you for your attention!