FormCalc and FeynArts

Thomas Hahn

Max-Planck-Institut für Physik München

An Introduction is to introduce people, but FeynArts and Friends have already been introduced to you. So this is the opposite. When we asked Pooh what the opposite of an Introduction was, he said "The what of a what?" which didn't help us as much as we had hoped, but luckily Owl kept his head and told us that the Opposite of an Introduction, my dear Pooh, was a Contradiction.

...actually, a Distinction:

FeynArts/FormCalc	FeynHiggs
Generic answer to an arbitrary question	Concrete answer to a specific question
Paint \& brush	Finished painting
Generator generator	Generator

Automated NLO computations is an industry today, with many packages becoming available in the last decade:

- GoSam, MadGraph5_aMC@NLO, OpenLoops, HELAC-NLO, BlackHat, Rocket, ...
Here: FeynArts (1991) + FormCalc (1995)
FormCalc was doing largely the same as FeynCalc (1992) but used FORM for the time-consuming tasks, hence the name FormCalc.
- Feynman-diagrammatic method,
- Analytic calculation as far as possible ('any' model),
- Generation of code for the numerical evaluation of the squared matrix element.

FeynArts + FormCalc also used as 'engine' in SARAH, SloopS.
'Production'

MG5_aMC@NLO GoSam OpenLoops

'Exploration'

FormCalc FeynCalc Package-X

'Specific'

FeynHiggs
DarkSUSY
Prospino

Diagram Generation:

- Create the topologies
- Insert fields
- Apply the Feynman rules
- Paint the diagrams

Algebraic Simplification:

- Contract indices
- Calculate traces
- Reduce tensor integrals
- Introduce abbreviations

Numerical Evaluation:

- Convert Mathematica output to Fortran code
- Supply a driver program
- Implementation of the integrals

LoopTools
$|\mathcal{M}|^{2} \longrightarrow$ Cross-sections, Decay rates, ...

Generic level, e.g. F, F, S

$$
C\left(F_{1}, F_{2}, S\right)=G_{L} \mathbb{P}_{L}+G_{R} \mathbb{P}_{R} \quad \mathbb{P}_{R, L}=\left(\mathbb{1} \pm \gamma_{5}\right) / 2
$$

Kinematical structure completely fixed, most algebraic simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. -F [2], F[1], S [3]
$\bar{\ell}_{i} v_{j} G: \quad G_{L}=-\frac{\mathrm{i} e m_{\ell, i}}{\sqrt{2} \sin \theta_{w} M_{W}} \delta_{i j}, \quad G_{R}=0$
Coupling fixed except for i, j (can be summed in do-loop).
Particles level, e.g. $-\mathrm{F}[2,\{1\}], \mathrm{F}[1,\{1\}], \mathrm{S}[3]$ insert fermion generation $(1,2,3)$ for i and j

= FeynAmp [identifier ,
loop momenta, generic amplitude, insertions]

GraphID[Topology == 1, Generic == 1]

= FeynAmp [identifier,

 loop moment a , generic amplitude, insertions]
Integral [q1]

$\frac{\mathrm{I}}{32 \mathrm{Pi}^{4}}$ RelativeCF

FeynAmpDenominator $\left[\frac{1}{\mathrm{q}^{2}-\text { Mass }[\mathrm{S}[\mathrm{Gen} 3]]^{2}}\right.$,
$\left.\frac{1}{(-\mathrm{p} 1+\mathrm{q} 1)^{2}-\operatorname{Mass}[\mathrm{S}[\operatorname{Gen} 4]]^{2}}\right] \ldots \ldots \ldots \ldots$...loop denominators
(p1 - 2q1) [Lor1] (-p1 + 2 q 1) [Lor2]kin.coupling structure ep [V[1], p1, Lor1] ep* [V[1], k1, Lor2]polarization vectors
$\mathrm{G}_{\text {SSV }}^{(0)}[(M o m[1]-$ Mom [2] $)[K I 1[3]]]$
$\mathrm{G}_{\mathrm{SSV}}^{(0)}[(\operatorname{Mom}[1]-\operatorname{Mom}[2])[\mathrm{KI1}[3]]]$,
. coupling constants

= FeynAmp [identifier,
loop momentr, generic amplitude, insertions]
\{ Mass[S[Gen3]], Mass [S[Gen4]], $\mathrm{G}_{\text {SSV }}^{(0)}[($ Mom [1] $-\operatorname{Mom}[2])[K I 1[3]]]$, $\mathrm{G}_{\mathrm{SSV}}^{(0)}[(\operatorname{Mom}[1]$ - Mom [2]) [KI1 [3]]], RelativeCF \} ->
Insertions [Classes] [\{MW, MW, I EL, -I EL, 2\}]

```
\begin{feynartspicture}(150,150)(1,1)
\FADiagram{}
\FAProp(6.,10.)(14.,10.)(0.8,){ScalarDash}{-1}
\FALabel(10. ,5.73)[t]{$G$}
\FAProp(0., 10.)(6., 10.)(0.,){Sine}{0}
\FALabel(3., 8.93)[t] {$\gamma$}
```

\backslash FAVert (6., 10.) \{0\}
\backslash FAVert (14., 10.) \{0\}
\end\{feynartspicture\} }

Technically: uses its own PostScript prologue.

The elements of the diagram are easy to recognize and it is straightforward to make changes e.g. to the label text using any text editor. It is less straightforward, however, to alter the geometry of the diagram, i.e. to move vertices and propagators.

The FeynEdit tool lets the user:

- copy-and-paste the MTEX code into the lower panel of the editor,
- visualize the diagram,
- modify it using the mouse, and finally
- copy-and-paste it back into the text.

The amplitudes of CreateFeynAmp are in no good shape for direct numerical evaluation.

A number of steps have to be done analytically:

- contract indices as far as possible,
- evaluate fermion traces,
- perform the tensor reduction / separate numerators,
- add local terms arising from D.(divergent integral),
- simplify open fermion chains,
- simplify and compute the square of SU(N) structures,
- "compactify" the results as much as possible.

FormCalc

A typical term in the output looks like

```
    C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *
    ( S AbbSum16 +
    AbbSum28 +
    AbbSum30 -
    AbbSum7 +
    Abb1 +
        AbbSum29 )
```


Outright factorization is usually out of question.

 Abbreviations are necessary to reduce size of expressions.$$
\begin{gathered}
\text { AbbSum29 = Abb2 }+ \text { Abb22 }+\operatorname{Abb} 23+\text { Abb3 } \\
\text { Abb22 }=\text { Pair1 Pair3 Pair6 } \\
\text { Pair3 }=\operatorname{Pair}[\mathrm{e}[3], \mathrm{k}[1]]
\end{gathered}
$$

The full expression corresponding to AbbSum29 is

$$
\begin{aligned}
& \text { Pair [e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] + } \\
& \text { Pair [e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] + } \\
& \text { Pair [e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] + } \\
& \text { Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]] }
\end{aligned}
$$

- Abbreviations are recursively defined in several levels.
- When generating code, FormCalc introduces another set of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time. It is key to a decent performance that the abbreviations are separated into different Categories:

- Abbreviations that depend on the helicities,
- Abbreviations that depend on angular variables,
- Abbreviations that depend only on \sqrt{s}.

Correct execution of the categories guarantees that almost no redundant evaluations are made and makes the generated code essentially as fast as hand-tuned code.

An amplitude containing external fermions has the form

$$
\mathcal{M}=\sum_{i=1}^{n_{F}} c_{i} F_{i} \text { where } \quad F_{i}=(\text { Product of })\langle u| \Gamma_{i}|v\rangle .
$$

$n_{F}=$ number of fermionic structures.

Textbook procedure: Trace Technique

$$
|\mathcal{M}|^{2}=\sum_{i, j=1}^{n_{F}} c_{i}^{*} c_{j} F_{i}^{*} F_{j}
$$

where $F_{i}^{*} F_{j}=\langle v| \bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle=\operatorname{Tr}\left(\bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle\langle v|\right)$.

PRO: Trace technique is independent of any representation.
CoN: For $n_{F} F_{i}$'s there are $n_{F}^{2} F_{i}^{*} F_{j}$'s.
Things get worse the more vectors are in the game: multi-particle final states, polarization effects . . .
Essentially $n_{F} \sim$ (\# of vectors)! because all combinations of vectors can appear in the Γ_{i}.

Solution: Use Weyl-van der Waerden spinor formalism to compute the F_{i} 's directly.

FormCalc uses Dirac (4-component) spinors in most of the algebra (extension to D dim more obvious).
Move to 2 -comp. Weyl spinors for the numerical evaluation:

$$
\left\langleu | _ { 4 } \equiv \left(\left\langle\left. u_{+}\right|_{2},\left\langle\left. u_{-}\right|_{2}\right), \quad \mid v\right\rangle_{4} \equiv\binom{\left|v_{-}\right\rangle_{2}}{\left|v_{+}\right\rangle_{2}} .\right.\right.
$$

Every chiral Dirac chain maps onto a single Weyl chain:

$$
\begin{aligned}
\langle u| \mathbb{P}_{L} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle_{4} & =\left\langle u_{-}\right| \bar{\sigma}_{\mu} \sigma_{v} \cdots\left|v_{ \pm}\right\rangle_{2}, \\
\langle u| \mathbb{P}_{R} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle_{4} & =\left\langle u_{+}\right| \sigma_{\mu} \bar{\sigma}_{v} \cdots\left|v_{\mp}\right\rangle_{2} .
\end{aligned}
$$

FORM-like notation: $\langle u| \sigma_{\mu} \bar{\sigma}_{\nu} \sigma_{\rho}|v\rangle k_{1}^{\mu} \varepsilon_{2}^{\nu} k_{3}^{\rho} \equiv\langle u| k_{1} \bar{\varepsilon}_{2} k_{3}|v\rangle$.

With the Fierz identities for sigma matrices it is possible to remove all Lorentz contractions between sigma chains, e.g.

$$
\langle A| \sigma_{\mu}|B\rangle\langle C| \bar{\sigma}^{\mu}|D\rangle=2\langle A \mid D\rangle\langle C \mid B\rangle
$$

SquaredME.F master subroutine
generated code, "black box"

CPU-time (rough)

The turns the generated stand-alone Fortran code into a Mathematica function for evaluating the cross-section or decay rate as a function of user-selected model parameters. Think of:

$$
\text { ContourPlot[sigma[TB, MAO], \{TB, 5\}, \{MAO, 250\}] }
$$

Changes in code (run.F):

$$
\mathrm{TB}=5 \quad \rightarrow \quad \text { call MmaGetReal (TB) }
$$

Compile, load in Mathematica with
Install["run"]
Compute e.g. a differentiol cross-section at $\sqrt{s}=$ sqrtS: run[sqrtS, TB, MAO, ...]

One has to set up, once and for all, a

- Generic Model File (seldomly changed) containing the generic part of the couplings,

Example: the FFS coupling

$$
C(F, F, S)=G_{L} \mathbb{P}_{L}+G_{R} \mathbb{P}_{R}=\vec{G} \cdot\binom{\mathbb{P}_{L}}{\mathbb{P}_{R}}
$$

AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]] == G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .
\{ NonCommutative[ChiralityProjector [-1]], NonCommutative[ChiralityProjector[+1]] \}

One has to set up, once and for all, a

- Classes Model File (for each model) declaring the particles and the allowed couplings

Example: the $\bar{\ell}_{i} v_{j} G$ coupling in the Standard Model

$$
\vec{G}\left(\bar{\ell}_{i}, v_{j}, G\right)=\binom{G_{-}}{G_{+}}=\binom{-\frac{i e m_{\ell, i}}{\sqrt{2} \sin \theta_{w} M_{W}} \delta_{i j}}{0}
$$

```
C[ -F[2,{i}], F[1,{j}], S[3] ]
== { {-I EL Mass[F[2,{i}]]/(Sqrt[2] SW MW) IndexDelta[i, j]}, \{0\} \}
```

Model Files presently available for FeynArts:

- SM [w/QCD], normal and background-field version. All one-loop counter terms included.
- MSSM [w/QCD]. All one-loop counter terms included.
- ModelMaker utility generates Model Files from the Lagrangian.
- "3rd-party packages" FeynRules and LanHEP generate Model Files for FeynArts and others.
- SARAH package derives SUSY Models.

FeynArts distinguishes

- Basic Model Files and
- Partial (Add-On) Model Files.

Basic Model Files, e.g. SM.mod, MSSM.mod, can be modified by Add-On Model Files. For example,

$$
\text { InsertFields [..., Model -> \{"MSSMQCD", "FV"\}] }
$$

This loads the Basic Model File MSSMQCD.mod and modifies it through the Add-On FV.mod (non-minimal flavour violation).

Model files can thus be built up from several parts.

Or, How to efficiently make changes in an existing model file.
Bad: Copy the model file, modify the copy. - Why?

- It is typically not very transparent what has changed.
- If the original model file changes (e.g. bug fixes), these do not automatically propagate into the derivative model file.

Better: Create a new model file which reads the old one and modifies the particles and coupling tables.

- M\$ClassesDescription = list of particle definitions,
- M\$CouplingMatrices = list of couplings.

Example: Introduce for the $b-\bar{b}-h_{0}$ and $b-\bar{b}-H_{0}$ Yukawa couplings in the MSSM.

```
EnhCoup[(lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_ ] :=
        lhs == Hff[h,g] rhs
EnhCoup[other_] := other
M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices
```

To see the effect, make a printout with the WriteTeXFile utility of FeynArts.

The Hff $[\mathrm{h}, \mathrm{g}]$ can be defined to include e.g. resummation effects, as in double precision $\operatorname{Hff}(2,3)$
data Hff /6*1/
$\operatorname{Hff}(1,3)=1-\mathrm{CA} /(S A * T B) * D e l t a _b$
$\operatorname{Hff}(2,3)=1+\mathrm{SA} /(\mathrm{CA} * T B) * D e l t a _b$

FeynArts can automatically linear-combine fields, i.e. one can specify the couplings in terms of gauge rather than mass eigenstates. For example:

```
M$ClassesDescription = { ...,
    F[11] = {...,
    Indices -> {Index[Neutralino]},
    Mixture -> ZNeu[Index[Neutralino],1] F[111] +
        ZNeu[Index[Neutralino],2] F[112] +
        ZNeu[Index[Neutralino],3] F[113] +
        ZNeu[Index[Neutralino],4] F[114]} }
```

Since F [111]...F[114] are not listed in M\$CouplingMatrices, they drop out of the model completely.

Higher-order mixings can be added, too:

```
M$ClassesDescription = { ...,
    S[1] = {...},
    S[2] = {...},
    S[10] == {...,
    Indices -> {Index[Higgs]},
    Mixture -> UHiggs[Index[Higgs],1] S[1] +
        UHiggs [Index[Higgs],2] S[2],
    InsertOnly -> {External, Internal}} }
```

This time, $\mathrm{S}[10$] and $\mathrm{S}[1], \mathrm{S}[2]$ appear in the coupling list (including all mixing couplings) because all three are listed in M\$CouplingMatrices.

Due to the InsertOnly, S [10] is inserted only on tree-level parts of the diagram, not in loops.

Or, How to get things the Standard Setup won't give you.

Example: extract the Wilson coefficients for $b \rightarrow s \gamma$.

```
tops = CreateTopologies[1, 1 -> 2]
ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]
vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]
mat[p_Plus] := mat/@ p
mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=
    I/(2 m1) mat[r DiracChain[sigmunu[om]]] +
    2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]
mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=
    r 07[om]/(EL MB/(16 Pi^2))
mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=
    r 08[om]/(GS MB/(16 Pi^2))
```

coeff = Plus@@ vert //. abbr /. Mat -> mat
c7 = Coefficient[coeff, 07[6]]
c8 = Coefficient[coeff, 08[6]]

Using FormCalc's output functions it is also pretty straightforward to generate your own Fortran code:

```
file = OpenFortran["bsgamma.F"]
WriteString[file,
    SubroutineDecl["bsgamma(C7,C8)"] <>
    "\tdouble complex C7, C8\n" <>
    "#include \"looptools.h\"\n"]
WriteExpr[file, {C7 -> c7, C8 -> c8}]
WriteString[file, "\tend\n"]
Close[file]
```


More details in hep-ph/0607049.

Often special requirements:

- Resummations (e.g. $h b b$ in MSSM),
- Approximations (e.g. gaugeless limit),
- K-factors,
- Nontrivial renormalization.

Software design so far:

- Mostly 'monolithic' (one package does everything).
- Often controlled by parameter cards, not easy to use beyond intended purpose.
- May want to/must use other packages.

Model \rightarrow Model file \rightarrow Diagrams
Diagram Generation

- Fermion algebra (traces, Dirac eq)

Color algebra (SU(N) traces)
Perform tensor reduction, or Isolate integrals for OPP
\checkmark Other simplifications (e.g. Fierz, abbreviations)
\checkmark Code generation (Fortran, $\mathrm{C} /++$)
\checkmark Phase-space integration
x Evaluation of loop integrals

Template for calculation (2L, nontrivial model + renorm.):

- Break calculation into several steps.
- Implement each step as independent program (invoked from command line).
- In lieu of 'in vivo' debugging keep detailed logs.
- Coordinate everything through a makefile.
- No single control program (e.g. single Mathematica session) like in package's demo programs.

More details in arXiv:1508.00562.

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh
math << \_EOF_
    << FeynArts`
    << FormCalc'
    top = CreateTopologies[...];
_EOF_
```

end Here document

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

Calculation split into 7 (8) steps:

Gaugeless approximation:

(1) Set gauge couplings $g, g^{\prime}=0 \Rightarrow M_{W}, M_{Z}=0$.
(2) Keep finite weak mixing angle.
(3) Keep $\frac{\delta M_{W}^{2}}{M_{W}^{2}}$ and $\frac{\delta M_{Z}^{2}}{M_{Z}^{2}}$ finite.

Must set $m_{b}=0$ so that $\mathcal{O}\left(\alpha_{t}^{2}\right)$ corrections form supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules:

- Load MSSMCT.mod model file.
- Modify couplings, remove zero ones.
- Write out MSSMCTgl.mod model file.
- There are many packages for tree-level and increasingly also IL calculations available.
- For 'standard tasks' (e.g. cross-section computation) largely automated "model to events" toolchains exist.
- Other tasks requiring evaluation of Feynman diagrams are not so well automated (and may never be).
- Packages like FeynArts, FormCalc, FeynCalc, Package-X provide an "exploration toolkit" for unusual models, unusual renormalizations, package building, ...
- Long-term strategy: maybe best use Unix philosophy "Do one thing and do it well" - modular components for individual tasks + stick together by script.

