$N(N) L O$ calculations: an overview

Gionata Luisoni gionata.luisoni@cern.ch
 CERN
 10.09.2017
 TOOLS 2017
 Corfu

Credits: Many thanks to N. Greiner, G.Heinrich, G.Ossola and J.Winter

Outline

- Motivation: why NLO, why automation?
- NLO automation: the key ingredients and the past challenges
- Latest developments
- Tools: state-of-the art
- Towards NNLO
- Conclusions and outlook

Disclaimer: despite trying to be comprehensive, this is a very biased selection of tools and I may have forgotten your favorite one. I apologize for potential omissions and if you point them out to me I would be glad to include them!

Motivation: why NLO, why automation?

Precision at the LHC

[1610.01843]

LHC is a tough environment for precision..

- QCD is omnipresent at LHC:
- PDF
- Hard scattering and loop corrections
- Parton Shower
- Hadronization
- Further non perturbative effects
- Master formula:

$$
\begin{aligned}
& \sigma_{\mathbf{h}_{1} \mathbf{h}_{2} \rightarrow \mathbf{x}}=\sum_{\mathbf{a}, \mathbf{b}} \int_{0}^{1} \mathrm{~d} \mathbf{x}_{1} \mathrm{dx}_{\mathbf{2}} \mathrm{f}_{\mathrm{h}_{1} / \mathrm{a}}\left(\mathbf{x}_{1}, \mu_{\mathbf{F}}^{\mathbf{F}}\right) \mathrm{f}_{\mathrm{h}_{2} / \mathrm{b}}\left(\mathbf{x}_{2}, \mu_{\mathbf{F}}^{2}\right) \times \hat{\sigma}_{\mathrm{a}, \mathrm{~b} \rightarrow \mathrm{x}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \alpha_{\mathbf{s}}\left(\mu_{\mathbf{R}}^{2}\right), \frac{\mathbf{Q}^{2}}{\mu_{\mathbf{F}}^{2}}, \frac{\mathbf{Q}^{2}}{\mu_{\mathbf{R}}^{2}}\right) \quad\left[+\mathcal{O}\left(\frac{1}{\mathbf{Q}^{2}}\right)\right] \\
& \text { PDFs } \\
& \text { power } \\
& \text { corrections }
\end{aligned}
$$

- Would like to know all components with high precision!

Fixed order calculations

- Where the partonic cross section can be written as:

$$
\begin{gathered}
\hat{\sigma}_{a, b \rightarrow X}=\alpha_{s}^{(n)}\left[\sigma_{0}+\alpha_{s} \sigma_{1}+\alpha_{s}^{2} \sigma_{2}+\alpha_{s}^{3} \sigma_{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right] \\
\mathrm{LO} \quad \mathrm{NLO} \\
\mathrm{NNLO} \\
\mathrm{~N}^{3} \mathrm{LO}
\end{gathered}
$$

- LO:

- NLO:

- NNLO:

Predicts only the order of magnitude:
$>$ scale in coupling is not defined
>1 parton $\longleftrightarrow 1$ jet

First reliable predictions:
$>$ scale choices can be made
$>$ first description of jet substructure

Possible to quantify uncertainties:
$>$ convergence can be checked
$>$ richer jet substructure

Why automation?

NLO timeline
[Salam, La Thuile 2012]

- flexibility
- reliability
- speed
-...
> more focus on phenomenology

VBF total, Bolzoni, Maltoni, Moch, Zaro
WH diff., Ferrera, Grazzini, Tramontano
Hj (partial), Boughezal et al.
ttbar total, Czakon, Fiedler, Mitov
$Z-\gamma$, Grazzini, Kallweit, Rathlev, Torre

ZZ, Cascioli it et al. WW, Gehrmann et al.
jj (partial), Currie, Gehrmann-De Ridder, Glover, Pires

ZH diff., Ferrera, Grazzini, Tramontano
ttbar diff., Czakon, Fiedler, Mitov
explosion of calculations in past 18 months
$\begin{array}{llllllll}2002 & 2004 & 2006 & 2008 & 2010 & 2012 & 2014 & 2016\end{array}$

NLO automation: the key ingredients and the past challenges

NLO calculation in a nutshell

- For a full NLO calculation the following ingredients are needed:

$$
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}}=\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{\mathrm{Born}}+\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{R}}-\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}\right)+\int_{\mathrm{d} \Phi_{m}}\left[\int_{\mathrm{d} \Phi_{1}} \mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}+\mathrm{d} \sigma_{\mathrm{NLO}}^{V}\right]
$$

- Tree amplitude:
- Born level matrix element
- Real radiation matrix element
- Subtraction scheme
- Phase space integral

- Virtual corrections

One Loop Program (OLP)

Monte Carlo (MC)

Note: for loop-induced processes this picture changes slightly

NLO calculation: tree-level amplitudes

- For a full NLO calculation the following ingredients are needed:

$$
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}}=\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{\mathrm{Born}}+\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{R}}-\mathrm{d} \sigma_{\mathrm{NLO}}\right)+\int_{\mathrm{d} \Phi_{m}}\left[\int \mathrm{~d} \sigma_{\mathrm{SLO}}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{V}}\right]
$$

- Tree amplitude:
- Born level matrix element
- Real radiation matrix element
- Virtual corrections
- Subtraction scheme
- Phase space integral

Tree-level amplitude generators:

- Automated generation of tree-level matrix elements available since long time now
- Many codes appeared for the first time in the '90s \rightarrow continuously updated
- Based on helicity amplitudes, off-shell currents, Dyson-Schwinger recursive equations or Berends-Giele recursion relations
FeynArts
[Eck, Küblbeck; Hahn]
Talk by T. Hahn

Grace
[Fujimoto et al.]

FeynCalc
[Mertig, Böhm, Denner]

Helas

[Murayama, Watanabe, Hagiwara]

O’Mega / WHIZARD

[Moretti, Ohl, Reuter; Kilian Ohl, Reuter]
Talk by J. Reuter

Helac
[Kanaki, Papadopoulos]

CompHEP

[Pukhov et al.]

Disclaimer 1: most of the codes were further developed and refined by several other authors to become more flexible and automated. Here I list only the beginnings in a sort of historical perspective. More later... Disclaimer 2: many of the automated 1-loop amplitude generators have also tree-level capabilities. Here only genuine tree-level codes are mentioned.

NLO calculation: phase space

- For a full NLO calculation the following ingredients are needed:
- Tree amplitude:
- Born level matrix element
- Real radiation matrix element
- Virtual corrections
- Subtraction scheme
- Phase space integral

Phase space generators

- Often developed together with tree-level amplitude generators:
- need the knowledge of the amplitude structure to optimize phase space sampling

BASES/SPRING
[Kawabata]

Kaleu
[Van Hameren]

[Nason]

MadEvent (with MadGraph)

[Maltoni, Stelzer]

Helac-Phegas
[Cafarella, Papadopoulos, Worek]

Sherpa
(with Amegic++ Comix)
[Gleisberg, Höche, Krauss,
Schaelicke, Schumann, Winter]

WHIZARD

NLO calculation: subtraction

- For a full NLO calculation the following ingredients are needed:

$$
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}}=\int_{\mathrm{d} \Phi_{m}}+\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{B}}-\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}\right)+\int_{\mathrm{d} \Phi_{m}}\left[\int_{\mathrm{d} \Phi_{1}} \mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}+\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{V}}\right]
$$

- Tree amplitude:
- Born level matrix element
- Real radiation matrix element
- Virtual corrections
- Subtraction scheme
- Phase space integral

Recap: Why do we need a subtraction scheme?

- When integrating over the inclusive $(m+1)$-particle phase space the real-radiation matrix element becomes singular in the soft ($\mathrm{E} \rightarrow 0$) and collinear $\left(\theta_{\mathrm{ij}} \rightarrow 0\right)$ limit:

- Same divergent structure as virtual contribution, which becomes manifest only once the phase space integration is performed
- Introduce subtraction which reproduces the real-radiation singular behaviour, but can be integrated analytically (poles cancellation becomes manifest)

$$
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}}=\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{\mathrm{Born}}+\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{R}}-\mathrm{d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}\right)+\int_{\mathrm{d} \Phi_{m}}\left[\int_{\mathrm{d} \Phi_{1}} \mathrm{~d} \sigma_{\mathrm{NLO}}^{\mathrm{S}}+\mathrm{d} \sigma_{\mathrm{NLO}}^{V}\right]
$$

Subtraction schemes at NLO

- Most used subtraction schemes at NLO:
- Catani-Seymour dipole method (CS) [Catani, Seymour; Catani, Dittmaier, Seymour, Trocsanyi]
- Frixione-Kunszt-Signer (FKS) [Frixione, Kunszt, Signer]
- Nagy-Soper [Nagy, Soper]
- Various tools have an implementation of these schemes along with the tree-level amplitude generators:
Sherpa
CS dipoles
[Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter]

Autodipole

[Hasegawa, Moch, Uwer]

MadGraph/MadEvent
MadDipole/MadFKS
[Frederix, Gehrmann, Greiner]
[Frederix, Frixione, Maltoni, Stelzer]

- Other schemes: (mainly developed for NNLO, but applicable also at NLO)
> Antenna [Kosower; Gehrmann et al.]
> CoLoRFul
> Residue-improved SD [Czakon et al.]
$>\mathrm{q}_{\mathrm{T}}$-subtraction
> N -jettiness
> Nested subtr. based on SD
[Catani, Grazzini et al.]
[Gaunt et al.; Boughezal et al.]

10/09/2017 - Gionata Luisoni

NLO calculation: virtual correction

- For a full NLO calculation the following ingredients are needed:

$$
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}}=\int_{\mathrm{d} \Phi_{m}}+\int_{\mathrm{d}_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{BLD}}-\mathrm{dos} O\right)+\int_{\mathrm{d} \Phi_{m}}\left[\int \mathrm{~d} \sigma_{\mathrm{NLO}}+\mathrm{d} \sigma_{\mathrm{NLO}}^{V}\right]
$$

- Born level matrix element
- Real radiation matrix element
- Subtraction scheme
- Phase space integral
- Virtual corrections

```
For long time considered the
bottleneck in the automation of NLO
calculation!
```


1-loop amplitudes computation

- Generic 1-loop amplitude:

- Can be decomposed in Master Integrals (MIs): [Passarino, veltman]

- Reduce problem of computing 1-loop integral to the determination of the coefficients of the linear combination of MIs (reduction).
Various way of doing this, mainly two techniques were automatized:
\rightarrow Integrand reduction [Ellis, Giele, Kunstt, Melnikov, Mastrolia, Mirabella, Ossola, Papadopoulos, Peraro, Pittau, ...]
\rightarrow Tensor reduction
- Tensor or scalar MIs coded into dedicated libraries

1-loop: several programs for several tasks

- From 1-loop amplitude generators to scalar 1-loop MIs libraries

1-loop: several programs for several tasks

- From scalar 1-loop libraries to 1-loop amplitude generators

Amplitude \& code generators:

FeynCalc
FormCalc
GoSam
MadLoop
OpenLoops
Recola
Helac-1loop

Reduction codes:

Collier
Cuttools

Integral libraries:
Package X
LoopTools

1-loop: several programs for several tasks

1-loop: several programs for several tasks

1-loop: several programs for several tasks

1-loop: several programs for several tasks

$$
g g \rightarrow t \bar{t} g g
$$

Reduction accuracy for the process $\mathrm{g} \mathrm{g}>\mathrm{t} \overline{\mathrm{t}} \mathrm{g} \mathrm{g}$ (1 TeV c.o.m energy)

$g g \rightarrow Z Z Z Z$

Red. acc. for $\mathrm{g} \mathrm{g}>\mathrm{Z} Z \mathrm{Z} Z$ (hel. config. '--0000', 1 TeV c.o.m energy)

[Hirschi MIAPP 2017]

MC - OLP: the Binoth LH Accord interface

- In order to allow to easily interface the various MCs' with several OLPs', use a standard interface for communication
[Binoth et al.; Alioli et al.]
- 2 step interface:
- pre-runtime: fix conventions / tell OLP which processes are needed
- runtime: call OLP for amplitude at a given phase space point
- Recently updated to increase automation and flexibility:
- Support for dynamical parameters (coupling, masses, ...)
- Synchronization of EW schemes
- Standards for treatment of unstable phase space points
- Standards for merging different jet multiplicities
- Extension to provide also colour correlated (CC) and helicity correlated (HC) tree amplitudes

BLHA

- The Binoth Les Houches Accord Interface

Order and contract files

- We can also compare order and contract files:

```
# OLE_order.lh
# Created by Sherpa-2.2.2
```

MatrixElementSquareType CHsummed

CorrectionType QCD

IRregularisation CDR
AlphasPower
2

AlphaPower
 0

OperationMode CouplingsStrippedOff
ResonanceTreatment FixedWidthScheme
EWRenormalisationScheme alphaMZ
\# process list
1-1-> 6-6
-11 -> 6 -6
2121 -> 6 -6

```
# vim: syntax=olp
#@OLP GoSam 2.0.4
#@IgnoreUnknown True
#@lgnoreCase False
#@SyntaxExtensions
MatrixElementSquareType CHsummed | OK
CorrectionType QCD | OK
IRregularisation CDR | OK
AlphasPower 2 | OK
AlphaPower O | OK
OperationMode CouplingsStrippedOff | OK
ResonanceTreatment FixedWidthScheme | OK # Ignored by OLP
EWRenormalisationScheme alphaMZ | OK # Ignored by OLP
1-1 -> 6-6 | 11
-1 1-> 6-6 | 1 2
2121 -> 6-6 | 1 0
```

Partonic process label used for communication between MC and OLP

Latest developments

EW corrections

- After automation of QCD, efforts started focusing on EW corrections
- Few additional aspects to be careful about:
- Bookkeeping
> when tree levels at various orders in α_{s} and α lead to the same final state (example in the next slide)
- Gauge invariant treatment of unstable particles via complex mass scheme
- In 1-loop EW computation complexity grows faster than QCD
> More possibilities for particles running in the loop, depending also on the chosen gauge

EW corrections: bookkeeping in W+2 jets

qqW final state via QCD or EW:

LO:

NLO:

$$
\mathcal{O}\left(\alpha_{s}^{2} \alpha^{2}\right)
$$

$$
\mathcal{O}\left(\alpha_{s}^{2} \alpha^{3}\right)
$$

$$
\mathcal{O}\left(\alpha_{s} \alpha^{4}\right)
$$

$$
\mathcal{O}\left(\alpha^{5}\right)
$$

EW corrections

- Most recent NLO EW results:
- Recola

$$
\begin{aligned}
& p p \rightarrow l l j j \\
& p p \rightarrow e^{+} e^{-} \mu^{+} \mu^{-} / \mu^{+} \mu^{-} \mu^{+} \mu^{-} \\
& p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} \\
& p p \rightarrow t \bar{t} \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} \\
& p p \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} j j \\
& p p \rightarrow t \bar{t} H \rightarrow e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b} H \\
& p p \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} j j
\end{aligned}
$$

```
[1411.0916]
[1601.07787] [1611.05338]
[1605.03419]
[1607.06671]
[1611.02951]
[1612.07138]
[1708.00268]
```

- Sherpa/Munich + OpenLoops

$$
\begin{aligned}
& p p \rightarrow W+1,2,3 \text { jets } \\
& p p \rightarrow l l / l \nu / \nu \nu+0,1,2 \text { jets } \\
& p p \rightarrow l l \nu \nu
\end{aligned}
$$

[1412.5157]
[1511.08692]
[1705.00598]

- MadGraph5_aMC@NLO + MadLoop

$$
\begin{aligned}
& p p \rightarrow t \bar{t} H / Z / W \\
& p p \rightarrow t \bar{t} \\
& p p \rightarrow 2 \text { jets }
\end{aligned}
$$

[1504.03446]
[1606.01915][1705.04105]
[1612.06548]

- MadDipole/Sherpa + GoSam

$$
\begin{array}{ll}
p p \rightarrow W+1,2,3 \text { jets } & {[1507.08579]} \\
p p \rightarrow \gamma \gamma+0,1,2 \text { jets } & {[1706.09022]}
\end{array}
$$

Tools: state-of-the-art

Summary of (semi-) automated NLO tools

- Several existing frameworks for (semi-) automated NLO simulations and more:

Talk by M.Schönherr

Helac-NLO

[Bevilacqua, Czakon, Garzelli, v.Hameren, Kardos, Malamos, Papadopoulos, Pittau, Worek, Shao]

POWHEG-BOX

[Alioli, Hamilton, Jezo, Nason, Oleari, Re, Zanderighi]

Sherpa

[Höche, Krauss, Kuttimalai, Schönherr, Schumann, Siegert, Thompson, Winter, Zapp]

Herwig-7 / Matchbox
[Bellm, Gieseke, Grellscheid, Kirchgaeßer, Loshaj, Nail, Papaefstathiou, Plätzer, Podskubka, Rauch, Reuschle, Richardson, Schichtel, Seymour, Siódmok, Webber]

MG5_aMC@NLO

[Alwall, Artoisenet, Degrande, Frederix, Frixione, Fuks, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

Summary of (semi-) automated NLO tools

- Several existing frameworks for (semi-) automated NLO simulations

Talk by J. Reuter

- Many other more process specific tools: MCFM, VBFNLO,...
- Can be interfaced to further analysis tools: Fastjet, Rivet, ... Talks by G. Soyez, A.Buckley
- Possible to perform LO/NLO computations in your favourite BSM model using interfaces to FeynRules, ...

Other 1-loop programs

- Other codes for the computation of 1-loop amplitudes, which are specialized on massless processes with many legs:
- Record multiplicity in jet and vector boson + jets calculations at NLO in QCD
- Based on generalized unitarity

Towards NNLO

Towards NNLO automation

- NNLO starts to be the new automation frontier
- Several challenges ahead:

$$
\begin{aligned}
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NNLO}}= & \hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}} \\
& +\int_{\mathrm{d} \Phi_{m+2}}\left(\mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{R}}-\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{S}}\right) \\
& +\int_{\mathrm{d} \Phi_{m+2}} \mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{S}} \\
& +\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{V}, 1}-\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{VS}, 1}\right)
\end{aligned}+\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{VS}, 1} \mathrm{t}
$$

$\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{R}}$ - double real: tree-level radiation of 2 additional partons to tree-level
$\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{V}, 1}$ - real-virtual: interference between 1-loop + 1-emission and tree-level 1emission amplitude
$\mathrm{d} \sigma_{\text {NNLO }}^{\mathrm{V}, 2}$ - double virtual: interference between 2-loops virtual and born tree-level, and 1-loop amplitude squared

Towards NNLO automation

- NNLO starts to be the new automation frontier
- Several challenges ahead:

$$
\begin{aligned}
\hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NNLO}}= & \hat{\sigma}_{a, b \rightarrow X}^{\mathrm{NLO}} \\
& +\int_{\mathrm{d} \Phi_{m+2}}\left(\mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{R}}-\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{S}}\right) \\
& +\int_{\mathrm{d} \Phi_{m+2}} \mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{S}} \\
& +\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{V}, 1}-\mathrm{d} \sigma_{\mathrm{NNLO}}^{\mathrm{VS}, 1}\right)
\end{aligned}+\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{\mathrm{NNLO}}^{\mathrm{VS}, 1} \mathrm{t}
$$

\checkmark Double real radiation
\times Subtraction more IR limits:

- several methods
- how well can we automatize them? How efficient are they?
$\times 1$-Loop calculation to higher epsilon and for unresolved particles:
- Can in principle be computed with OLPs, which need potentially to be extended
$\times 2$-Loop amplitudes:
- hard to go beyond 2 to 2 for massless particles but work is in progress..

Loop-induced processes

- A first step towards NNLO: presence of 2-loop matrix elements but same IR complexity as NLO
- Nevertheless some first additional complications:
- real radiation amplitude is 1-loop: challenge for numerical stability
- virtual amplitude is 2-loop: in general very hard! More later..
- phenomenologically relevant:
- E.g. Higgs and double Higgs production:

Background, signal and interference @ NLO
\rightarrow Relevant for off-shell Higgs width measurements

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenck, Schubert, Zirke] [Heinrich, Jones, Kerner, Luisoni, Vryonidou]

NNLO Subtraction

- Double real radiation introduces several additional complications:
- double soft / triple collinear configurations
- Several approaches:
> Antenna [Kosower; Gehrmannet al.]
$\Rightarrow \mathrm{q}_{\mathrm{T}}$ - subtraction
[Catani, Grazzini et al.]
> CoLoRFul [Somogyi et al.]
> Residue-improved SD [Czakon et al.]
> N-jettiness
[Gaunt et al.; Boughezal et al.]
> Projection-to-Born
> Nested subtr. based on SD
[Caola et al.]
- Can be categorized into 2 big families:
- Local subtraction (as used for NLO)
- Cancel divergences locally with counter term
\checkmark Better convergence
x Integrated subtraction terms can be hard to compute
- Phase space slicing
- Split phase space according to singular configuration and use NLO local subtraction for NLO-like singularities
\checkmark Simpler to implement (from resummation)
\times Large cancellation on cut-off - check of slicing parameter dependence

2-loop amplitudes

- As it was for 1-loop 15 years ago, the bottleneck seems to be again the loop part
- 2-loops computations available for $2 \rightarrow 2$ processes (massless internal particles)
- Tools for the reduction of the loop amplitudes to coefficient x MIs:
> Highly nontrivial since no general MIs basis is known (contrary to 1 loop)

[Smirnov]

Kira

[Maierhöfer, Usovitsch, Uwer]

LiteRed

[Lee]

Reduze
[Schabinger, Studerus, v.Manteuffel]
> Based on Integration-by-parts (IBPs) relations: $\int d^{D} k \frac{\partial}{\partial k^{\mu}} v^{\mu} f\left(k, p_{i}\right)=0$

- Many promising developments in the last years
[Abreu, Badger, Febres Cordero, Feng, Huang, Frellesvig, Henn, Kosower, Ita, Jaquier, Larsen, Mastrolia, Mirabella, Mogull, Ossola, Papadopoulos, Page, Peraro, Primo, Zeng, Zhang, ...]

2-loop amplitudes

- Many techniques both analytical and numerical or semi-numerical

- Direct integration [Feynman; t'Hooft, Veltman, ... ; Brown; Panzer; Schnetz; v.Manteuffel, Panzer, Schabinger; ...]
- Mellin-Barnes representation [Tausk; Smirnov; ...]
- Differential equations [Kotikov; Remiddi; Gehrmann, Remiddi; Henn; ...]
[Argeri, Caola, Caron-Huot, Di Vita, Gehrmann, Grozin, Korchemsky, Henn, Lee, v.Manteuffel, Marquard, Mastrolia, Melnikov, Meyer, Mirabella, Papadopoulos, Primo, Schabinger, Schlenk, Schubert, Smirnov, Tancredi, Tommasini, Weihs, Wever, Yundin, ...]
- Numerical solution of differential equations
[Caffo, Czyz, Laporta, Remiddi; Czakon, Mitov; ...]
- Dispersion relation [Bauberger et al.; Bauberger, Freitag; ...]
- Via Bernstein-Sato-Tkachov theorem
[Passarino; Uccirati et al.; ...]
- Numerical evaluation via Mellin-Barnes [Czakon; Dubovy, Freitas, Gluza, Riemann, Usovitsch;...]
- Numerical extrapolation [De Doncker, Yuasa, Kato, Fujimoto Kurihara, Ishikawa, Olagbemi, Shimizu]
- Direct integration in momentum space [Soper; Gong, Soper, Nagy; Weinzierl, Reuschle et al.,...]
- Loop-tree duality
- Sector decomposition
[Rodrigo, Buchta, Chachamis, Sborlini, Driencourt-Mangin et al.; ...] [Hepp; Denner, Roth; Binoth, Heinrich; ...]

sector_decomposition

[Bogner, Weinzierl]

SecDec/pySecDec
Talk by S. Jahn
[Borowka, Carter, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke]

Towards automation

Available tools for NNLO predictions

- Some tools for dedicated NNLO predictions:

NNLOJET Based on antenna subtraction	$p p \rightarrow 2$ jets
	$p p \rightarrow H+1$ jet
[Chen, Cruz-Martinez, Currie,	$p p \rightarrow Z+1$ jet
Gehrmann, Gehrmann De-	$e p \rightarrow 2+1$ jets
Ridder, Glover, Huss, Jaquier,	

MATRIX Based on q_{T}-subtraction
[Grazzini, Kallweit, Rathlev,
Wiesemann]

$$
\begin{array}{ll}
p p \rightarrow Z / \gamma^{*}\left(\rightarrow l^{+} l^{-}\right) & p p \rightarrow Z Z \rightarrow 4 l \\
p p \rightarrow W(\rightarrow l \nu) & p p \rightarrow W W \rightarrow l \nu l^{\prime} \nu^{\prime} \\
p p \rightarrow H & p p \rightarrow Z Z / W W \rightarrow l l \nu \nu \\
p p \rightarrow \gamma \gamma & p p \rightarrow W Z \rightarrow l \nu l^{\prime+} l^{\prime-} \\
p p \rightarrow W \gamma \rightarrow l \nu \gamma & p p \rightarrow H H \\
p p \rightarrow Z \gamma \rightarrow l^{+} l^{-} \gamma &
\end{array}
$$

MCFM-NNLO Based on N -jettiness
[Boughezal, Campbell, Ellis,
Focke, Giele, Liu, Neumann,
Petriello, Williams]

$$
\begin{aligned}
& p p \rightarrow Z / \gamma^{*}\left(\rightarrow l^{+} l^{-}\right) \\
& p p \rightarrow W(\rightarrow l \nu) \\
& p p \rightarrow H \\
& p p \rightarrow \gamma \gamma \\
& \left.p p \rightarrow Z \gamma \rightarrow l^{+} l^{-} \gamma\right) \\
& p p \rightarrow H Z \rightarrow H l^{+} l^{-} \\
& p p \rightarrow H W \rightarrow H l \nu
\end{aligned}
$$

Conclusions \& Outlook

- NLO automation is a reality: many tools for several tasks
- NOT everything is possible "out of the box" but many pheno-relevant computations can be performed in little time compared to 10-15 years ago
- "Conceptually" solved although large multiplicity / multiscale calculations are still computationally very tough
- Allows to produce precise NLO predictions also for BSM scenarios
- Possibility to produce exclusive final state NLO predictions interfacing to PS Monte Carlo generators
- Experimental accuracy reached at LHC calls for NNLO predictions for several processes
- Very active field of research: collective effort towards automation
- Many challenges still ahead, but very fast progresses...
... how long for NNLO automation?

Conclusions \& Outlook

- NLO automation is a reality: many tools for several tasks
- NOT everything is possible "out of the box" but many pheno-relevant computations can be performed in little time compared to 10-15 years ago
- "Conceptually" solved although large multiplicity / multiscale calculations are still computationally very tough
- Allows to produce precise NLO predictions also for BSM scenarios
- Possibility to produce exclusive final state NLO predictions interfacing to PS Monte Carlo generators

Talk by M.Schönherr

- Experimental accuracy reached at LHC calls for NNLO predictions for several processes
- Very active field of research: collective effort towards automation
- Many challenges still ahead, but very fast progresses...
... how long for NNLO automation?

