

Departamento de Física

Curved momentum spaces from quantum groups with cosmological constant

Iván Gutiérrez-Sagredo

Joint work with: Á. Ballesteros¹, G. Gubitosi² and F.J. Herranz¹

Physics Letters B 773 (2017) 47-53

¹ Departamento de Física, Universidad de Burgos ² Theoretical Physics, Blackett Laboratory, Imperial College

QUANTUM SPACETIME AND PHYSICS MODELS (CORFU)

Overview

- **2** The κ -dS Poisson-Hopf algebra
- 3 Momentum space for the κ -dS Poisson-Hopf algebra

Introduction

Nontrivial geometry on momentum space

The idea that the **momentum space** (and not only spacetime) could have a **nontrivial geometry** has a long history.

- Originally proposed by Max Born¹
- A general feature of Doubly Special Relativity theories², where the Planck energy is a second relativistic invariant generating curvature in momentum space
- In (2+1)D the effective description of quantum gravity coupled to point particles is given by a theory with curved momentum space and noncommutative spacetime coordinates³

 ¹Born M, Proc. R. Soc. Lond., (1938).
 ²Amelino-Camelia G, Phys. Lett. B, (2001).
 Kowalski-Glikman J, Nowak S, Class. Quant. Grav., (2003).
 ³Matschull H J, Welling M, Class. Quant. Grav., (1998).

- Directly related with the results here presented are the models in which momentum space is generated by coordinates associated to the generators of the Lie algebras of symmetries of spacetimes⁴
- Here we will generalize previous results to the case in which spacetime itself is curved and construct explicitly the momentum space using physically adapted coordinates which allow us to give a physical interpretation of the results
- Finally we give a **geometrical description of our momentum space** allowing us to obtain deformed relation dispersions

⁴Kowalski-Glikman J, Int. J. Mod. Phys. A, (2013).

The κ -dS Poisson-Hopf algebra

The (2+1) dS algebra

Poisson-Lie brackets of the undeformed (2+1)-dS algebra

 $\begin{array}{ll} \{J, P_i\} = \epsilon_{ij}P_j, & \{J, K_i\} = \epsilon_{ij}K_j, & \{J, P_0\} = 0, \\ \{P_i, K_j\} = -\delta_{ij}P_0, & \{P_0, K_i\} = -P_i, & \{K_1, K_2\} = -J, \\ \{P_0, P_i\} = -\Lambda K_i, & \{P_1, P_2\} = \Lambda J, \\ \text{where } i, j = 1, 2, \text{ and } \epsilon_{ij} \text{ is a skew-symmetric tensor with } \epsilon_{12} = 1. \end{array}$

Quadratic Casimir functions

$$\mathcal{C} = P_0^2 - \mathbf{P}^2 - \Lambda (J^2 - \mathbf{K}^2), \qquad \mathcal{W} = -JP_0 + K_1P_2 - K_2P_1,$$

where $\mathbf{P}^2 = P_1^2 + P_2^2$ and $\mathbf{K}^2 = K_1^2 + K_2^2.$

The undeformed Hopf algebra structure is given by the coproduct: $\Delta_0(X_i) = X_i \otimes 1 + 1 \otimes X_i.$

Deforming: The (2+1) κ -dS algebra

Poisson-Lie brackets of the (2+1)
$$\kappa$$
-dS algebra
 $\{J, P_0\} = 0, \quad \{J, P_1\} = P_2, \quad \{J, P_2\} = -P_1, \quad \{J, K_1\} = K_2, \quad \{J, K_2\} = -K_1, \quad \{K_1, K_2\} = -\frac{\sin(2z\sqrt{\Lambda}J)}{2z\sqrt{\Lambda}}, \quad \{P_0, P_1\} = -\Lambda K_1, \quad \{P_0, P_2\} = -\Lambda K_2, \quad \{P_1, P_2\} = \Lambda \frac{\sin(2z\sqrt{\Lambda}J)}{2z\sqrt{\Lambda}}, \quad \{K_1, P_0\} = P_1, \quad \{K_2, P_0\} = P_2, \quad \{P_2, K_1\} = z (P_1P_2 - \Lambda K_1K_2) \quad \{P_1, K_2\} = z (P_1P_2 - \Lambda K_1K_2), \quad \{K_1, P_1\} = \frac{1}{2z} \left(\cos(2z\sqrt{\Lambda}J) - e^{-2zP_0}\right) + \frac{z}{2} \left(P_2^2 - P_1^2\right) - \frac{z\Lambda}{2} \left(K_2^2 - K_1^2\right) \right) \quad \{K_2, P_2\} = \frac{1}{2z} \left(\cos(2z\sqrt{\Lambda}J) - e^{-2zP_0}\right) + \frac{z}{2} \left(P_1^2 - P_2^2\right) - \frac{z\Lambda}{2} \left(K_1^2 - K_2^2\right)$

Quadratic deformed Casimir function C_z

$$\mathcal{C}_{z} = \frac{2}{z^{2}} \left[\cosh(zP_{0})\cos(z\sqrt{\Lambda}J) - 1 \right] - e^{zP_{0}} \left(\mathbf{P}^{2} - \Lambda \mathbf{K}^{2} \right) \cos(z\sqrt{\Lambda}J) - 2\Lambda e^{zP_{0}} \frac{\sin(z\sqrt{\Lambda}J)}{\sqrt{\Lambda}} R_{3},$$

with $R_3 = \epsilon_{3bc} K_b P_c$.

Hopf algebra structure

Compatible coproduct

$$\begin{split} \Delta(P_0) &= P_0 \otimes 1 + 1 \otimes P_0, \qquad \Delta(J) = J \otimes 1 + 1 \otimes J, \\ \Delta(P_1) &= P_1 \otimes \cos(z\sqrt{\Lambda}J) + e^{-zP_0} \otimes P_1 + \Lambda K_2 \otimes \frac{\sin(z\sqrt{\Lambda}J)}{\sqrt{\Lambda}}, \\ \Delta(P_2) &= P_2 \otimes \cos(z\sqrt{\Lambda}J) + e^{-zP_0} \otimes P_2 - \Lambda K_1 \otimes \frac{\sin(z\sqrt{\Lambda}J)}{\sqrt{\Lambda}}, \\ \Delta(K_1) &= K_1 \otimes \cos(z\sqrt{\Lambda}J) + e^{-zP_0} \otimes K_1 + P_2 \otimes \frac{\sin(z\sqrt{\Lambda}J)}{\sqrt{\Lambda}}, \\ \Delta(K_2) &= K_2 \otimes \cos(z\sqrt{\Lambda}J) + e^{-zP_0} \otimes K_2 - P_1 \otimes \frac{\sin(z\sqrt{\Lambda}J)}{\sqrt{\Lambda}}, \end{split}$$

Limit $\Lambda \to 0$

- κ -dS reduces to κ -Poincaré in the limit $\Lambda \rightarrow 0$
- $\{P_0, P_1, P_2\}$ forms an Abelian Poisson-Hopf algebra
- Also, $C_z = C_z(P_0, P_1, P_2)$ and it can be interpreted as a **modified dispersion relation** (hopefully observable!) in a curved momentum space

$\Lambda \neq 0$

When $\Lambda \neq 0$ Lorentz generators $\{K_1, K_2, J\}$ get intertwined with translations generators $\{P_0, P_1, P_2\}$, so it was not clear how to extend the construction to curved spacetimes.

Our proposal

Here we propose to **enlarge the momentum space** to include the coordinates associated to boosts in addition to the ones associated to the canonical momenta.

Momentum space for the κ-dS Poisson-Hopf algebra

Sketch of the construction of momentum space

- Applying the quantum duality principle
- Calculate the dual Lie algebra to the κ -dS algebra
- Calculate the full dual quantum group to the κ -dS algebra
- Define a linear action of this dual quantum group in a Minkowski space
- Consider the orbit of a certain point (origin of the momentum space)

The $(2+1) \kappa$ -dS Poisson-Hopf algebra

Denoting by $\{X^0, X^1, X^2, L^1, L^2, R\}$ the generators dual to, respectively, $\{P_0, P_1, P_2, K_1, K_2, J\}$, the Lie brackets defining the Lie algebra g^* of the dual Poisson-Lie group G^*_{Λ} are

$[X^0, X^1] = -z X^1,$	$[X^0, X^2] = -z X^2,$	$[X^1, X^2] = 0,$
$[X^0, L^1] = -z L^1,$	$[X^0, L^2] = -z L^2,$	$[L^1,L^2]=0,$
$[R, X^2] = -z L^1,$	$[R, L^1] = z \wedge X^2,$	$[L^1, X^2] = 0,$
$[R, X^1] = z L^2,$	$[R, L^2] = -z \Lambda X^1,$	$[L^2, X^1] = 0,$
$[R, X^0] = 0,$	$[L^1, X^1] = 0,$	$[L^2, X^2] = 0.$

Dual Lie group

Exponentiating the dual Lie algebra we obtain

$$G^*_{\Lambda} = \exp(\theta \rho(R)) \exp\left(p_1 \rho(X^1)\right) \exp\left(p_2 \rho(X^2)\right)$$
$$\exp\left(\chi_1 \rho(L^1)\right) \exp\left(\chi_2 \rho(L^2)\right) \exp\left(p_0 \rho(X^0)\right)$$

where $\rho: g^* \to M(6, \mathbb{R})$ is a faithful real representation of g^* .

Dual Poisson-Hopf structure

From the composition law of the dual group we have

$$\begin{split} \Delta(p_0) &= p_0 \otimes 1 + 1 \otimes p_0, \qquad \Delta(\theta) = \theta \otimes 1 + 1 \otimes \theta, \\ \Delta(p_1) &= p_1 \otimes \cos(z \sqrt{\Lambda} \theta) + e^{-zp_0} \otimes p_1 + \Lambda \chi_2 \otimes \frac{\sin(z \sqrt{\Lambda} \theta)}{\sqrt{\Lambda}}, \\ \Delta(p_2) &= p_2 \otimes \cos(z \sqrt{\Lambda} \theta) + e^{-zp_0} \otimes p_2 - \Lambda \chi_1 \otimes \frac{\sin(z \sqrt{\Lambda} \theta)}{\sqrt{\Lambda}}, \\ \Delta(\chi_1) &= \chi_1 \otimes \cos(z \sqrt{\Lambda} \theta) + e^{-zp_0} \otimes \chi_1 + p_2 \otimes \frac{\sin(z \sqrt{\Lambda} \theta)}{\sqrt{\Lambda}}, \\ \Delta(\chi_2) &= \chi_2 \otimes \cos(z \sqrt{\Lambda} \theta) + e^{-zp_0} \otimes \chi_2 - p_1 \otimes \frac{\sin(z \sqrt{\Lambda} \theta)}{\sqrt{\Lambda}}. \end{split}$$

Note that this coproduct coincides with the one for the original Hopf algebra under the identification:

$$\{p_0 \rightarrow P_0, p_1 \rightarrow P_1, p_2 \rightarrow P_2, \chi_1 \rightarrow K_1, \chi_2 \rightarrow K_2, \theta \rightarrow J\}$$

Geometric interpretation of the momentum space

Consider the left linear action of G^*_{Λ} on a 6 dimensional Minkowski space $G^*_{\Lambda} \triangleright \mathbb{R}^{1,5}$. Then the orbit of the point $(0, 0, 0, 0, 0, 1) \in \mathbb{R}^{1,5}$ is given by $(S_0, S_1, S_2, S_3, S_4, S_5)$, where

$$\begin{split} S_{0} &= \sinh(zp_{0}) + \frac{1}{2} e^{z p_{0}} z^{2} \left(p_{1}^{2} + p_{2}^{2} + \Lambda \left(\chi_{1}^{2} + \chi_{2}^{2} \right) \right), \\ S_{1} &= e^{z p_{0}} z \left(\cos(z \sqrt{\Lambda} \theta) p_{1} - \sqrt{\Lambda} \sin(z \sqrt{\Lambda} \theta) \chi_{2} \right), \\ S_{2} &= e^{z p_{0}} z \left(\cos(z \sqrt{\Lambda} \theta) p_{2} + \sqrt{\Lambda} \sin(z \sqrt{\Lambda} \theta) \chi_{1} \right), \\ S_{3} &= e^{z p_{0}} z \left(-\sin(z \sqrt{\Lambda} \theta) p_{2} + \sqrt{\Lambda} \cos(z \sqrt{\Lambda} \theta) \chi_{1} \right), \\ S_{4} &= e^{z p_{0}} z \left(\sin(z \sqrt{\Lambda} \theta) p_{1} + \sqrt{\Lambda} \cos(z \sqrt{\Lambda} \theta) \chi_{2} \right), \\ S_{5} &= \cosh(zp_{0}) - \frac{1}{2} e^{z p_{0}} z^{2} \left(p_{1}^{2} + p_{2}^{2} + \Lambda \left(\chi_{1}^{2} + \chi_{2}^{2} \right) \right), \end{split}$$

and they satisfy the conditions

$$-S_0^2 + S_1^2 + S_2^2 + S_3^2 + S_4^2 + S_5^2 = 1$$
 and $S_0 + S_5 = e^{z p_0} > 0$

which is the defining relation for (half of) the (4+1)-dimensional dS space M_{dS} embedded in $\mathbb{R}^{1,5}$.

Geometric interpretation of the momentum space

- The topology of the dual Lie group is $\mathbb{R}^5 \times S^1$
- The rotation subgroup is the stabilizer of the origin of momentum space
- The projection of the Casimir operator C_z to M_{dS} can be interpreted as a distance from the origin of momentum space, thus providing a geometrical interpretation of deformed dispersion relations (in the spirit of relative locality)

Concluding remarks

- We have presented here the explicit construction of the curved momentum space related with the (2+1) κ -dS deformation
- In the same manner the momentum space related with the (2+1) κ -AdS and the (1+1) κ -(A)dS deformation can be constructed⁵
- The same procedure can be applied to the (3+1)D case⁶, where some subtleties related with the κ -deformation have to be taken into account
- The approach presented is completely general and can be employed for any other deformation

⁵Ballesteros A, Gubitosi G, G-S, Herranz F J, *Physics Letters B*, (2017). ⁶Ballesteros A, Gubitosi G, G-S, Herranz F J, *In preparation*.