Eurpopear Institate for Soincress ard Their Applications

Resonant ATOM MAJORANA MIXING

Mainly based on :

- Neutrinoless Double Electron Capture as a Tool to Measure the ve Mass, J. B., A. De Rujula, C. Jarlskog, Nucl.Phys. B223 (1983) 15
- Developments and papers in the last decade triggered by atomic Traps
- Stimulated transitions in resonant Atom Majorana Mixing, J. B., A. Segarra, arXiv:1706.08328 [hep-ph]

José Bernabéu
 Alejandro Segarra IFIC-Valencia

Outline

- Massive Neutrinos
- Neutrinoless Double Beta Decay
- Neutrinoless Double Electron Capture
- Atom Majorana Mixing
- Resonant Enhancement
- Time History
- Spontaneous Observables
- Stimulated Transitions
- Outlook

MASSIVE NEUTRINOS

- Neutrino Flavour Oscillations observed in atmospheric, solar, reactor and accelerator sectors have demonstrated that

NEUTRINOS HAVE MASS AND FLAVOUR MIXING

Two mass differences and Three Mixings already measured

- Most important Open Questions:

ARE NEUTRINOS DIRAC OR MAJORANA PARTICLES ?

$\bar{v}_{R} \quad m_{D} \quad v_{L}$
Needs sterile v_{R}
Origin by Standard Higgs Doublet
$\bar{v}_{L}^{c} m_{M} v_{L}$
Breaks Global Lepton Number Beyond Standard Origin

- CP-Violating Flavour Phase and (?) Two CPV Majorana Phases

$$
\mathrm{U}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13 e^{-i \delta}} \\
0 & 1 & 0 \\
-s_{133^{i \delta}} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
e^{i \alpha_{1} / 2} & 0 & 0 \\
0 & e^{i \alpha_{2} / 2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Absolute Neutrino Mass Scale
- Neutrino Mass Spectrum Hierarchy \rightarrow normal, inverted
- $(2,3)$ Mixing above or below 45 degrees?

Neutrinoless Double BetaDecay

$$
{ }^{A} Z \rightarrow{ }^{A}(Z+2)+2 e^{-}
$$

[S. Pascoli, CERN Courier, July-August 2016]

Neutrinoless Double Electron Capture

$$
{ }^{A} Z+2 e^{-} \rightarrow{ }^{A}(Z-2)^{*}
$$

- $\Delta L=2$ mixing, only if Majorana v, X-ray emission
- Signature: $\mathrm{T}_{\mathrm{YY}}=\mathrm{Q}$
- No intrinsic background on the resonance
$M_{0 v}$ from nuclear QRPA (Faessler et al, PRC(2012)) and IBM (lachello et al, PRC (2014))

ATOM MAJORANA MIXING

Two-state Hamiltonian $\quad \mathbb{H}=\mathbb{M}-\frac{i}{2} \mathbb{I}=\left[\begin{array}{cc}M_{1} & M_{21}^{*} \\ M_{21} & M_{2}\end{array}\right]-\frac{i}{2}\left[\begin{array}{ll}0 & 0 \\ 0 & \Gamma\end{array}\right]$
Non-orthogonal eigenstates: $[\mathrm{M}, \mathbb{I}] \neq 0,\left\langle\lambda_{S} \mid \lambda_{L}\right\rangle=\alpha-\beta$

$$
\begin{gathered}
\left|\lambda_{L}\right\rangle=|1\rangle+\alpha|2\rangle, \\
E_{L} \approx M_{1}, \\
\Gamma_{L} \approx|\alpha|^{2} \Gamma,
\end{gathered}
$$

$$
\left|\lambda_{S}\right\rangle=|2\rangle-\beta^{*}|1\rangle,
$$

$$
E_{S} \approx M_{2},
$$

$$
\Gamma_{S} \approx \Gamma
$$

Resonant Enhancement

$$
>\frac{{ }^{152} \mathrm{Gd} \rightarrow{ }^{152} \mathrm{Sm} \quad \text { Eliseev et al, PRL (2011) }}{\Delta \sim 30 \Gamma}
$$

$>|\alpha|^{2}=10^{-54}\left[\frac{\left|m_{\beta \beta}\right|}{0.1 \mathrm{eV}}\right]^{2}$

$$
\begin{aligned}
\alpha & =\frac{M_{21}}{\Delta+\frac{i}{2} \Gamma} \\
\beta & =\frac{M_{21}}{\Delta-\frac{i}{2} \Gamma}
\end{aligned}
$$

> Intense experimental searches looking for a better fulfilment of the Resonance Condition.
> Precise measurement of atomic masses achievable due to the development of atomic traps.

Time History

$$
\left|\left\langle^{A}(Z-2)^{*} \mid A Z(t)\right\rangle\right|^{2}=|\alpha|^{2}\left\{1+e^{-\Gamma t}-2 e^{-\frac{1}{2} \Gamma t} \cos (\Delta \cdot t)\right\}
$$

$>$ Different time-scales given by $|\Delta|, \Gamma$ and Γ_{L}
> For observable times, the system has evolved to three "stationary" states

$$
\tau_{S} \ll t \ll \tau_{L} \quad \Longrightarrow \quad\left\{\begin{array}{c}
P_{L}(t) \approx 1-\Gamma_{L} t \\
P_{S}(t) \approx 0 \\
P_{\text {g.s. }}(t) \approx|\alpha|^{2} \Gamma t
\end{array}\right.
$$

Spontaneous Observables

$>$ Spontaneous emission

$$
P_{L}(\Delta t) \approx 1-\Gamma_{L} \Delta t
$$

$$
\tau_{L} \sim 10^{29} \mathrm{yr}
$$

> Daughter atom population

$$
P_{\text {g.s. }}(t) \approx|\alpha|^{2} \Gamma t_{0}
$$

1 mole Gd from $\mathrm{T}_{\text {Earth }}$ includes 20000 Sm atoms

Stimulated transitions

Natural population inversion!

$>$ Stimulated emission

$$
\frac{\mathrm{d} N_{L}^{\mathrm{s}}}{\mathrm{~d} t}=G \frac{\mathrm{~d} N_{L}^{\mathrm{sp}}}{\mathrm{~d} t}
$$

$$
G=\hbar(\hbar c)^{2} \frac{\pi^{2}}{(\hbar \omega)^{3}} \frac{\mathrm{~d} N}{\mathrm{~d} t \mathrm{~d} S}\left[\frac{\mathrm{~d} \omega}{\omega}\right]^{-1}
$$

$\hbar \omega \sim$ tens of keV

Generation of X-ray flashes
To generate the extremely short and intense
X-ray laser flashes bunches of high-energy
electrons are directed through special
arrangements of magnets (the green-blue
structure).
European XFEL / Marc Hermann, tricklabor
Click on the image to see it full size.

- 100 fs pulse
- 100 nm spot size
- 20W mean power

$$
G \sim 100
$$

Stimulated transitions II

> Daughter Atom
Absorption Spectrum

Laser:

- 100 fs pulse
- $40 \mu \mathrm{~m}$ spot size
- 5 W mean power

$$
\left.\frac{\mathrm{d} N_{\text {g.s. }}}{\mathrm{d} t}\right|_{\mathrm{abs}}=-60 \% N_{\text {g.s. }}\left[\frac{100 \mathrm{~ns}}{\tau}\right] \mathrm{fs}^{-1}
$$

The daughter atom can be excited to any of its atomic levels!
$>$ Typical atomic lifetimes of ${ }^{152}$ Sm range from 10 to 1000 ns

Outlook

$>$ Neutrinoless double electron capture is a quantum Majorana Mixing between two atoms, generated by $\Delta \mathrm{L}=2$ Majorana mass neutrino, which provides enhanced observables under the resonance condition.
$>$ Intense experimental searches looking for a better candidate. Today's best one, ${ }^{152} \mathrm{Gd}$, is still a factor 30 away of the resonance, implying a 1000 factor loss in any observable.
$>$ Time evolution of these mixed states presents the phenomenon of Atom Oscillations. At observable times, the description is the same as any 3-level atomic system with natural population inversion.
> Many interesting observables besides spontaneous emission: probes of daughter atom population (both geochemical and optical) and XFEL-stimulated X-ray emission.

Thank you very much for your attention

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13 e^{-i \delta}} \\
0 & 1 & 0 \\
-s_{133^{i \delta}} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
e^{i \alpha_{1} / 2} & 0 & 0 \\
0 & e^{i \alpha_{2} / 2} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
e^{i \alpha_{1 / 2}} & 0 & 0 \\
0 & e^{i \alpha^{2 / 2}} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

