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Nontrivial geometry on momentum space

The idea that the momentum space (and not only spacetime)
could have a nontrivial geometry has a long history.

Originally proposed by Max Born1

A general feature of Doubly Special Relativity theories2, where
the Planck energy is a second relativistic invariant generating
curvature in momentum space

In (2+1)D the effective description of quantum gravity
coupled to point particles is given by a theory with curved
momentum space and noncommutative spacetime
coordinates3

1Born M, Proc. R. Soc. Lond., (1938).
2Amelino-Camelia G, Phys. Lett. B, (2001).

Kowalski-Glikman J, Nowak S, Class. Quant. Grav., (2003).
3Matschull H J, Welling M, Class. Quant. Grav., (1998).
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Directly related with the results here presented are the models
in which momentum space is generated by coordinates
associated to the generators of the Lie algebras of symmetries
of spacetimes4

Here we will generalize previous results to the case in which
spacetime itself is curved and construct explicitly the
momentum space using physically adapted coordinates which
allow us to give a physical interpretation of the results

Finally we give a geometrical description of our
momentum space allowing us to obtain deformed relation
dispersions

4Kowalski-Glikman J, Int. J. Mod. Phys. A, (2013).
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The (2+1) dS algebra

Poisson-Lie brackets of the undeformed (2+1)-dS algebra

{J,Pi} = εijPj , {J,Ki} = εijKj , {J,P0} = 0,

{Pi ,Kj} = −δijP0, {P0,Ki} = −Pi , {K1,K2} = −J,
{P0,Pi} = −ΛKi , {P1,P2} = Λ J,

where i , j = 1, 2, and εij is a skew-symmetric tensor with ε12 = 1.

Quadratic Casimir functions

C = P2
0 − P2 − Λ(J2 −K2), W = −JP0 + K1P2 − K2P1,

where P2 = P2
1 + P2

2 and K2 = K 2
1 + K 2

2 .

The undeformed Hopf algebra structure is given by the coproduct:
∆0(Xi ) = Xi ⊗ 1 + 1⊗ Xi .
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Deforming: The (2+1) κ−dS algebra

Poisson-Lie brackets of the (2+1) κ−dS algebra

{J,P0} = 0, {J,P1} = P2, {J,P2} = −P1,

{J,K1} = K2, {J,K2} = −K1, {K1,K2} = − sin(2z
√

ΛJ)

2z
√

Λ
,

{P0,P1} = −ΛK1, {P0,P2} = −ΛK2, {P1,P2} = Λ
sin(2z

√
ΛJ)

2z
√

Λ
,

{K1,P0} = P1, {K2,P0} = P2,

{P2,K1} = z (P1P2 − ΛK1K2) {P1,K2} = z (P1P2 − ΛK1K2) ,

{K1,P1} =
1

2z

(
cos(2z

√
ΛJ)− e−2zP0

)
+

z

2

(
P2

2 − P2
1

)
− zΛ

2

(
K 2

2 − K 2
1

)
{K2,P2} =

1

2z

(
cos(2z

√
ΛJ)− e−2zP0

)
+

z

2

(
P2

1 − P2
2

)
− zΛ

2

(
K 2

1 − K 2
2

)
Quadratic deformed Casimir function Cz

Cz =
2

z2

[
cosh(zP0) cos(z

√
ΛJ)− 1

]
− ezP0

(
P2 − Λ K2

)
cos(z

√
Λ J)− 2 Λ ezP0

sin(z
√

ΛJ)
√

Λ
R3,

with R3 = ε3bcKbPc .
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Hopf algebra structure

Compatible coproduct

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J) = J ⊗ 1 + 1⊗ J,

∆(P1) = P1 ⊗ cos(z
√

ΛJ) + e−zP0 ⊗ P1 + ΛK2 ⊗
sin(z

√
ΛJ)√

Λ
,

∆(P2) = P2 ⊗ cos(z
√

ΛJ) + e−zP0 ⊗ P2 − ΛK1 ⊗
sin(z

√
ΛJ)√

Λ
,

∆(K1) = K1 ⊗ cos(z
√

ΛJ) + e−zP0 ⊗ K1 + P2 ⊗
sin(z

√
ΛJ)√

Λ
,

∆(K2) = K2 ⊗ cos(z
√

ΛJ) + e−zP0 ⊗ K2 − P1 ⊗
sin(z

√
ΛJ)√

Λ
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Limit Λ→ 0

κ−dS reduces to κ−Poincaré in the limit Λ→ 0

{P0,P1,P2} forms an Abelian Poisson-Hopf algebra

Also, Cz = Cz(P0,P1,P2) and it can be interpreted as a
modified dispersion relation (hopefully observable!) in a
curved momentum space

Λ 6= 0

When Λ 6= 0 Lorentz generators {K1,K2, J} get intertwined with
translations generators {P0,P1,P2}, so it was not clear how to
extend the construction to curved spacetimes.

Our proposal

Here we propose to enlarge the momentum space to include the
coordinates associated to boosts in addition to the ones associated
to the canonical momenta.
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Momentum space for the κ-dS
Poisson-Hopf algebra
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Sketch of the construction of momentum space

Applying the quantum duality principle

Calculate the dual Lie algebra to the κ-dS algebra

Calculate the full dual quantum group to the κ-dS algebra

Define a linear action of this dual quantum group in a
Minkowski space

Consider the orbit of a certain point (origin of the momentum
space)
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The (2+1) κ-dS Poisson-Hopf algebra

Denoting by {X 0,X 1,X 2, L1, L2,R} the generators dual to,
respectively, {P0,P1,P2,K1,K2, J}, the Lie brackets defining the
Lie algebra g∗ of the dual Poisson-Lie group G ∗

Λ are

[X 0,X 1] = −z X 1, [X 0,X 2] = −z X 2, [X 1,X 2] = 0,

[X 0, L1] = −z L1, [X 0, L2] = −z L2, [L1, L2] = 0,

[R,X 2] = −z L1, [R, L1] = z ΛX 2, [L1,X 2] = 0,

[R,X 1] = z L2, [R, L2] = −z ΛX 1, [L2,X 1] = 0,

[R,X 0] = 0, [L1,X 1] = 0, [L2,X 2] = 0.

Dual Lie group

Exponentiating the dual Lie algebra we obtain

G∗Λ = exp (θρ(R)) exp
(
p1ρ(X 1)

)
exp

(
p2ρ(X 2)

)
exp

(
χ1ρ(L1)

)
exp

(
χ2ρ(L2)

)
exp

(
p0ρ(X 0)

)
where ρ : g∗ → M(6,R) is a faithful real representation of g∗.
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Dual Poisson-Hopf structure

From the composition law of the dual group we have

∆(p0) = p0 ⊗ 1 + 1⊗ p0, ∆(θ) = θ ⊗ 1 + 1⊗ θ,

∆(p1) = p1 ⊗ cos(z
√

Λ θ) + e−zp0 ⊗ p1 + Λχ2 ⊗
sin(z

√
Λ θ)√

Λ
,

∆(p2) = p2 ⊗ cos(z
√

Λ θ) + e−zp0 ⊗ p2 − Λχ1 ⊗
sin(z

√
Λ θ)√

Λ
,

∆(χ1) = χ1 ⊗ cos(z
√

Λ θ) + e−zp0 ⊗ χ1 + p2 ⊗
sin(z

√
Λ θ)√

Λ
,

∆(χ2) = χ2 ⊗ cos(z
√

Λ θ) + e−zp0 ⊗ χ2 − p1 ⊗
sin(z

√
Λ θ)√

Λ
.

Note that this coproduct coincides with the one for the original Hopf
algebra under the identification:
{p0 → P0, p1 → P1, p2 → P2, χ1 → K1, χ2 → K2, θ → J}
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Geometric interpretation of the momentum space

Consider the left linear action of G∗
Λ on a 6 dimensional Minkowski space

G∗
Λ . R1,5. Then the orbit of the point (0, 0, 0, 0, 0, 1) ∈ R1,5 is given by

(S0,S1,S2,S3,S4,S5), where

S0 = sinh(zp0) +
1

2
ez p0 z2

(
p2

1 + p2
2 + Λ

(
χ2

1 + χ2
2

))
,

S1 = ez p0z (cos(z
√

Λ θ) p1 −
√

Λ sin(z
√

Λ θ)χ2),

S2 = ez p0z (cos(z
√

Λ θ) p2 +
√

Λ sin(z
√

Λ θ)χ1),

S3 = ez p0z (− sin(z
√

Λ θ) p2 +
√

Λ cos(z
√

Λ θ)χ1),

S4 = ez p0z (sin(z
√

Λ θ) p1 +
√

Λ cos(z
√

Λ θ)χ2),

S5 = cosh(zp0) − 1

2
ez p0 z2

(
p2

1 + p2
2 + Λ

(
χ2

1 + χ2
2

))
,

and they satisfy the conditions

−S2
0 + S2

1 + S2
2 + S2

3 + S2
4 + S2

5 = 1 and S0 + S5 = ez p0 > 0

which is the defining relation for (half of) the (4+1)-dimensional dS
space MdS embedded in R1,5.

15 / 18



Introduction The κ-dS Poisson-Hopf algebra Momentum space for the κ-dS Poisson-Hopf algebra Concluding remarks

Geometric interpretation of the momentum space

The topology of the dual Lie group is R5 × S1

The rotation subgroup is the stabilizer of the origin of
momentum space

The projection of the Casimir operator Cz to MdS can be
interpreted as a distance from the origin of momentum space,
thus providing a geometrical interpretation of deformed
dispersion relations (in the spirit of relative locality)
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We have presented here the explicit construction of the curved
momentum space related with the (2+1) κ-dS deformation

In the same manner the momentum space related with the
(2+1) κ-AdS and the (1+1) κ-(A)dS deformation can be
constructed5

The same procedure can be applied to the (3+1)D case6,
where some subtleties related with the κ−deformation have to
be taken into account

The approach presented is completely general and can be
employed for any other deformation

5Ballesteros A, Gubitosi G, G-S, Herranz F J, Physics Letters B, (2017).
6Ballesteros A, Gubitosi G, G-S, Herranz F J, In preparation.
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