New fuzzy spheres through confining potentials and energy cutoffs

Gaetano Fiore, Francesco Pisacane

Workshop "Testing fundamental physics principles", Mon Repos, Corfu, September 22-28, 2017,

Based on: arXiv:1709.04807

Introduction

Noncommutative space(time) algebras are introduced and studied:

- To avoid UV divergences in QFT [Snyder 1947].
- As an arena to formulate QG , inducing $\Delta x \gtrsim L_{p}$ predicted by QG arguments [Mead 1966, Doplicher et al 1994-95].
- As an arena for unification of interactions [Connes-Lott,....]

Fuzzy spaces are particularly appealing: a FS is a family $\mathcal{A}_{n \in \mathbb{N}}$ of finite-dimensional algebras such that $\mathcal{A}_{n} \xrightarrow{n \rightarrow \infty} \mathcal{A} \equiv$ algebra of regular functions on an ordinary manifold.
First, seminal example: the Fuzzy Sphere (FS) of Madore [1991]: $\mathcal{A}_{n} \simeq M_{n}(\mathbb{C})$, generated by coordinates $x^{i}(i=1,2,3)$ fulfilling

$$
\begin{equation*}
\left[x^{i}, x^{j}\right]=\frac{2 i}{\sqrt{n^{2}-1}} \varepsilon^{i j k} x^{k}, \quad r^{2}:=x^{i} x^{i}=1, \quad n \in \mathbb{N} \backslash\{1\} \tag{1}
\end{equation*}
$$

(1) are covariant under $S O(3)$, but not under the whole $O(3)$; in particular not under parity $x^{i} \mapsto-x^{i}$.

In fact $L^{i}=x^{i} \sqrt{n^{2}-1} / 2$ make up the standard basis of so(3) in the irrep $\left(\pi_{l}, V_{l}\right)$ characterized by $L^{i} L^{i}=I(I+1), I=2 n+1$. Does the FS approximate the configuration space algebra of a particle on S^{2} ? Problems: a) parity; b) V_{l} is irreducible, whereas

$$
\mathcal{L}^{2}\left(S^{2}\right)=\bigoplus_{l=0}^{\infty} V_{l}
$$

In fact $L^{i}=x^{i} \sqrt{n^{2}-1} / 2$ make up the standard basis of so(3) in the irrep $\left(\pi_{l}, V_{l}\right)$ characterized by $L^{i} L^{i}=I(I+1), I=2 n+1$. Does the FS approximate the configuration space algebra of a particle on S^{2} ? Problems: a) parity; b) V_{l} is irreducible, whereas

$$
\begin{equation*}
\mathcal{L}^{2}\left(S^{2}\right)=\bigoplus_{l=0}^{\infty} V_{l}=C\left(S^{2}\right) \tag{2}
\end{equation*}
$$

In fact $L^{i}=x^{i} \sqrt{n^{2}-1} / 2$ make up the standard basis of so(3) in the irrep $\left(\pi_{l}, V_{l}\right)$ characterized by $L^{i} L^{i}=I(I+1), I=2 n+1$. Does the FS approximate the configuration space algebra of a particle on S^{2} ? Problems: a) parity; b) V_{l} is irreducible, whereas

$$
\begin{equation*}
\mathcal{L}^{2}\left(S^{2}\right)=\bigoplus_{l=0}^{\infty} V_{l}=C\left(S^{2}\right) \tag{2}
\end{equation*}
$$

Here fuzzy approximations of QM on $S^{d}(d=1,2)$ solving a), b):

- Ordinary quantum particle in $\mathbb{R}^{D}(D=d+1)$, subject to a potential $V(r)$ with a very sharp minimum on the sphere $r=1$.
- By low enough energy-cutoff $E \leq \bar{E}$ we 'freeze' radial excitations, make only a finite-dimensional Hilbert subspace $\mathcal{H}_{\bar{E}}$ accessible, and on it the x^{i} noncommutative à la Snyder, the x^{i} generate the whole algebra of observables. $O(D)$-covariant by construction.
- Making $\bar{E}, V^{\prime \prime}(1) \gg 0$ diverge with $\Lambda \in \mathbb{N}$ (while $E_{0}=0$), we get a sequence \mathcal{A}_{Λ} of fuzzy approximations of ordinary QM on S^{d}.
- On $\mathcal{H}_{\bar{E}}$ the square distance \mathcal{R}^{2} from the origin is not identically 1 , but a function of L^{2} which collapses to 1 in the $\Lambda \rightarrow \infty$ limit.

Remarks:

- Our construction is inspired by the Landau model: there noncommuting x, y obtained projecting QM with a strong uniform magnetic field B on the lowest energy subspace.
- Physically sound method, applicable to more general contexts. Imposing a cutoff \bar{E} on an existing theory can be used to: - can yield an effective description of a system when our measurements, or the interactions with the environment, cannot bring its state to energies $E>\bar{E}$; or even
- may be a necessity if we believe \bar{E} represents the threshold for the onset of new physics not accountable by that theory.
- If H is invariant under some symmetry group, then the projection $P_{\bar{E}}$ on $\mathcal{H}_{\bar{E}}$ is invariant as well, and the projected theory will inherit that symmetry.

Table of contents

Introduction

General framework
$D=2: O$ (2)-covariant fuzzy circle
$D=3: O$ (3)-covariant fuzzy sphere

Outlook

General framework

Consider a quantum particle in \mathbb{R}^{D} configuration space with Hamiltonian

$$
\begin{equation*}
H=-\frac{1}{2} \Delta+V(r) \tag{3}
\end{equation*}
$$

we fix the minimum $V_{0}=V(1)$ of the the confining potential $V(r)$ so that the ground state has energy $E_{0}=0$. Choose an energy cutoff \bar{E} fulfilling

$$
\begin{equation*}
V(r) \simeq V_{0}+2 k(r-1)^{2} \tag{4}
\end{equation*}
$$

if $V(r) \leq \bar{E}$; so that $V(r)$ has a har- Figure 1: Three-dimensional monic behavior for $|r-1| \leq \sqrt{\frac{\bar{E}-V_{0}}{2 k}}$. plot of $V(r)$

Then we restrict to $\mathcal{H}_{\bar{E}} \subset \mathcal{H} \equiv \mathcal{L}^{2}\left(\mathbb{R}^{D}\right)$ spanned by ψ with $E \leq \bar{E}$. This entails replacing every observable A by \bar{A} :

$$
A \mapsto \bar{A}:=P_{\bar{E}} A P_{\bar{E}}
$$

where $P_{\bar{E}}$ is the projection on $\mathcal{H}_{\bar{E}}$. Because of the behavior of $V(r)$ as $k \rightarrow+\infty$, we expect that when both k, \bar{E} diverge $\operatorname{dim}\left(\mathcal{H}_{\bar{E}}\right)$ diverges and we recover standard QM on the sphere \mathbb{S}^{D-1}. The Laplacian in D dimensions decomposes as follows

$$
\begin{equation*}
\Delta=\partial_{r}^{2}+(D-1) \frac{1}{r} \partial_{r}-\frac{1}{r^{2}} L^{2} \tag{5}
\end{equation*}
$$

where $L_{i j}:=i x^{j} \partial_{i}-i x^{i} \partial_{j}$ are the angular momentum components (in normalized units), and $L^{2}=L_{i j} L_{i j}$ is the square angular momentum, i.e. the Laplacian on the sphere \mathbb{S}^{D-1}.
$H, L_{i j}, P_{\bar{E}}$ commute. As known, the eigenvalues of L^{2} are $j(j+D-2)$; the Ansatz $\psi=f(r) Y(\varphi, \ldots)$ (Y are eigenfunctions of L^{2} and of the elements of a Cartan subalgebra of so $(D) ; r, \varphi, \ldots$ are polar coordinates) transforms the eigenvalue equation $H \psi=E \psi$ into this auxiliary ODE in the unknown $f(r)$:

$$
\begin{equation*}
\left[-\partial_{r}^{2}-\frac{D-1}{r} \partial_{r}+\frac{j(j+D-2)}{r^{2}}+V(r)\right] f(r)=E f(r) \tag{6}
\end{equation*}
$$

we must stick to solutions f leading to square-integrable ψ. To obtain the lowest eigenvalues we don't need to solve it exactly: condition (4) allows us to approximate (6) with the eigenvalue equation of a 1 -dimensional harmonic oscillator, by Taylor expanding $V(r), 1 / r, 1 / r^{2}$ around $r=1$.

$D=2: \quad O(2)$-covariant fuzzy circle

For convenience we look for ψ in the form $\psi=e^{i m \varphi} f(\rho), \quad \rho=\ln r$; $m \in \mathbb{Z} \equiv$ spectrum of $L \equiv L_{12}$. Expand around $\rho=0$; the harm. osc. approx. of (6) has eigenvalues and (Hérmite) eigenfunctions

$$
\begin{align*}
& E=E_{n, m}=2 n \sqrt{2 k}-8 n(n+1)+m^{2}+O(1 / \sqrt{k}) \tag{7}\\
& f_{n, m}(\rho)=N_{n, m} \exp \left[-\frac{\left(\rho-\widetilde{\rho}_{n, m}\right)^{2} \sqrt{k_{n, m}}}{2}\right] H_{n}\left[\left(\rho-\widetilde{\rho}_{n, m}\right) \sqrt[4]{k_{n, m}}\right] \tag{8}\\
& k_{n, m}=2\left(k-E_{n, m}+V_{0}\right), \quad \widetilde{\rho}_{n, m}=\frac{E_{n, m}-V_{0}}{k_{n, m}},
\end{align*}
$$

with $n \in \mathbb{N}_{0}, V_{0}=-\sqrt{2 k}+2+O\left(\frac{1}{\sqrt{k}}\right)$. Up to $O\left(\frac{1}{\sqrt{k}}\right)$, (7) gives

$$
\begin{equation*}
E_{m} \equiv E_{0, m}=m^{2} \tag{9}
\end{equation*}
$$

i.e. the eigenvalues of the Laplacian L^{2} on S^{1}, while $E_{n, m} \rightarrow \infty$ as $k \rightarrow \infty$ if $n>0$; can eliminate them by a cutoff $\mathrm{E} \leq \overline{\mathrm{E}}<2 \sqrt{2 \mathrm{k}}-2$.

The eigenfunctions of H corresponding to $E=E_{m}$ are

$$
\psi_{m}(\rho, \varphi)=N_{m} e^{i m \varphi} e^{-\frac{(\rho-\tilde{\rho} m)^{2} \sqrt{k_{m}}}{2}}
$$

Setting $\Lambda:=[\sqrt{\bar{E}}], E_{m} \leq \bar{E}$ implies

$$
\begin{equation*}
\mathbf{m}^{2} \leq \Lambda^{2}<2 \sqrt{2 k}-2 \tag{10}
\end{equation*}
$$

so that all E_{m} are smaller than the energy levels corresponding to $n>0$ (see figure). We can recover the whole spectrum of L^{2} on S^{1} by allowing $\sqrt{\bar{E}}$, or equivalently Λ, to diverge with k respecting (10).
We abbreviate $\mathcal{H}_{\Lambda} \equiv \mathcal{H}_{\bar{E}}$; clearly $\operatorname{dim}\left(\mathcal{H}_{\Lambda}\right)=2 \Lambda+1$.

Figure 2: Two-dimensional plot of $V(r)$ including the energy-cutoff

Let $x^{ \pm}:=\frac{x \pm i y}{\sqrt{2}}=r e^{ \pm i \varphi}$. By explicit computations

$$
\begin{equation*}
\left\langle\psi_{n}, x^{ \pm} \psi_{m}\right\rangle=\frac{a}{\sqrt{2}}\left[1+\frac{m(m \pm 1)}{2 k}\right] \delta_{m \pm 1}^{n} \tag{11}
\end{equation*}
$$

with $a=1+\frac{9}{4} \frac{1}{\sqrt{2 k}}+\frac{137}{64 k}+\ldots$. To get rid of a we rescale $\xi^{ \pm}:=\frac{\bar{x}^{ \pm}}{a}$. \bar{x}^{-}, ξ^{-}are resp. the adjoints of \bar{x}^{+}, ξ^{+}. Then, up to terms $O\left(1 / k^{3 / 2}\right)$

$$
\begin{aligned}
& \xi^{ \pm} \psi_{m}= \begin{cases}\frac{1}{\sqrt{2}}\left[1+\frac{m(m \pm 1)}{2 k}\right] \psi_{m \pm 1} & \text { if }-\Lambda \leq \pm m \leq \Lambda-1 \\
0 & \text { otherwise },\end{cases} \\
& \bar{L} \psi_{m}=m \psi_{m} .
\end{aligned}
$$

Let $\mathcal{R}^{2}:=\xi^{+} \xi^{-}+\xi^{-} \xi^{+}$, and \widetilde{P}_{m} be the projection over the 1-dim subspace spanned by ψ_{m}. Eq. (12) implies at leading order

$$
\begin{gather*}
{\left[\xi^{+}, \xi^{-}\right]=-\frac{\bar{L}}{k}+\left[1+\frac{\Lambda(\Lambda+1)}{k}\right] \frac{\widetilde{P}_{\Lambda}-\widetilde{P}_{-\Lambda}}{2} .} \tag{13}\\
\prod_{m=-\Lambda}(\bar{L}-m I)=0, \quad(\bar{L})^{\dagger}=\bar{L}, \tag{14}\\
{\left[\bar{L}, \xi^{ \pm}\right]= \pm \xi^{ \pm}, \quad \xi^{+\dagger}=\xi^{-}, \quad\left(\xi^{ \pm}\right)^{2 \Lambda+1}=0 .} \\
\mathcal{R}^{2}=1+\frac{\bar{L}^{2}}{k}-\left[1+\frac{\Lambda(\Lambda+1)}{k}\right] \frac{\widetilde{P}_{\Lambda}+\widetilde{P}_{-\Lambda}}{2} . \tag{15}
\end{gather*}
$$

Eq. (13-16) are exact if we adopt (12) as definitions of $\xi^{+}, \xi^{-}, \bar{L}$. To obtain a fuzzy space we can choose k as a function of Λ fulfilling (10), for example $k=\Lambda^{2}(\Lambda+1)^{2}$, and the commutative limit will be $\Lambda \rightarrow \infty$. Then e.g. (13) becomes

$$
\begin{equation*}
\left[\xi^{+}, \xi^{-}\right]=\frac{-\bar{L}}{\Lambda^{2}(\Lambda+1)^{2}}+\left[1+\frac{1}{\Lambda(\Lambda+1)}\right] \frac{\widetilde{P}_{\Lambda}-\widetilde{P}_{-\Lambda}}{2} . \tag{17}
\end{equation*}
$$

- $\underline{\xi}^{+}, \xi^{-}$(or equivalently \bar{x}^{+}, \bar{x}^{-}) generate the $*$-algebra \mathcal{A}_{\wedge} (also \bar{L} can be expressed as a non-ordered polynomial in ξ^{+}, ξ^{-}). Below we determine as an alternative set of generators E^{+}, E^{-}in the $(2 \Lambda+1)$-dimensional representation of $s u(2)$.
- As $\Lambda \rightarrow \infty\left[\xi^{+}, \xi^{-}\right] \rightarrow 0, \operatorname{dim}\left(\mathcal{H}_{\Lambda}\right) \rightarrow 0, \psi_{m} \rightarrow \delta(\rho) e^{i m \varphi}$.

What about $\bar{\partial}_{ \pm}$?
As seen, they are not needed as generators of \mathcal{A}_{Λ}. In fact, as expected, $\bar{\partial}_{ \pm}$do not go to $\partial_{ \pm}$as $\Lambda \rightarrow \infty$.

On the contrary, $\bar{L} \rightarrow L$; this is welcome, because in the limit $\Lambda \rightarrow \infty$ all vector fields tangential to S^{1} are $\propto L$.

$$
\begin{equation*}
\mathcal{A}_{\Lambda}:=\operatorname{End}\left(\mathcal{H}_{\Lambda}\right) \simeq M_{N}(\mathbb{C}) \simeq \pi_{\Lambda}[\operatorname{Uso}(3)], \quad N=2 \Lambda+1, \tag{18}
\end{equation*}
$$

where π_{Λ} is the N-dimensional unitary representation of Uso(3). This is characterized by the condition $\pi_{\Lambda}(C)=\Lambda(\Lambda+1)$, where $C=E^{a} E^{-a}$ is the Casimir, and $E^{a}(a \in\{+, 0,-\})$ make up the Cartan-Weyl basis E^{a} of so(3),

$$
\begin{equation*}
\left[E^{+}, E^{-}\right]=E^{0}, \quad\left[E^{0}, E^{ \pm}\right]= \pm E^{ \pm}, \quad E^{a \dagger}=E^{-a} \tag{19}
\end{equation*}
$$

To simplify notation drop π_{Λ}. We can realize $\xi^{+}, \bar{L}, \xi^{-}$by setting

$$
\begin{gather*}
\bar{L}=E^{0}, \quad \bar{\xi}^{ \pm}=f_{ \pm}\left(E^{0}\right) E^{ \pm} \\
f_{+}(s)=\frac{1}{\sqrt{2}} \sqrt{\frac{1+s(s-1) / k}{\Lambda(\Lambda+1)-s(s-1)}}=f_{-}(s-1) \tag{20}
\end{gather*}
$$

Within the group $S U(N)$ of $*$-automorphisms of $M_{N}(\mathbb{C}) \simeq \mathcal{A}_{\Lambda}$

$$
\begin{equation*}
a \mapsto g a g^{-1}, \quad a \in \mathcal{A}_{\Lambda} \simeq M_{N}, \quad g \in S U(N) \tag{21}
\end{equation*}
$$

a special role is played by the subgroup $S O(3)$ acting through the representation π_{Λ}, namely $g=\pi_{\Lambda}\left[e^{i \alpha}\right]$, where $\alpha \in \operatorname{so}(3)$ is a combination with real coefficients of $E^{0}, E^{+}+E^{-}, i\left(E^{-}-E^{+}\right)$.
$O(2) \subset S O(3)$ as isometry group. In particular, choosing $\alpha=\theta E^{0}$ amounts to a rotation by an angle θ in the $\bar{x}^{1} \bar{x}^{2}$ plane: $\bar{L} \mapsto \bar{L}$ and

$$
\bar{x}^{ \pm} \mapsto \bar{x}^{\prime \pm}=e^{ \pm i \theta} \bar{x}^{ \pm} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\bar{x}^{\prime 1}=\bar{x}^{1} \cos \theta+\bar{x}^{2} \sin \theta \\
\bar{x}^{\prime 2}=-\bar{x}^{1} \sin \theta+\bar{x}^{2} \cos \theta
\end{array}\right.
$$

Choosing $\alpha=\pi\left(E^{+}+E^{-}\right) / \sqrt{2}$ we obtain a $O(2)$-transformation with determinant $=-1$ in such a plane: $E^{0} \mapsto-E^{0}, E^{ \pm} \mapsto E^{\mp}$. As $f_{ \pm}(-s)=f_{ \pm}(1+s)=f_{\mp}(s)$, this is equivalent to $\bar{x}^{1} \mapsto \bar{x}^{1}, \bar{x}^{2} \mapsto-\bar{x}^{2}, \bar{L} \mapsto-\bar{L}$.

$D=3: ~ O(3)$-covariant fuzzy sphere

Ansatz $\psi=\frac{f(r)}{r} Y_{l}^{m}(\theta, \varphi) . \quad Y_{1}^{m}$ are the spherical harmonics:
$L^{2} Y_{l}^{m}(\theta, \varphi)=I(I+1) Y_{l}^{m}(\theta, \varphi), \quad L_{3} Y_{l}^{m}(\theta, \varphi)=m Y_{I}^{m}(\theta, \varphi)$,
$I \in \mathbb{N}_{0}, m \in \mathbb{Z},|m| \leq I$. Under assumption (4) the harmonic oscillator approximation of (6) admits the (Hérmite) eigenfunctions

$$
f_{n, l}(r)=N_{n, l} e^{-\frac{\left(r-\widetilde{r}_{1}\right)^{2} \sqrt{k_{l}}}{2}} H_{n}\left(\left(r-\widetilde{r}_{l}\right) \sqrt[4]{k_{l}}\right), \quad n=0,1, \ldots .
$$

where $k_{l}:=2 k+3 /(I+1), \widetilde{r}_{l}=\frac{2 k+4 /(+1)}{2 k+3 /(+1)} . \quad E_{0,0}=0 \Rightarrow V_{0}=-\sqrt{2 k}$; then the energies associated to $\psi_{n, l, m}=\frac{f_{n, l}(r)}{r} Y_{l}^{m}(\theta, \varphi)$ are

$$
E_{n, l}=2 n \sqrt{2 k}+I(I+1)+O(1 / \sqrt{2 k})
$$

Again $E_{0, I}=I(I+1)=: E_{I}$ are the eigenvalues of the Laplacian L^{2} on S^{2}, while $E_{n, l} \rightarrow \infty$ as $k \rightarrow \infty$ if $n>0$.

We can eliminate them (constrain $n=0$) imposing a cutoff

$$
\begin{equation*}
\mathrm{E} \leq \Lambda(\Lambda+1) \equiv \overline{\mathrm{E}}<2 \sqrt{2 \mathrm{k}}, \tag{22}
\end{equation*}
$$

i.e. projecting the theory on the subspace $\mathcal{H}_{\Lambda} \subset \mathcal{L}^{2}\left(\mathbb{R}^{3}\right)$ spanned by

$$
\begin{equation*}
\psi_{l}^{m}:=\psi_{0, I, m} \simeq \frac{N_{l}}{r} e^{-\frac{\left(r-\tilde{r}_{I}\right)^{2} \sqrt{k_{l}}}{2}} Y_{l}^{m}(\theta, \varphi), \quad|m| \leq I, \quad I \leq \Lambda \tag{23}
\end{equation*}
$$

Clearly $\operatorname{dim}\left(\mathcal{H}_{\Lambda}\right)=(\Lambda+1)^{2}$. Let $x^{0}:=z, x^{ \pm}:=\frac{x \pm i y}{\sqrt{2}}$. The action of $x^{a}=r \frac{x^{a}}{r} \quad(a=-, 0,+)$ on ψ_{l}^{m} factorizes into the one of r on $\frac{f_{0, I}(r)}{r}$ and the one of $\frac{x^{a}}{r}$ on Y_{I}^{m}. After projection we find

$$
\begin{align*}
& \bar{x}^{a} \psi_{l}^{m}=c_{l} A_{l}^{a, m} \psi_{l-1}^{m+a}+c_{l+1} A_{l+1}^{-a, m+a} \psi_{l+1}^{m+a} \\
& c_{0}=c_{\Lambda+1}=0, \quad c_{l}=\sqrt{1+\frac{l^{2}}{k}} \quad 1 \leq l \leq \Lambda \tag{24}
\end{align*}
$$

up to $O\left(1 / k^{\frac{3}{2}}\right)$, and $A_{l}^{a, m}, B_{l}^{a, m}$ are the coefficients determined by

$$
\frac{x^{a}}{r} Y_{I}^{m}=A_{I}^{a, m} Y_{I-1}^{m+a}+A_{I+1}^{-a, m+a} Y_{I+1}^{m+a}
$$

The $\bar{L}_{i}, \bar{x}^{i}, i \in\{1,2,3\}$, fulfill

$$
\begin{align*}
& \prod_{I=0}^{\Lambda}\left[\bar{L}^{2}-I(I+1) I\right]=0, \quad \prod_{m=-I}^{l}\left(\bar{L}_{3}-m I\right) \widetilde{P}_{I}=0 \tag{25}\\
& \bar{x}^{i \dagger}=\bar{x}^{i}, \quad \bar{L}_{i}^{\dagger}=\bar{L}_{i}, \quad\left[\bar{L}_{i}, \bar{x}^{j}\right]=i \varepsilon^{i j h} \bar{x}^{h}, \quad\left[\bar{L}_{i}, \bar{L}_{j}\right]=i \varepsilon^{i j h} \bar{L}_{h}, \tag{26}\\
& \bar{x}^{i} \bar{L}_{i}=0, \quad\left[\bar{x}^{i}, \bar{x}^{j}\right]=i \varepsilon^{i j h}\left(-\frac{1}{k}+K \widetilde{P}_{\Lambda}\right) \bar{L}_{h} \tag{27}
\end{align*}
$$

where $K=\frac{1}{k}+\frac{1+\frac{\Lambda^{2}}{k}}{2 \Lambda+1}, \quad \bar{L}^{2}:=\bar{L}_{i} \bar{L}_{i}=\bar{L}_{a} \bar{L}_{-a}$ is L^{2} projected on \mathcal{H}_{Λ}, and \widetilde{P}_{I} is the projection on its eigenspace with eigenvalue $I(I+1)$. Moreover, the square distance from the origin is

$$
\begin{equation*}
\mathcal{R}^{2}:=\bar{x}^{i} \bar{x}^{i}=1+\frac{\bar{L}^{2}+1}{k}-\left[1+\frac{(\Lambda+1)^{2}}{k}\right] \frac{\Lambda+1}{2 \Lambda+1} \widetilde{P}_{\Lambda} . \tag{28}
\end{equation*}
$$

These relations are exact if we adopt (24) as exact of \bar{x}^{a}.

Again:

- $[\bar{x}, \bar{x}]=\ldots$ and $[\bar{L}, \bar{x}]=\ldots$ are Snyder-like: $[\bar{x}, \bar{x}]=-L / k$ (plus the term containing \widetilde{P}_{Λ}) and vanish as $\Lambda \rightarrow \infty$.
- Hence (25-27) are covariant under the whole O (3), including parity $\bar{x}_{i} \mapsto-\bar{x}_{i}, \bar{L}_{i} \mapsto \bar{L}_{i}$, contrary to Madore FS.
- $\mathcal{R}^{2} \neq 1$, its spectrum grows with I, but collapses to 1 as $\Lambda \rightarrow \infty$.
- The ordered monomials in $\overline{x_{i}}, \overline{L_{i}}$ make up a basis of the $(\Lambda+1)^{4}$-dim vector space $\mathcal{A}:=\operatorname{End}\left(\mathcal{H}_{\Lambda}\right) \simeq M_{(\Lambda+1)^{2}}(\mathbb{C})$ (\widetilde{P}_{I} can be expressed as polynomials in \bar{L}^{2}).
- Actually, \bar{x}_{i} generate the $*$-algebra \mathcal{A} (also the \bar{L}_{i} can be expressed as a non-ordered polynomial in the \bar{x}_{i}).

To obtain a fuzzy space we can choose k as a function of Λ fulfilling (22); one possible choice is $k=\Lambda^{2}(\Lambda+1)^{2}$, and the commutative limit will be $\Lambda \rightarrow+\infty$.

Realization of the algebra \mathcal{A} of observables through Uso(4)

$s o(4) \simeq s u(2) \oplus s u(2)$ is spanned by $\left\{E_{i}^{1}, E_{i}^{2}\right\}_{i=1}^{3}$ fulfilling $\left[E_{i}^{1}, E_{j}^{2}\right]=0, \quad\left[E_{i}^{1}, E_{j}^{1}\right]=i \varepsilon^{i j k} E_{k}^{1}, \quad\left[E_{i}^{2}, E_{j}^{2}\right]=i \varepsilon^{i j k} E_{k}^{2}$.
$L_{i}:=E_{i}^{1}+E_{i}^{2}, \quad X_{i}:=E_{i}^{1}-E_{i}^{2}$ make up alternative basis of so(4):
$\left[L_{i}, L_{j}\right]=i \varepsilon^{i j k} L_{k}, \quad\left[L_{i}, X_{j}\right]=i \varepsilon^{i j k} X_{k}, \quad\left[X_{i}, X_{j}\right]=i \varepsilon^{i j k} L_{k}$.
The L_{i} close another $s u(2)$. Passing to generators labelled by $a \in\{-, 0,+\}$,
$\left[L_{+}, L_{-}\right]=L_{0}, \quad\left[L_{0}, L_{ \pm}\right]= \pm L_{ \pm}=\left[X_{0}, X_{ \pm}\right], \quad\left[X_{+}, X_{-}\right]=L_{0},(31)$
$\left[L_{ \pm}, X_{\mp}\right]= \pm X_{0}, \quad\left[L_{0}, X_{ \pm}\right]= \pm X_{ \pm}=\left[X_{0}, L_{ \pm}\right], \quad\left[L_{a}, X_{a}\right]=0(32)$
(no sum over a), where $L^{2}=L_{i} L_{i}=L_{a} L_{-a}, X^{2}=X_{i} X_{i}=X_{a} X_{-a}$.

In the tensor product representation $\pi_{\Lambda}:=\pi_{\frac{\Lambda}{2}} \otimes \pi_{\frac{\Lambda}{2}}$ of $U s o(4) \simeq U s u(2) \otimes U s u(2)$ on the Hilbert space $\mathbf{V}_{\Lambda}:=V_{\frac{\Lambda}{2}} \otimes V_{\frac{\Lambda}{2}}$ it is $C^{1}:=E_{i}^{1} E_{i}^{1}=\frac{\Lambda}{2}\left(\frac{\Lambda}{2}+1\right)=E_{i}^{2} E_{i}^{2}=: C^{2}$, or equivalently

$$
\begin{equation*}
X \cdot L=L \cdot X=0, \quad X^{2}+L^{2}=\Lambda(\Lambda+2) \tag{33}
\end{equation*}
$$

(we have dropped the symbols $\boldsymbol{\pi}_{\Lambda}$). \mathbf{V}_{Λ} admits an orthonormal basis consisting of common eigenvectors of L^{2} and L_{0} :

$$
\begin{equation*}
L_{0}|I, m\rangle=m|I, m\rangle, \quad L^{2}|I, m\rangle=I(I+1)|I, m\rangle \tag{34}
\end{equation*}
$$

with $0 \leq I \leq \Lambda$ and $|m| \leq I . \quad \mathbf{V}_{\Lambda}, \mathcal{H}_{\Lambda}$ have the same dimension $(\Lambda+1)^{2}$ and decomposition in irreps of the L_{i} subalgebra; we identify them setting $\psi_{I}^{m} \equiv|I, m\rangle$. The action of X^{a} on \mathbf{V}_{Λ} reads

$$
\begin{align*}
& X^{a}|I, m\rangle=d_{l} A_{l}^{a, m}|I-1, m+a\rangle+d_{l+1} B_{l}^{a, m}|I+1, m+a\rangle \tag{35}\\
& d_{l}:=\sqrt{(\Lambda+1)^{2}-l^{2}}
\end{align*}
$$

We can naturally realize \bar{L}_{a}, \bar{x}^{a} in $\pi_{\Lambda}[U s u(2) \otimes U s u(2)]$. Define $\lambda:=\frac{\sqrt{4 L^{2}+1}-1}{2}$; then $\lambda|I, m\rangle=I|I, m\rangle$. The Ansatz

$$
\begin{equation*}
\bar{L}_{a}=L_{a}, \quad \bar{x}^{a}=g(\lambda) X^{a} g(\lambda) \tag{36}
\end{equation*}
$$

fulfills (24) and therefore (25-27) provided

$$
\begin{align*}
g(I) & =\sqrt{\frac{\prod_{h=0}^{I-1}(\Lambda+I-2 h)}{\prod_{h=0}^{\prime}(\Lambda+I+1-2 h)} \prod_{j=0}^{\left[\frac{L-1}{2}\right]} \frac{1+\frac{(1-2 j)^{2}}{k}}{1+\frac{(l-1-2 j)^{2}}{k}}} \tag{37}\\
& =\sqrt{\frac{\Gamma\left(\frac{\Lambda+1}{2}+1\right) \Gamma\left(\frac{\Lambda-H 1}{2}\right)}{\Gamma\left(\frac{\Lambda+1+1}{2}+1\right) \Gamma\left(\frac{\Lambda-l}{2}+1\right)} \frac{\Gamma\left(\frac{l}{2}+1+\frac{i \sqrt{k}}{2}\right) \Gamma\left(\frac{l}{2}+1-\frac{i \sqrt{k}}{2}\right)}{\sqrt{k} \Gamma\left(\frac{1+1}{2}+\frac{i \sqrt{k}}{2}\right) \Gamma\left(\frac{H 1}{2}-\frac{i \sqrt{k}}{2}\right)}}
\end{align*}
$$

The inverse of (36) is clearly $X^{a}=[g(\lambda)]^{-1} \bar{x}^{a}[g(\lambda)]^{-1}$.
We have thus explicitly constructed a *-algebra map

$$
\begin{equation*}
\mathcal{A}_{\Lambda}:=\operatorname{End}\left(\mathcal{H}_{\Lambda}\right) \simeq M_{N}(\mathbb{C}) \simeq \pi_{\Lambda}[U s o(4)], \quad N:=(\Lambda+1)^{2} . \tag{38}
\end{equation*}
$$

As known, the group of $*$-automorphisms of $M_{N}(\mathbb{C}) \simeq \mathcal{A}_{\Lambda}$ is

$$
b \rightarrow g b g^{-1}, \quad b \in \mathcal{A}_{\Lambda}, \quad g \in S U(N) .
$$

Again a special role is played by the subgroup $S O(4)$ acting through the representation π_{Λ}, namely $g=\pi_{\Lambda}\left[e^{i \alpha}\right], \alpha \in \operatorname{so}(4)$.
$O(3) \subset S O(4)$ plays the role of isometry subgroup.
In particular, choosing $\alpha=\alpha_{i} L_{i}\left(\alpha_{i} \in \mathbb{R}\right)$ the automorphism amounts to a $S O(3)$ transf. (a rotation in 3 -dimensional space).
An $O(3)$ transformation with determinant -1 in the $X^{1} X^{2} X^{3}$ space is parity $\left(L_{i}, X^{i}\right) \mapsto\left(L_{i},-X^{i}\right)$, or equivalently $E_{i}^{1} \leftrightarrow E_{i}^{2}$, the only automorphism of so(4) (corresponding to the exchange of the two nodes in the Dynkin diagram).

Final remarks and conclusions

For $d=1,2$ we have built a sequence $\left(\mathcal{A}_{\Lambda}, \mathcal{H}_{\Lambda}\right)$ of finite-dim, $O(D)$-covariant $(D=d+1)$ approximations of QM of a spinless particle on the sphere $S^{d} ; \quad \mathcal{R}^{2} \gtrsim 1$ collapses to 1 as $\Lambda \rightarrow \infty$. Achieved imposing $E \leq \Lambda(\Lambda+d-1)$ on QM of a particle in \mathbb{R}^{D} subject to a sharp confining potential $V(r)$ on the sphere $r=1$. \mathcal{A}_{Λ} are fuzzy approximations of the whole algebra of observables of the particle on S^{d} (phase space algebra).
$\mathcal{A}_{\Lambda} \simeq \pi_{\Lambda}[U s o(D+1)]$, with a suitable irrep π_{Λ} of $\operatorname{Uso}(D+1)$ on \mathcal{H}_{Λ}. \mathcal{H}_{Λ} carries a reducible representation of the Uso (D) subalgebra generated by the $\bar{L}_{i j}: \quad \mathcal{H}_{\Lambda}=\bigoplus$ irreps fulfilling $L^{2} \leq \Lambda(\Lambda+d-1)$.
The same decomposition holds for the subspace $\mathcal{C}_{\Lambda} \subset \mathcal{A}_{\Lambda}$ of completely symmetrized polynomials in the \bar{x}^{i}.
As $\Lambda \rightarrow \infty$ these resp. become the decompositions (2) of $\mathcal{L}^{2}\left(S^{d}\right)$ and of $C\left(S^{d}\right)$ acting on $\mathcal{L}^{2}\left(S^{d}\right)$.

Approach seems applicable to $d \geq 3 \rightsquigarrow$ comparison with literature. The fuzzy spheres of dimension $d=4$ [Grosse, Klimcik, Presnajder 1996], $d \geq 3$ [Ramgoolam 2001], are based on End (V) where V carries a particular irrep of $S O(d+1)$; \mathcal{R}^{2} is central, can be set $=1$. Snyder-like commutation relations, hence $O(d+1)$-covariant.
In [Steinacker 2016-17] fuzzy 4-spheres S_{N}^{4} through reducible repr. of Uso(5) obtained decomposing irreps π of Uso(6) with suitable highest weights (N, n_{1}, n_{2}); so $\operatorname{End}(V) \simeq \pi[U s o(6)]$, in analogy with our result. The elements X^{i} of a basis of $S O(6) \backslash S O(5)$ play the role of noncommutative cartesian coordinates. Hence, the $S O(5)$-scalar $\mathcal{R}^{2}=X^{i} X^{i}$ is no longer central, but its spectrum is still very close to 1 only if $N \gg n_{1}, n_{2}$;
if $n_{1}=n_{2}=0$ then $\mathcal{R}^{2} \equiv 1$, and one recovers the fuzzy 4 -sphere [Grosse, Klimcik, Presnajder 1996]. In our approach $\mathcal{R}^{2} \simeq 1$ is guaranteed by adopting $\bar{x}^{i}=g\left(L^{2}\right) X^{i} g\left(L^{2}\right)$ rather than X^{i} as noncommutative cartesian coordinates, $\mathcal{R}^{2}=\bar{x}^{i} \bar{x}^{i}$.

