Gravity as a gauge theory in non-commutative spaces

George Manolakos
National Technical University of Athens

September 22, 2017

Joint work (in progress) with: G. Zoupanos, A. Chatzistavrakidis, L. Jonke, P. Manousselis

(1) Gravity as gauge theory in $3+1$ and $2+1$ dimensions
(2) Gauge theory on nc spaces
(3) Application on the nc dS3 and fuzzy sphere

Gravity in four dimensions as a gauge theory

Use of alternative approach of GR - vielbein formulation
\downarrow
4-d gravity described as a gauge theory of the Poincare group ISO $(3,1)$
\downarrow
see for details
Kibble - Stelle '85, Utiyama '56,
McDowell-Mansuri 'ク9

- 4 of local translations P_{a}
- 6 Lorentz transformations $M_{a b}$

The generators satisfy the commutation relations:

$$
\begin{aligned}
{\left[M_{a b}, M_{c d}\right] } & =\eta_{a c} M_{d b}-\eta_{b c} M_{d a}-\eta_{a d} M_{c b}+\eta_{b d} M_{c a} \\
{\left[P_{a}, M_{b c}\right] } & =\eta_{a b} P_{c}-\eta_{a c} P_{b} \\
{\left[P_{a}, P_{b}\right] } & =0
\end{aligned}
$$

where $\eta_{a b}=\operatorname{diag}(-1,+1,+1,+1)$.

- Gauging: For each generator \rightsquigarrow introduction of a gauge field:
- Vielbein $e_{\mu}{ }^{a}$ corresponding to translations
- Spin connection $\omega_{\mu}^{a b}$ corresponding to Lorentz transformations
- Therefore, the gauge connection is expanded as:

$$
A_{\mu}=e_{\mu}^{a}(x) P_{a}+\frac{1}{2} \omega_{\mu}^{a b}(x) M_{a b}
$$

- A_{μ} transforms in the adjoint rep:

$$
\delta A_{\mu}=\partial_{\mu} \epsilon+\left[A_{\mu}, \epsilon\right],
$$

where ϵ is a parameter valued in iso $(3,1)$:

$$
\epsilon=\xi^{a}(x) P_{a}+\frac{1}{2} \lambda^{a b}(x) M_{a b}
$$

- The transformations of the gauge fields, e, ω are:

$$
\begin{aligned}
\delta e_{\mu}^{a} & =\partial_{\mu} \xi^{a}-e_{\mu}^{b} \lambda^{a}{ }_{b}+\omega_{\mu}^{a b} \xi_{b} \\
\delta \omega_{\mu}^{a b} & =\partial_{\mu} \lambda^{a b}-\lambda_{c}^{a} \omega_{\mu}^{c b}+\lambda_{c}^{b} \omega_{\mu}^{c a}
\end{aligned}
$$

- Curvature tensors are obtained using the standard formula:

$$
R_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]
$$

- Writing $R_{\mu \nu}=R_{\mu \nu}{ }^{a} P_{a}+\frac{1}{2} R_{\mu \nu}{ }^{a b} M_{a b}$, we obtain:

$$
\begin{aligned}
R_{\mu \nu}^{a} & =\partial_{\mu} e_{\nu}^{a}-\partial_{\nu} e_{\mu}^{a}+e_{\mu}^{b} \omega_{\nu b}{ }^{a}-e_{\nu}^{b} \omega_{\mu b}{ }^{a} \\
R_{\mu \nu}^{a b} & =\partial_{\mu} \omega_{\nu}^{a b}-\partial_{\nu} \omega_{\mu}^{a b}-\omega_{\mu}{ }^{c b} \omega_{\nu}^{a}{ }_{c}+\omega_{\mu}^{a c} \omega_{\nu c}{ }^{b}
\end{aligned}
$$

Action is needed to complete the picture:

- Built out of Poincare invariants
- Analogy with Y-M theory suggests an action of the form:

$$
\mathcal{S}=\int d^{4} \xi R_{a b}^{c d} R_{c d}^{a b}
$$

- The right choice is:

$$
\mathcal{S}_{E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} R_{a b}^{a b}
$$

which can be written as:

$$
\mathcal{S}_{E}=\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g} e^{\mu}{ }_{a} e^{\nu}{ }_{b}\left(\partial_{\mu} \omega_{\nu}^{a b}-\partial_{\nu} \omega_{\mu}^{a b}+\omega_{\mu}^{a c} \omega_{\nu c}{ }^{b}-\omega_{\nu}^{a c} \omega_{\mu c}{ }^{b}\right)
$$

\rightsquigarrow Functional of both the vielbeins and the spin connections
\rightsquigarrow First order formulation of GR equations

Varying with respect to the fields \rightsquigarrow e.o.m.:

- with respect to $\omega \rightsquigarrow$ torsion-free condition
\checkmark Torsion-free condition holds when scalars coupled to gravity
x Torsion non-zero when spinors coupled to gravity
- with respect to $e \rightsquigarrow$ Einstein field equations (no matter)

Therefore, we conclude:

- Form of Einstein action: $A^{2}\left(d A+A^{2}\right)$
- Such action does not exist in gauge theories
- Gravity cannot be considered as a gauge theory.

Gravity in three dimensions as a gauge theory

The Einstein action for 3-d gravity is:

$$
\mathcal{S}=\int_{M} \epsilon^{\mu \nu \rho}\left(e_{\mu a}\left(\partial_{\nu} \omega_{\rho}^{a}-\partial_{\rho} \omega_{\nu}^{a}+\epsilon_{a b c} \omega_{\nu}^{b} \omega_{\rho}^{c}\right)\right)
$$

- Consideration of e and ω as gauge fields
- The above action, \mathcal{S}, is $A d A+A^{3}$ in general form
- Interpretation of \mathcal{S} as a Chern-Simons 3-form

Commutation relations of $\operatorname{ISO}(2,1)$:

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c} \quad\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c} \quad\left[P_{a}, P_{b}\right]=0
$$

Construction of a gauge theory for $\operatorname{ISO}(2,1)$:

- Gauge field - Lie valued one form: $A_{\mu}=e_{\mu}^{a} P_{a}+\omega_{\mu}{ }^{a} J_{a}$
- Infinitesimal gauge parameter: $u=\rho^{a} P_{a}+\tau^{a} J_{a}$
- Transformation of A_{μ} under a gauge trans/tion: $\delta A_{\mu}=-D_{\mu} u$
- Covariant derivative: $D_{\mu}=\partial_{\mu} u+\left[A_{\mu}, u\right]$
- Standard procedure \rightsquigarrow transformations of the fields:

$$
\begin{aligned}
\delta e_{\mu}^{a} & =-\partial_{\mu} \rho^{a}-e_{\mu}{ }^{b} \tau^{c} \epsilon_{a b c}-\omega_{\mu}{ }^{b} \rho^{c} \epsilon_{a b c} \\
\delta \omega_{\mu}{ }^{a} & =-\partial_{\mu} \tau^{a}-\omega_{\mu}{ }^{b} \tau^{c} \epsilon_{a b c}
\end{aligned}
$$

- Curvature tensor \rightsquigarrow commutator of covariant derivatives:

$$
\begin{aligned}
F_{\mu \nu}=\left[D_{\mu}, D_{\nu}\right]= & P_{a}\left(\partial_{\mu} e_{\nu}{ }^{a}-\partial_{\nu} e_{\mu}^{a}+\epsilon^{a b c}\left(\omega_{\mu b} e_{\nu c}+e_{\mu b} \omega_{\nu c}\right)\right) \\
& +J_{a}\left(\partial_{\mu} \omega_{\nu}{ }^{a}-\partial_{\nu} \omega_{\mu}{ }^{a}+\epsilon^{a b c} \omega_{\mu b} \omega_{\nu c}\right)
\end{aligned}
$$

- IF we had considered $\operatorname{ISO}(2,1)$ gauge theory on a 4 -d manifold, Y, we would form a topological invariant:

$$
\operatorname{Tr}\left(T^{a} T^{b}\right) \int F^{a} F^{b}
$$

- Calculations lead to the expression:

$$
\begin{gathered}
\frac{1}{2} \int_{Y} \epsilon^{\mu \nu \rho \sigma}\left(\partial_{\mu} e_{\nu}^{a}-\partial_{\nu} e_{\mu}^{a}+\epsilon^{a b c}\left(\omega_{\mu b} e_{\nu c}+e_{\mu b} \omega_{\nu c}\right) \times\right. \\
\left(\partial_{\rho} \omega_{\sigma a}-\partial_{\sigma} \omega_{\rho a}+\epsilon_{a d e} \omega_{\rho}{ }^{d} \omega_{\sigma}{ }^{e}\right)
\end{gathered}
$$

- Integrand can be written as a total derivative
- Integral reduces to integral on the 3-d boundary of Y, M.
- This integral is by definition the Chern-Simons action:

$$
\mathcal{S}_{C S}=\int_{M} \epsilon^{\mu \nu \rho}\left(e_{\mu a}\left(\partial_{\nu} \omega_{\rho}^{a}-\partial_{\rho} \omega_{\nu}^{a}+\epsilon_{a b c} \omega_{\nu}^{b} \omega_{\rho}^{c}\right)\right)
$$

- Therefore, $\operatorname{ISO}(2,1)$ Chern - Simons action is identical to 3 -d Einstein action
- 3-d gravity is a Chern - Simons gauge theory of ISO(2, 1)

3-d Gravity with cosmological constant as a gauge theory

Generalization of the previous case, with action:

$$
\mathcal{S}=\int_{M} \epsilon^{\mu \nu \rho}\left(e_{\mu a}\left(\partial_{\nu} \omega_{\rho}^{a}-\partial_{\rho} \omega_{\nu}^{b}\right)+\epsilon_{a b c} e_{\mu}^{a} \omega_{\nu}^{b} \omega_{\rho}^{c}+\frac{1}{3} \lambda \epsilon_{a b c} e_{\mu}^{a} e_{\nu}^{b} e_{\rho}^{c}\right)
$$

We note:

- Not Minkowski but dS or AdS depending on the sign of λ
- Their symmetry is not $\operatorname{ISO}(2,1)$ but $\mathrm{SO}(3,1)$ and $\mathrm{SO}(2,2)$
- Since $3-$ d gravity \leftrightarrow gauging ISO $(2,1) \Rightarrow$ $3-\mathrm{d}$ gravity with $\lambda \rightarrow$ gauging $\mathrm{SO}(3,1)$ and $\mathrm{SO}(2,2)$, respectively (?)
First thing to do, generalization of the algebra:

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c} \quad\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c} \quad\left[P_{a}, P_{b}\right]=\lambda \epsilon_{a b c} J^{c}
$$

- Repeating the procedure of the gauging \rightsquigarrow generalization of the transformations of the fields:

$$
\begin{aligned}
\delta e_{\mu}^{a} & =-\partial_{\mu} \rho^{a}-e_{\mu}^{b} \tau^{c} \epsilon_{a b c}-\omega_{\mu}^{b} \rho^{c} \epsilon_{a b c} \\
\delta \omega_{\mu}^{a} & =-\partial_{\mu} \tau^{a}-\omega_{\mu}^{b} \tau^{c} \epsilon_{a b c}-\lambda \epsilon^{a b c} e_{\mu b} \rho_{c}
\end{aligned}
$$

- The expression for the curvature is:

$$
\begin{aligned}
F_{\mu \nu}= & P_{a}\left(\partial_{\mu} e_{\nu}^{a}-\partial_{\nu} e_{\mu}^{a}+\epsilon_{a b c}\left(\omega_{\mu}^{b} e_{\nu}^{c}+\omega_{\nu}^{c} e_{\mu}^{b}\right)\right) \\
& +J_{a}\left(\partial_{\mu} \omega_{\nu}^{a}-\partial_{\nu} \omega_{\mu}^{a}+\epsilon^{a b c}\left(\omega_{\mu b} \omega_{\nu c}+\lambda e_{\mu b} e_{\nu c}\right)\right)
\end{aligned}
$$

- Chern - Simons 3-form is precisely the Einstein action.
- E.o.m. \rightsquigarrow vanishing of the field strength tensor:
- vanishing of the coefficient of $P_{a} \Rightarrow \omega$ is Levi Civita connection (torsionless condition)
- vanishing of the coefficient of $J_{a} \Rightarrow$ Einstein equation with cosmological constant

Gauge theories on nc spaces

- Algebra \mathcal{A} of operators $X^{\mu} \rightarrow$ nc space with nc coords.

Madore - Schraml -
Schupp - Wess '00

- Operators X^{μ} satisfy the comm relation $\left[X_{\mu}, X_{\nu}\right]=i \theta_{\mu \nu}, \theta_{\mu \nu}$ not specified.
- Introduction of nc gauge theories through covariant nc coordinates, defined as: $\mathcal{X}_{\mu}=X_{\mu}+A_{\mu}$, obeying a covariant gauge transformation rule: $\delta \mathcal{X}_{\mu}=\left[\epsilon, \mathcal{X}_{\mu}\right]$ (\sim cov der)
- A_{μ} transforms as: $\delta A_{\mu}=-\left[X_{\mu}, \epsilon\right]+\left[\epsilon, A_{\mu}\right]$ (\sim gauge connection)
- A_{μ} is used to define an nc covariant field strength which defines the nc gauge theory:

$$
F_{\mu \nu}=\left[\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right]-i \bar{\theta}_{\mu \nu}, \quad F_{\mu \nu}=\left[\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right]-C_{\mu \nu \rho} \mathcal{X}_{\rho},
$$

cases of constant and linear noncommutativity.

- Gauge theory could be abelian or nonabelian:
- Abelian if ϵ is a function in \mathcal{A}.
- Nonabelian if ϵ is matrix valued.
\triangleright In nonabelian case, where are the gauge fields valued?
- Let us consider the relation:
$[\epsilon, A]=\left[\epsilon^{A} T^{A}, A^{B} T^{B}\right]=\frac{1}{2}\left\{\epsilon^{A}, A^{B}\right\}\left[T^{A}, T^{B}\right]+\frac{1}{2}\left[\epsilon^{A}, A^{B}\right]\left\{T^{A}, T^{B}\right\}$,
- Cannot restrict to a matrix algebra - last term neither 0 nor algebra element in nc.
see Prof. Castellani's lectures
- There are two options to overpass the difficulty:
- Consider the universal enveloping algebra
- Extending the generators and/or fixing the rep so that the anticommutators close.
\triangleright We employ the second option.

3d gravity with cosmological constant in nc

- The cov coord should accommodate info of nc vielbein and spin connection (analogy with the

Nair '03, Abe - Nair '03, Nair '06 gauging of Poincare/(A)dS group)

- We consider the $3-\mathrm{d}$ case with positive λ.
- The relevant isometry group is $\operatorname{SO}(3,1)(\mathrm{SL}(2, \mathbf{C})$ the corresponding spin group)
- Nonabelian group \rightarrow focus on the spinor rep with generators:

$$
\Sigma_{A B}=\frac{1}{2} \gamma_{A B}=\frac{1}{4}\left[\gamma_{A}, \gamma_{B}\right], A, B=1 \ldots 4
$$

Due to the product relation:

$$
\gamma_{A B} \gamma^{C D}=2 \delta_{[B}^{[C} \delta_{A]}^{D]}+4 \delta_{[B}^{[C} \gamma_{A]}^{D]}+i \varepsilon_{A B}^{C D} \gamma_{5},
$$

one finds the commutation and anticommutation relations:

$$
\begin{aligned}
{\left[\gamma_{A B}, \gamma_{C D}\right] } & =8 \eta_{[A[C} \gamma_{D] B]} \\
\left\{\gamma_{A B}, \gamma_{C D}\right\} & =4 \eta_{C[B} \eta_{A] D} \mathbf{1}+2 i \epsilon_{A B C D} \gamma_{5}
\end{aligned}
$$

- γ_{5} and $\mathbf{1}$ have to be included in the algebra
- Extension by these two elements $\rightarrow 8$-dimensional algebra \rightarrow $\mathrm{SL}(2, \mathbf{C})$ to $\mathrm{GL}(2, \mathbf{C})$ with generators $\left\{\gamma_{A B}, \gamma_{5}, i \mathbf{1}\right\}$
L. Castellani '09
- In $\mathrm{SO}(3)$ notation we have the generators $\gamma_{a b}$ and $\gamma_{a}=\gamma_{a 4}$ with $a=1, \ldots, 3$. We can also define: $\widetilde{\gamma}^{a}=\epsilon^{a b c} \gamma_{b c}$.
- Commutation and anticommutation relations for γ and $\widetilde{\gamma}$:

$$
\begin{aligned}
& {\left[\tilde{\gamma}^{a}, \tilde{\gamma}^{b}\right]=-4 \epsilon^{a b c} \tilde{\gamma}_{c}, \quad\left[\gamma_{a}, \tilde{\gamma}_{b}\right]=-4 \epsilon_{a b c} \gamma^{c},\left[\gamma_{a}, \gamma_{b}\right]=\epsilon_{a b c} \tilde{\gamma}^{c},\left[\gamma^{5}, \gamma^{A B}\right]=0} \\
& \left\{\tilde{\gamma}^{a}, \tilde{\gamma}^{b}\right\}=-8 \eta^{a b} \mathbf{1},\left\{\gamma_{a}, \tilde{\gamma}^{b}\right\}=4 i \delta_{a}^{b} \gamma_{5},\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b} \mathbf{1},\left\{\gamma^{5}, \gamma^{A B}\right\}=0
\end{aligned}
$$

- We consider $\mathrm{GL}(2, \mathbf{C})$ as the gauge group. The covariant coordinate is:

$$
\begin{aligned}
& \mathcal{X}_{\mu}=e_{\mu}{ }^{a}(X) \otimes \gamma_{a}+\omega_{\mu}{ }^{a}(X) \otimes \widetilde{\gamma}_{a}+\mathcal{A}_{\mu} \otimes i \mathbf{1}+\widetilde{A}_{\mu}(X) \otimes \gamma_{5}, \\
& \text { with } \mathcal{A}_{\mu}=e_{\mu}{ }^{a} X_{a}+A_{\mu}(X) .
\end{aligned}
$$

- Gauge parameter expands in a similar way:

$$
\epsilon=\xi^{a}(X) \otimes \gamma_{a}+\lambda^{a}(X) \otimes \widetilde{\gamma}_{a}+\epsilon_{0}(X) \otimes i \mathbf{1}+\widetilde{\epsilon}_{0}(X) \otimes \gamma_{5}
$$

- Trans of component fields derive from $\delta \mathcal{X}_{\mu}=\left[\epsilon, \mathcal{X}_{\mu}\right]$ and are:

$$
\begin{aligned}
\delta e_{\mu}^{a} & =-i\left[\mathcal{A}_{\mu}, \xi^{a}\right]-2\left\{\xi_{b}, \omega_{\mu c}\right\} \epsilon^{a b c}-2\left\{\lambda_{b}, e_{\mu c}\right\} \epsilon^{a b c}+i\left[\epsilon_{0}, e_{\mu}^{a}\right] \\
\delta \omega_{\mu}^{a} & =-i\left[\mathcal{A}_{\mu}, \lambda^{a}\right]+\frac{1}{2}\left\{\xi_{b}, e_{\mu c}\right\} \epsilon^{a b c}-2\left\{\lambda_{b}, \omega_{\mu c}\right\} \epsilon^{a b c}+i\left[\epsilon_{0}, \omega_{\mu}^{a}\right] \\
\delta \mathcal{A}_{\mu} & =-i\left[\mathcal{A}_{\mu}, \epsilon_{0}\right]-i\left[\xi_{a}, e_{\mu}^{a}\right]+4 i\left[\lambda_{a}, \omega_{\mu}^{a}\right]-i\left[\tilde{\epsilon}_{0}, \widetilde{A}_{\mu}\right] \\
\delta \widetilde{A}_{\mu} & =-i\left[\mathcal{A}_{\mu}, \tilde{\epsilon}_{0}\right]+2 i\left[\xi_{a}, \omega_{\mu}^{a}\right]+2 i\left[\lambda_{a}, e_{\mu}^{a}\right]+i\left[\epsilon_{0}, \widetilde{A}_{\mu}\right]
\end{aligned}
$$

- If we consider: $e_{\mu}^{a}=\delta_{\mu}{ }^{a}, \omega_{\mu}^{a}=0, \tilde{A}_{\mu}=0$ (Y-M limit), we obtain:

$$
\delta A_{\mu}=-i\left[X_{\mu}, \epsilon_{0}\right]+i\left[\epsilon_{0}, A_{\mu}\right]
$$

recovering the trans rule for a nc $\mathrm{Y}-\mathrm{M}$ gauge field.

- If we consider: $A_{\mu}=0,\left[\mathcal{A}_{\mu}, f\right] \rightarrow \partial_{\mu} f$ (comm limit), we obtain field trans of $3-\mathrm{d}$ comm case.
After a redefinition:
$\gamma_{a} \rightarrow \frac{2 i}{\sqrt{\lambda}} P_{a}, \tilde{\gamma}_{a} \rightarrow-4 J_{a}, 4 \lambda^{a} \rightarrow \lambda^{a}, \xi^{a} \frac{2 i}{\sqrt{\lambda}} \rightarrow-\xi^{a}, e_{\mu}^{a} \rightarrow \frac{\sqrt{\lambda}}{2 i} e_{\mu}^{a}, \omega_{\mu}^{a} \rightarrow-\frac{1}{4} \omega_{\mu}^{a}$

Curvature tensors are:

$$
\mathcal{R}_{\mu \nu}=\left[\mathcal{X}_{\mu}, \mathcal{X}_{\nu}\right]-\epsilon_{\mu \nu \rho} \mathcal{X}_{\rho}
$$

The curvature tensor can be expanded as:

$$
\mathcal{R}_{\mu \nu}=T_{\mu \nu}^{a} \otimes \gamma_{a}+R_{\mu \nu}^{a} \otimes \tilde{\gamma}_{a}+F_{\mu \nu} \otimes i \mathbf{1}+\tilde{F}_{\mu \nu} \otimes \gamma_{5}
$$

We end up with the various tensors:

$$
\begin{aligned}
T_{\mu \nu}^{a} & =i\left[\mathcal{A}_{\mu}, e_{\nu}^{a}\right]-i\left[\mathcal{A}_{\nu}, e_{\mu}^{a}\right]-2\left\{e_{\mu b}, \omega_{\nu c}\right\} \epsilon^{a b c}-2\left\{\omega_{\mu b}, e_{\nu c}\right\} \epsilon^{a b c}-\epsilon_{\mu \nu}{ }^{\rho} e_{\rho}^{a} \\
R_{\mu \nu}^{a} & =i\left[\mathcal{A}_{\mu}, \omega_{\nu}^{a}\right]-i\left[\mathcal{A}_{\nu}, \omega_{\mu}{ }^{a}\right]-2\left\{\omega_{\mu b}, \omega_{\nu c}\right\} \epsilon^{a b c}+\frac{1}{2}\left\{e_{\mu b}, e_{\nu c}\right\} \epsilon^{a b c}-\epsilon_{\mu \nu}{ }^{\rho} \omega_{\rho}{ }^{a} \\
F_{\mu \nu} & =i\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]-i\left[e_{\mu}^{a}, e_{\nu a}\right]+4 i\left[\omega_{\mu}{ }^{a}, \omega_{\nu a}\right]-i\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]-\epsilon_{\mu \nu}{ }^{\rho} \mathcal{A}_{\rho} \\
\widetilde{F}_{\mu \nu} & =i\left[\mathcal{A}_{\mu}, \widetilde{A}_{\nu}\right]-i\left[\mathcal{A}_{\nu}, \widetilde{A}_{\mu}\right]+2 i\left[e_{\mu}^{a}, \omega_{\nu a}\right]+2 i\left[\omega_{\mu}{ }^{a}, e_{\nu a}\right]-\epsilon_{\mu \nu}{ }^{\rho} \widetilde{A}_{\rho}
\end{aligned}
$$

- If we consider the comm limit: same tensors as comm case
- If we consider the Y-M limit,we obtain:

$$
F_{\mu \nu}=i\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]-\epsilon_{\mu \nu}{ }^{\rho} \mathcal{A}_{\rho}, \quad \mathcal{A}_{\mu} \rightarrow X_{\mu}+A_{\mu},
$$

field strength tensor with \mathcal{A} interpreted as a cov coord.

Final step \rightarrow write down the action:

$$
\mathcal{S}=\frac{1}{2} \operatorname{Tr} \operatorname{tr}\left(\epsilon^{\mu \nu \rho} \mathcal{X}_{\mu} \mathcal{X}_{\nu} \mathcal{X}_{\rho}-\mathcal{X}_{\mu} \mathcal{X}^{\mu}\right)=\frac{1}{4} \operatorname{Tr} \operatorname{tr}\left(\epsilon^{\mu \nu \rho} \mathcal{X}_{\mu} \mathcal{R}_{\nu \rho}\right)
$$

where

- Tr is trace over matrices
- tr is trace over the algebra

Using the following form of the algebra trace:

$$
\operatorname{tr}\left(\gamma_{a} \gamma_{b}\right)=4 \eta_{a b}, \quad \operatorname{tr}\left(\tilde{\gamma}_{a} \tilde{\gamma}_{b}\right)=-16 \eta_{a b},
$$

it takes the form:

$$
\mathcal{S}=\operatorname{Tr} \epsilon^{\mu \nu \rho}\left(e_{\mu a} T_{\nu \rho}^{a}-4 \omega_{\mu a} R_{\nu \rho}^{a}-\mathcal{A}_{\mu} F_{\nu \rho}+\tilde{A}_{\mu} \tilde{F}_{\nu \rho}\right) .
$$

Varying the action wrt \mathcal{X}, we obtain:

$$
\mathcal{R}_{\nu \rho}+\frac{1}{3} \epsilon_{\nu \rho}{ }^{\mu} \mathcal{X}_{\mu}=0
$$

which decompose to the set of e.o.m.:

$$
\begin{aligned}
& T_{\nu \rho}^{a}-\frac{1}{3} \epsilon_{\nu \rho}{ }^{\mu} e_{\mu}{ }^{a}=0, \quad R_{\nu \rho}^{a}-\frac{1}{3} \epsilon_{\nu \rho}{ }^{\mu} \omega_{\mu}{ }^{a}=0, \\
& F_{\nu \rho}-\frac{1}{3} \epsilon_{\nu \rho}{ }^{\mu} \mathcal{A}_{\mu}=0, \quad \widetilde{F}_{\nu \rho}-\frac{1}{3} \epsilon_{\nu \rho}{ }^{\mu} \widetilde{A}_{\mu}=0 .
\end{aligned}
$$

Comments

- Derive e.o.m. after variation wrt the gauge fields - expecting the same expressions
- Working on a model for gravity on a fuzzy sphere
- Next step - include matter fields
- Purpose is to learn the tools and move on to more realistic scenarios

Thank you!

