STERILE NEUTRINOS, DARK MATTER, AND RESONANCES in ψ^{\prime} MSSM

1 Introduction

- The subgroup $S O(10) \times U(1)_{\psi}$ of E_{6} can be decomposed, via $S U(5)$, to the MSSM gauge group times $U(1)_{\chi} \times U(1)_{\psi}$.
- One combination of these $U(1)^{\prime}$'s, denoted as $U(1)_{\psi^{\prime}}$, is assumed here to be broken at a scale at least an order of magnitude greater than the TeV scale of soft SUSY breaking.
- We refer to the MSSM accompanied by $U(1)_{\psi^{\prime}}$ as ψ^{\prime} MSSM.
- The RH neutrino in the 16 -plet of $S O(10)$ is a $U(1)_{\psi^{\prime}}$ singlet.
- This enables the three RH neutrinos to acquire large masses, so that the seesaw and leptogenesis scenarios can apply.
- We employ a $U(1) \mathrm{R}$ symmetry such that dimension five and higher operators potentially causing proton decay are eliminated.
- The MSSM μ problem is resolved and the usual LSP of MSSM remains a compelling dark matter candidate.
- The three $S O(10)$ singlet sterile neutrino matter fields can only acquire tiny masses $\lesssim 0.1 \mathrm{eV}$ if $U(1)_{\psi^{\prime}}$ is broken around 10 TeV .
- The effective number of neutrinos at NS is changed by $\simeq 0.29$.
- The lightest sterile sneutrino and two more particles stabilized by discrete symmetries, can be additional CDM candidates.
- If the breaking scale of $U(1)_{\psi^{\prime}}$ is increased to $10^{3} \mathrm{TeV}$, the sterile neutrinos become plausible candidates for keV scale warm DM.
- The contribution of the D-term for $U(1)_{\psi^{\prime}}$ to the mass m_{h} of the lightest Higgs boson of MSSM can be appreciable.
- So, in the decoupling limit, the observed value of $m_{h}=125 \mathrm{GeV}$ can be obtained with relatively light stop quarks.
- In addition to the Z^{\prime} gauge boson associated with $U(1)_{\psi^{\prime}}$, the model predicts diphoton and diquark resonances in the TeV range.
- A high luminosity or energy LHC upgrade may find them.
- The $U(1)_{\psi^{\prime}}$ breaking produces superconducting strings which may be present in our galaxy.
- If the breaking scale is not too high, a 100 TeV collider may be able to make these strings.

2 The model

- Consider a SUSY model with gauge group $G_{S M} \times U(1)_{\psi^{\prime}}$, where $G_{\text {SM }}$ is SM gauge group.
- The GUT-normalized generator $Q_{\psi^{\prime}}$ of $U(1)_{\psi^{\prime}}$ is given by

$$
Q_{\psi^{\prime}}=\frac{1}{4}\left(Q_{\chi}+\sqrt{15} Q_{\psi}\right) .
$$

- Here Q_{χ} and Q_{ψ} are, respectively, the GUT-normalized generators of the $U(1)_{\chi}$ in $S O(10)$ which commutes with $S U(5)$ and the $U(1)_{\psi}$ in E_{6} which commutes with $S O(10)$.
- $U(1)_{\psi^{\prime}}$ is to be spontaneously broken at a scale M.
- The important part of the W is

$$
\begin{aligned}
W= & y_{u} H_{u}^{1} q u^{c}+y_{d} H_{d}^{1} q d^{c}+y_{\nu} H_{u}^{1} l \nu^{c}+y_{e} H_{d}^{1} l e^{c}+\frac{1}{2} M_{\nu^{c}} \nu^{c} \nu^{c} \\
& +\lambda_{\mu}^{i} N H_{u}^{i} H_{d}^{i}+\kappa S\left(N \bar{N}-M^{2}\right)+\lambda_{D}^{i} N D_{i} D_{i}^{c}+\lambda_{q}^{i} D_{i} q q \\
& +\lambda_{q^{c}}^{i} D_{i}^{c} u^{c} d^{c}+\lambda_{L} S L \bar{L}+\lambda_{H_{d}}^{\alpha} \nu^{c} \bar{L} H_{d}^{\alpha}+\lambda_{N}^{i} N_{i} N_{i} \frac{\bar{N}^{2}}{2 m_{\mathrm{P}}}
\end{aligned}
$$

- $y_{u}, y_{d}, y_{\nu}, y_{e}$ are the Yukawa couplings.
- $q, u^{c}, d^{c}, l, \nu^{c}, e^{c}$ are the usual quark and lepton superfields of MSSM including the right handed neutrinos ν^{c}.
- $H_{u}^{i}, H_{d}^{j}(i, j=1,2,3)$ are $S U(2)_{\mathrm{L}}$ doublets with $Y=1 / 2,-1 / 2$.
- N, \bar{N} is a conjugate pair of SM singlets and S is a gauge singlet.
- The coupling $\lambda_{\mu}^{i j} N H_{u}^{i} H_{d}^{j}$ is diagonalized and a Z_{2} symmetry under which H_{u}^{α} and $H_{d}^{\alpha}(\alpha=2,3)$ are odd is imposed.
- So, only H_{u}^{1}, H_{d}^{1} couple to quarks and leptons and are the standard electroweak Higgs superfields.
- D_{i} and $D_{i}^{c}(i=1,2,3)$ are color triplets and antitriplets with $Y=-1 / 3$ and $1 / 3$ and the coupling $\lambda_{D}^{i j} N D_{i} D_{j}^{c}$ is diagonalized.
- $N_{i}(i=1,2,3)$ are SM singlets and $\lambda_{N}^{i j} N_{i} N_{j} \bar{N}^{2} / 2 m_{\mathrm{P}}$ is again diagonalized.
- We impose an extra Z_{2}^{\prime} under which the N_{i} 's are odd.
- To achieve MSSM gauge couplings unification, we introduced a pair of $S U(2)_{\mathrm{L}}$ doublets L and \bar{L} with $Y=-1 / 2$ and $1 / 2$.
- $q, u^{c}, d^{c}, l, \nu^{c}, e^{c}, H_{u}^{i}, H_{d}^{i}, D_{i}, D_{i}^{c}$, and N_{i} form three complete E_{6} 27-plets, while N, \bar{N} and L, \bar{L} are conjugate pairs from incomplete E_{6} multiplets.

Superfields	Representions under $G_{\text {SM }}$	Extra Symmetries			
		Z_{2}	Z_{2}^{\prime}	R	$2 \sqrt{10} Q_{\psi^{\prime}}$
Matter Superfields					
q	(3,2,1/6)	+	+	1/2	1
u^{c}	($\overline{\mathbf{3}}, \mathbf{1},-2 / 3)$	+	+	1/2	1
d^{c}	$(\overline{3}, 1,1 / 3)$	+	+	1/2	2
l	(1, 2, -1/2)	+	$+$	0	2
ν^{c}	(1, 1, 0)	+	+	1	0
e^{c}	(1, 1, 1)	+	+	1	1
H_{u}^{α}	(1, 2, 1/2)	-	+	1	-2
H_{d}^{α}	(1, 2, -1/2)	-	+	1	-3
D_{i}	(3, 1, -1/3)	+	+	1	-2
D_{i}^{c}	($\overline{3}, 1,1 / 3)$	$+$	+	1	-3
N_{i}	(1, 1, 0)	+	-	1	5
Higgs Superfields					
H_{u}^{1}	(1, 2, 1/2)	+	+	1	-2
H_{d}^{1}	(1, 2, -1/2)	+	+	1	-3
S	(1, 1, 0)	+	+	2	0
N	(1, 1, 0)	+	+	0	5
\bar{N}	(1, 1, 0)	+	+	0	-5
Extra $S U(2)_{\text {L }}$ Doublet Superfields					
L	(1,2,-1/2)	-	$+$	0	-3
\bar{L}	(1,2,1/2)	-	+	0	3

- Here, we summarize the fields and their transformation properties.
- The symmetries allow also the following higher order terms:

$$
\begin{aligned}
& \nu^{c} H_{u}^{\alpha} L N, e^{c} H_{d}^{\alpha} L \bar{N}, H_{u}^{1} H_{u}^{1} l l, H_{u}^{\alpha} H_{u}^{\beta} l l, H_{u}^{1} H_{d}^{\alpha} l \bar{L}, H_{u}^{\alpha} H_{d}^{1} l \bar{L}, \\
& H_{d}^{1} H_{d}^{1} \bar{L} \bar{L}, H_{d}^{\alpha} H_{d}^{\beta} \bar{L} \bar{L}, q u^{c} q d^{c} \bar{N}, q u^{c} e^{c} l \bar{N}, q d^{c} \nu^{c} l \bar{N}, \\
& e^{c} \nu^{c} L L N, H_{u}^{\alpha} q d^{c} l L, H_{u}^{1} H_{u}^{\alpha} l L N, H_{u}^{1} H_{u}^{1} L L N N, \\
& H_{u}^{\alpha} H_{u}^{\beta} L L N N, H_{u}^{\alpha} q u^{c} l \bar{L} \bar{N}, H_{d}^{\alpha} q d^{c} l \bar{L} \bar{N}, \nu^{c} H_{d}^{1} l \bar{L} \bar{L} \bar{N}, \\
& e^{c} H_{u}^{1} l L L N, q d^{c} L q d^{c} L, D_{i}^{c} u^{c} u^{c} \bar{L} \bar{L} \bar{N}, D_{i}^{c} d^{c} d^{c} L L N, \\
& e^{c} q d^{c} l L L, H_{u}^{1} q d^{c} L L N, H_{d}^{1} q u^{c} \bar{L} \bar{L} \bar{N}, H_{d}^{1} H_{d}^{\alpha} l \bar{L} \bar{L} \bar{L} \bar{N}, \\
& H_{u}^{\alpha} e^{c} L L L N N, \nu^{c} q u^{c} l \bar{L} \bar{L} \bar{N} \bar{N}, q u^{c} q u^{c} \bar{L} \bar{L} \bar{N} \bar{N}, \\
& e^{c} e^{c} L L L L N N, H_{d}^{\alpha} q u^{c} l \bar{L} \bar{L} \bar{L} \bar{N} \bar{N} .
\end{aligned}
$$

- All the couplings can be multiplied by $N \bar{N} / m_{\mathrm{P}}^{2}, L \bar{L} / m_{\mathrm{P}}^{2}$, and
$\bar{L} l \bar{N} \bar{L} l \bar{N} / m_{\mathrm{P}}^{6}$ arbitrarily many times.
- We assign baryon number $B=-2 / 3$ and $2 / 3$ to D_{i} and D_{i}^{c}.
- We then see that $U(1)_{B}$ is automatically present to all orders in W and, thus, fast proton decay is avoided.

$3 \quad U(1)_{\psi^{\prime}}$ breaking

- Assume that the breaking scale of $U(1)_{\psi^{\prime}}$ is much bigger than the electroweak scale so that this breaking is not affected by it.
- So, the $U(1)_{\psi^{\prime}}$ breaking can be discussed by considering only

$$
\delta W=\kappa S\left(N \bar{N}-M^{2}\right)
$$

- This gives the scalar potential

$$
\begin{aligned}
V= & \kappa^{2}\left|N \bar{N}-M^{2}\right|^{2}+\kappa^{2}|S|^{2}\left(|N|^{2}+|\bar{N}|^{2}\right) \\
& +\left(A \kappa S N \bar{N}-\left(A-2 m_{3 / 2}\right) \kappa M^{2} S+\text { Н.с. }\right) \\
& +m_{0}^{2}\left(|N|^{2}+|\bar{N}|^{2}+|S|^{2}\right)+\mathrm{D}-\text { terms. }
\end{aligned}
$$

- M and κ are made real and positive by field rephasing.
- $m_{3 / 2}$ is the gravitino mass, $A \sim m_{3 / 2}$ is the coefficient of the trilinear soft terms taken real and positive, and $m_{0} \sim m_{3 / 2}$.
- We assumed minimal SUGRA so that the coefficients of the trilinear and linear soft terms are related as shown.
- Vanishing of the D-terms $\Rightarrow|N|=|\bar{N}| \Rightarrow \bar{N}^{*}=e^{i \vartheta} N$, while minimization of the potential requires that $\vartheta=0$.
- So, N and \bar{N} can be rotated to the positive real axis by $U(1)_{\psi^{\prime}}$.
- We find that the scalar potential is minimized at

$$
\begin{gathered}
\langle S\rangle=-\frac{m_{3 / 2}}{\kappa}\left(1+\sum_{n \geq 1} c_{n}\left(\frac{m_{3 / 2}}{M}\right)^{n}\right) \\
\langle N\rangle=\langle\bar{N}\rangle \equiv \frac{N_{0}}{\sqrt{2}}=M\left(1+\sum_{n \geq 1} d_{n}\left(\frac{m_{3 / 2}}{M}\right)^{n}\right),
\end{gathered}
$$

where c_{n}, d_{n} are numerical coefficients of order unity.

- For $M \gg m_{3 / 2}$, these formulas can be approximated as follows:

$$
\langle S\rangle \simeq-\frac{m_{3 / 2}}{\kappa}, \quad \frac{N_{0}^{2}}{2} \simeq M^{2}+\frac{A m_{3 / 2}-m_{3 / 2}^{2}-m_{0}^{2}}{\kappa^{2}}
$$

- The trilinear and linear soft terms play an important role.
- Substituting $\langle N\rangle,\langle\bar{N}\rangle$, these terms yield a linear term in S which, together with the mass term of S, generates a VEV $\sim \mathrm{TeV}$ for S.
- Then substituting $\langle S\rangle$ in $\lambda_{L} S L \bar{L}$, the superfields L, \bar{L} acquire a mass $m_{L}=\lambda_{L}|\langle S\rangle|=\lambda_{L} m_{3 / 2} / \kappa$.
- The MSSM μ term is obtained by substituting $\langle N\rangle$ in $\lambda_{\mu}^{1} N H_{u}^{1} H_{d}^{1}$ with $\mu=\lambda_{\mu}^{1} N_{0} / \sqrt{2}$.
- Also $H_{u}^{\alpha}, H_{d}^{\alpha}(\alpha=2,3)$ and D_{i}, D_{i}^{c} acquire masses $\sim \mathrm{TeV}$ from $\lambda_{\mu}^{\alpha} N H_{u}^{\alpha} H_{d}^{\alpha}$ and $\lambda_{D}^{i} N D_{i} D_{i}^{c}$ respectively.
- The mass spectrum of the scalar $S-N-\bar{N}$ system can be constructed by substituting $N=\langle N\rangle+\delta \tilde{N}$ and $\bar{N}=\langle\bar{N}\rangle+\delta \tilde{N}$.
- For exact SUSY, we find two complex scalar fields S and $\theta=$ $(\delta \tilde{N}+\delta \tilde{N}) / \sqrt{2}$ with equal masses $m_{S}=m_{\theta}=\sqrt{2} \kappa M$.
- Soft SUSY breaking mixes these fields yielding a mass splitting.
- The $U(1)_{\psi^{\prime}}$ breaking generates superconducting strings with relatively small tension, which satisfies all the experimental bounds.

4 Electroweak Symmetry Breaking

- The standard V for the radiative electroweak symmetry breaking in MSSM is modified in the present model.
- One modification originates from the D-term for $U(1)_{\psi^{\prime}}$:

$$
V_{D}=\frac{g_{\psi^{\prime}}^{2}}{80}\left[-2\left|H_{u}\right|^{2}-3\left|H_{d}\right|^{2}+5\left(|N|^{2}-|\bar{N}|^{2}\right)\right]^{2} .
$$

- $g_{\psi^{\prime}}$ is the GUT-normalized gauge coupling for $U(1)_{\psi^{\prime}}$ and H_{u}, H_{d} are the neutral components of the scalar parts of H_{u}^{1}, H_{d}^{1}.
- To integrate out to one loop N and \bar{N}, we express them in terms of the canonically normalized real scalars $\delta N, \delta \bar{N}, \varphi, \bar{\varphi}$:

$$
N=\frac{1}{\sqrt{2}}\left(N_{0}+\delta N\right) e^{\frac{i \varphi}{N_{0}}}, \quad \bar{N}=\frac{1}{\sqrt{2}}\left(N_{0}+\delta \bar{N}\right) e^{\frac{i \bar{\varphi}}{N_{0}}} .
$$

- The combination $|N|^{2}-|\bar{N}|^{2}$ in the D-term then becomes

$$
|N|^{2}-|\bar{N}|^{2}=\sqrt{2} N_{0} \eta+\eta \xi,
$$

with

$$
\eta=\frac{\delta N-\delta \bar{N}}{\sqrt{2}}, \quad \xi=\frac{\delta N+\delta \bar{N}}{\sqrt{2}} .
$$

- The D-term can now be expanded up to second order in η, ξ :

$$
V_{D}=\frac{g_{\psi^{\prime}}^{2}}{80}\left[E^{2}+10 \sqrt{2} N_{0} E \eta+50 N_{0}^{2} \eta^{2}+\cdots\right],
$$

where $E \equiv-2\left|H_{u}\right|^{2}-3\left|H_{d}\right|^{2}$.

- Note that we ignored the mixed quadratic term $\propto \eta \xi$ since its coefficient is much smaller than the coefficient of the η^{2} term.
- We see that integrating out the heavy states reduces to the calculation of a path integral over η.
- Substitute N, \bar{N} in terms of $\delta N, \delta \bar{N}, \varphi, \bar{\varphi}$, keeping only η dependent terms up to 2 nd order and substituting $\langle S\rangle$ and N_{0}, the potential V becomes

$$
\delta V \simeq m_{N}^{2} \eta^{2} \quad \text { with } \quad m_{N}^{2} \equiv m_{3 / 2}^{2}+m_{0}^{2}
$$

- Adding δV to the D-term potential, we obtain the potential

$$
\begin{aligned}
V_{\eta}= & \frac{g_{\psi^{\prime}}^{2} E^{2}}{80}\left(1+\frac{5 g_{\psi^{\prime}}^{2} N_{0}^{2}}{8 m_{N}^{2}}\right)^{-1}+\left(m_{N}^{2}+\frac{5 g_{\psi^{\prime}}^{2} N_{0}^{2}}{8}\right) \\
& \times\left(\eta+\frac{g_{\psi^{\prime}}^{2} N_{0} E}{8 \sqrt{2}\left(m_{N}^{2}+\frac{5 g_{\psi^{\prime}}^{2} N_{0}^{2}}{8}\right)}\right)^{2}+\cdots .
\end{aligned}
$$

- Calculating the path integral

$$
\int(d \eta) e^{-i V_{\eta} \mathcal{V}}
$$

($\mathcal{V}=$ the spacetime volume), we then find the term

$$
\delta V_{D} \simeq \frac{g_{\psi^{\prime}}^{2}}{80}\left[2\left|H_{u}\right|^{2}+3\left|H_{d}\right|^{2}\right]^{2}\left(1+\frac{m_{Z^{\prime}}^{2}}{2 m_{N}^{2}}\right)^{-1}
$$

to be added to the usual electroweak symmetry breaking potential.

- Here $m_{Z^{\prime}}=\sqrt{5} g_{\psi^{\prime}} N_{0} / 2$ is the mass of the Z^{\prime} gauge boson.
- Another modification of the electroweak potential comes from the integration of the heavy field S with mass $\sqrt{2} \kappa M$.
- This gives the extra term in the electroweak potential

$$
-\frac{1}{2} \tilde{\lambda}_{\mu}^{2}\left|H_{u}\right|^{2}\left|H_{d}\right|^{2}, \quad \text { with } \quad \tilde{\lambda}_{\mu}=\frac{1}{\sqrt{2}} \lambda_{\mu}^{1}
$$

which reduces the well-known NMSSM term $\tilde{\lambda}_{\mu}^{2}\left|H_{u}\right|^{2}\left|H_{d}\right|^{2}$.

- From the modified electroweak V, we find the mass ${ }^{2}$ of the lightest neutral CP-even Higgs boson in the decoupling limit $\left(m_{A} \gg m_{Z}\right)$:

$$
m_{h}^{2}=m_{Z}^{2} \cos ^{2} 2 \beta+4 c v^{2}\left(2 \sin ^{2} \beta+3 \cos ^{2} \beta\right)^{2}+\lambda_{\mu}^{2} v^{2} \sin ^{2} 2 \beta
$$

- Here $\lambda_{\mu} \equiv \tilde{\lambda}_{\mu} / \sqrt{2}, v=246 \mathrm{GeV}$ and

$$
c=\frac{g_{\psi^{\prime}}^{2}}{80}\left(1+\frac{m_{Z^{\prime}}^{2}}{2 m_{N}^{2}}\right)^{-1}
$$

5 Diphoton Resonances

- The real (pseudo)scalar components $\theta_{1}\left(\theta_{2}\right)$ of $\theta=\left(\theta_{1}+i \theta_{2}\right) / \sqrt{2}$ with mass $m_{\theta}=\sqrt{2} \kappa M$ can be produced at the LHC by gluon fusion via a fermionic D_{i}, D_{i}^{c} loop.
- They can then decay into two photons via the same loop diagram as well as a similar fermionic H_{u}^{i}, H_{d}^{i} loop.
- The cross section of the diphoton excess is

$$
\sigma\left(p p \rightarrow \theta_{m} \rightarrow \gamma \gamma\right) \simeq \frac{C_{g g}}{m_{\theta} s \Gamma_{\theta_{m}}} \Gamma\left(\theta_{m} \rightarrow g g\right) \Gamma\left(\theta_{m} \rightarrow \gamma \gamma\right)
$$

where $m=1,2, C_{g g} \simeq 3163, \sqrt{s} \simeq 13 \mathrm{TeV}$, and $\Gamma_{\theta_{m}}$ is the total decay width of θ_{m}.

- The decay widths of θ_{m} to two gluons or two photons are

$$
\begin{aligned}
\Gamma\left(\theta_{m} \rightarrow g g\right)= & \frac{m_{\theta}^{3} \alpha_{s}^{2}}{512 \pi^{3}\langle N\rangle^{2}}\left(\sum_{i=1}^{3} A_{m}\left(x_{i}\right)\right)^{2} \\
\Gamma\left(\theta_{m} \rightarrow \gamma \gamma\right)= & \frac{m_{\theta}^{3} \alpha_{Y}^{2} \cos ^{4} \theta_{W}}{9216 \pi^{3}\langle N\rangle^{2}}\left[\sum_{i=1}^{3} A_{m}\left(x_{i}\right)+\right. \\
& \left.\frac{3}{2} \sum_{i=1}^{3} A_{m}\left(y_{i}\right)\left(1+\frac{\alpha_{2} \tan ^{2} \theta_{W}}{\alpha_{Y}}\right)\right]^{2}
\end{aligned}
$$

- $A_{1}(x)=2 x+(1-x) A_{2}(x), A_{2}(x)=2 x \arcsin ^{2}(1 / \sqrt{x}), x_{i}=$ $4 m_{D_{i}}^{2} / m_{\theta}^{2}, y_{i}=4 m_{H_{i}}^{2} / m_{\theta}^{2}, m_{D_{i}}=\lambda_{D}^{i}\langle N\rangle, m_{H_{i}}=\lambda_{\mu}^{i}\langle N\rangle$.
- The cross section simplifies if θ_{m} decay predominantly into gluons, i.e. $\Gamma_{\theta_{m}} \simeq \Gamma\left(\theta_{m} \rightarrow g g\right)$:

$$
\sigma\left(p p \rightarrow \theta_{m} \rightarrow \gamma \gamma\right) \simeq 7.3 \times 10^{6} \frac{\Gamma\left(\theta_{m} \rightarrow \gamma \gamma\right)}{m_{\theta}} \mathrm{fb}
$$

- Assume that x_{i}, y_{i} are just above unity, which maximizes $A_{1}\left(x_{i}\right)$, $A_{2}\left(y_{i}\right)$ while still blocks the decay of θ_{m} to D_{i}, D_{i}^{c} and H_{u}^{i}, H_{d}^{i}.
- We also consider the decay of θ_{2} since $A_{2}(x)>A_{1}(x)$.
- In this case, the cross section becomes

$$
\sigma\left(p p \rightarrow \theta_{2} \rightarrow \gamma \gamma\right) \simeq 5.5\left(\frac{m_{\theta}}{\langle N\rangle}\right)^{2} \mathrm{fb} \simeq 11 \kappa^{2} \mathrm{fb}
$$

- θ could also decay into a bosonic L, \bar{L} pair.
- Our estimate of the cross section holds if that the direct decay of θ into a D_{i}, D_{i}^{c}, or H_{u}^{i}, H_{d}^{i}, or L, \bar{L} is kinematically blocked.
- This is achieved for

$$
\kappa \lesssim \sqrt{2} \lambda_{D}^{i}, \sqrt{2} \lambda_{\mu}^{i}, 2 \lambda_{L} \frac{m_{3 / 2}}{m_{\theta}}
$$

- Note that our estimate of the maximal diphoton excess corresponds to saturating the first two of these inequalities.
- For simplicity and for not disturbing the MSSM gauge coupling unification, we choose to saturate the third inequality too.

6 A Numerical Example

- $g_{\psi^{\prime}}$ unifies with the MSSM gauge couplings provided that its value at low energies is equal to about 0.45 .
- Demanding that the Z^{\prime} gauge boson mass $m_{Z^{\prime}} \simeq \sqrt{5} g_{\psi^{\prime}} M / \sqrt{2}>$ 3.8 TeV , say, we then find $M \gtrsim 5.34 \mathrm{TeV}$.
- As an example, we will set $M=10 \mathrm{TeV}$.
- We can show that $\kappa, \tilde{\lambda}_{\mu}$ remain perturbative up to the GUT scale provided that they are not much bigger than about 0.7.
- Requiring that the diphoton resonance mass $m_{\theta}=\sqrt{2} \kappa M \gtrsim$ 4.5 TeV as indicated by CMS, implies that $\kappa \gtrsim 0.32$.
- If the first two inequalities above are saturated, we have $0.5 \gtrsim$ $\lambda_{D}^{i}, \lambda_{\mu}^{i} \gtrsim 0.22$.
- We set $\lambda_{D}^{i} \simeq \lambda_{\mu}^{i} \simeq 0.3 \Rightarrow \tilde{\lambda}_{\mu} \simeq 0.3, \kappa \simeq 0.42, m_{D_{i}} \simeq m_{H_{i}} \simeq$ $3 \mathrm{TeV}(\mu \simeq 3 \mathrm{TeV}), m_{\theta} \simeq 6 \mathrm{TeV}, m_{Z^{\prime}} \simeq 7.1 \mathrm{TeV}$.
- Saturating the third inequality too, we obtain $m_{L} \simeq 3 \mathrm{TeV}$.
- For $\kappa \lesssim 0.7$, the resonance mass remains below 9.9 TeV .

Figure 1: Higgs boson mass $m_{h_{\sim}}$ in the decoupling limit and for maximal stop quark mixing versus $M_{\text {SUSY }}$ for $M=10 \mathrm{TeV}, \tilde{\lambda}_{\mu}=0.3, \tan \beta=20$, and $m_{3 / 2}=4 \mathrm{TeV}$. The bold horizontal line corresponds to $m_{h}=125 \mathrm{GeV}$.

- We plot the Higgs mass m_{h} in the decoupling limit versus $M_{\text {SUSY }}$, which is the geometric mean of the stop quark mass eigenvalues.
- We assume maximal stop quark mixing, which maximizes m_{h}, and include the two-loop radiative corrections to m_{h} in MSSM.
- The NMSSM and D-term contributions to m_{h} are also included.
- In this figure, $\tan \beta=20$ and $m_{3 / 2}=4 \mathrm{TeV}$.
- The NMSSM correction is very small since $\tilde{\lambda}_{\mu}$ is relatively small.
- The D-term correction, however, is sizable and allows us to obtain the observed m_{h} with much smaller stop quark masses than the ones required in MSSM or NMSSM.
- Indeed, the inclusion of the D-term from $U(1)_{\psi^{\prime}}$ reduces $M_{\text {SUSY }}$ from about 1900 GeV to about 1200 GeV .

$7 \quad$ Sterile Neutrinos

- The sterile neutrinos, which are the fermionic parts of N_{i}, acquire masses $\sim 10^{-1} \mathrm{eV}$ for $M \sim 10 \mathrm{TeV}$ via $\lambda_{N}^{i} N_{i} N_{i} \bar{N}^{2} / 2 m_{\mathrm{P}}$.
- These fermionic fields, which are stable on account of the Z_{2}^{\prime} symmetry, can act as sterile neutrinos.
- In the early universe, sterile neutrinos are in equilibrium through reactions like $N_{i} \bar{N}_{i} \leftrightarrow$ a pair of SM particles via a Z^{\prime} exchange.
- The interaction rate per sterile neutrino is $\Gamma_{N_{i}} \sim T^{5} / M^{4}$.
- The decoupling temperature T_{D} is then found from the condition $\Gamma_{N_{i}} \sim H=$ the Hubble parameter, which implies that

$$
T_{\mathrm{D}} \sim M\left(\frac{M}{m_{\mathrm{P}}}\right)^{\frac{1}{3}}
$$

- The strategy is the same as the one used for the SM neutrino decoupling via processes involving weak gauge boson exchange.
- For SM neutrinos, M should be the electroweak scale $\sim 100 \mathrm{GeV}$, and the decoupling temperature turns out to be $\sim 1 \mathrm{MeV}$.
- So, for $M \simeq 10 \mathrm{TeV}, T_{\mathrm{D}}$ is expected to be $\simeq 460 \mathrm{MeV}$, which is well above the critical temperature for the QCD transition.
- The effective number of massless degrees of freedom in equilibrium right after the decoupling of sterile neutrinos is 61.75 .
- At decoupling of the SM neutrinos, this number becomes 10.75.
- Due to entropy conservation, the T of SM neutrinos is raised relative to that of the sterile neutrinos by a factor $(61.75 / 10.75)^{1 / 3}$.
- Consequently, the contribution of the three sterile neutrinos to the effective number of neutrinos at big bang nucleosynthesis is

$$
\Delta N_{\nu}=3 \times\left(\frac{10.75}{61.75}\right)^{\frac{4}{3}} \simeq 0.29
$$

- This is perfectly compatible with the Planck satellite bound

$$
N_{\nu}=3.15 \pm 0.23
$$

8 Dark Matter

- The bosonic N_{i} with mass $\sim m_{3 / 2}$ can decay into a fermionic N_{i} and a particle-sparticle pair via a Z^{\prime} gaugino exchange.
- A necessary condition for this is that there exist sparticles which are lighter than the scalar N_{i}.
- If the decay of the lightest scalar N_{i} (denoted as $\left.\hat{N}\right)$ is kinematically blocked, this particle can contribute to the CDM.
- We estimate the freeze-out temperature T_{f} of \hat{N} and its relic abundance $\Omega_{\hat{N}} h^{2}$ for the lowest $M \simeq 5.34 \mathrm{TeV}$.
- The requirement that $\Omega_{\hat{N}} h^{2}$ equals the $\Omega_{\mathrm{CDM}} h^{2} \simeq 0.12$ implies that $m_{\hat{N}} \simeq 1.25 \mathrm{TeV}$ and $T_{\mathrm{f}} \simeq 51 \mathrm{GeV}$.
- The model possesses an accidental lepton parity symmetry $Z_{2}^{\text {lp }}$ under which $l, e^{c}, \nu^{c}, L, \bar{L}$ are odd.
- Combining Z_{2}^{lp} with the $Z_{2}^{\mathrm{bp}} \subset U(1)_{B}$, we obtain a matter parity symmetry Z_{2}^{mp} under which $q, u^{c}, d^{c}, l, e^{c}, \nu^{c}, L, \bar{L}$ are odd.
- A R-parity is then generated combining $Z_{2}^{m p}$ with fermion parity.
- Particles with negative R-parity except the bosonic L, \bar{L} and the fermionic $H_{u}^{\alpha}, H_{d}^{\alpha}, N_{i}$ decay to the LSP which is CDM candidate.
- Z_{2} and R -parity \Rightarrow the lightest state in the bosonic (fermionic) L, \bar{L} and fermionic (bosonic) $H_{u}^{\alpha}, H_{d}^{\alpha}$ is stable.
- We thus have two more candidates for CDM with their relic abundances depending on details.
- Finally, if $\langle N\rangle$ is increased to $\sim 10^{3} \mathrm{TeV}$, the sterile neutrinos become plausible candidates for keV scale warm dark matter.

9 Summary

- We appended $U(1)_{\psi^{\prime}}$ to the MSSM gauge group.
- This $U(1)_{\psi^{\prime}}$ is a linear combination of $U(1)_{\chi}, U(1)_{\psi} \subset E_{6}$.
- The three matter 27-plets in E_{6} give rise to three $S O(10)$ singlet fermions N_{i}, called sterile neutrinos.
- For a relatively low ($\sim 10 \mathrm{TeV}$) breaking scale of $U(1)_{\psi^{\prime}}$, the sterile neutrinos acquire masses $\lesssim 0.1 \mathrm{eV}$.
- Their contribution as fractional cosmic neutrinos is acceptable.
- The model possesses many possible candidates for DM.
- The D-term for $U(1)_{\psi^{\prime}}$ contributes appreciably to m_{h} and, thus $m_{h}=125 \mathrm{GeV}$ can be obtained with relatively light stop quarks.
- The model predicts superconducting cosmic strings as well as diquark and diphoton resonances.
- The μ problem is naturally solved and the RH neutrinos masses are large allowing the seesaw and leptogenesis scenarios to apply.
- Baryon number is conserved to all orders in perturbation theory.

