

New physics at colliders A tools vision

Fuks Benjamin

LPTHE / UPMC

Tools 2017: Tools for the SM and the New Physics

@ Corfu, Greece

September 9 - 14, 2017

New physics at colliders - a tools vision

Benjamin Fuks - 12.09.2017 - 1

Standard Model simulations: the status

- + The need for better simulation tools has spurred a very intense activity
 - Matrix-element generation (MADGRAPH5, CALCHEP, FEYNARTS, WHIZARD, etc.)
 - Higher-order computations (MC@NLO, POWHEG, NNLO)
 - Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)
 - Matrix element parton showering matching
 - Merging techniques (MLM, CKKW, FxFx, UNLOPS, etc.)

See talk by Peter Richardson See talk by Gionata Luisoni See talk by Marek Schoenherr

Standard Model simulations: the status

Standard Model simulations

* All processes relevant for the LHC can be simulated with a very good precision

The precision will improve in the next few years (e.g. electroweak corrections)

Standard Model simulations under control What about new physics?

New physics simulations: the challenges

The challenges with respect to new physics simulations are different

- Theoretically, we are still in the dark
 - \star No sign of new physics
 - ★ All measurements are Standard-Model-like

There is not any leading new physics candidate theory

 \star Plethora of models to implement in the tools

However...

New physics simulations: the challenges

- New physics is a standard in many tools today
 - Result of 20 years of developments
 - Simulations were usually mostly achieved at the leading-order accuracy in QCD
 - This has started to change a couple of years ago (NLO-QCD is available)

What are the ingredients behind this success?

New physics @ colliders: keys for a success

A Monte Carlo tool framework for new physics

Specifications

- Inputs / Outputs
 - * A physics object: the Lagrangian (unique and non ambiguous, no MC dependence)
 - \star Flexible (a change in the model = a change in the Lagrangian)
 - * Automatic derivation of the Feynman rules and generate MC model files

Validation

 \star Automatic and systematical

Distribution

- ★ Public, transparent
- ★ <u>No private tools</u>

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC'II)]

Towards an MC framework for BSM - step I

The first steps: LANHEP

[Semenov (NIMA'97; CPC'98; CPC'09; CPC'16)]

Automatic linking of Lagrangians to files in a given programming language

- Working environment: C
- Initially restricted to CALCHEP / COMPHEP
- Can now generate FEYNARTS and UFO outputs (= interface to many tools)

A. V. Semenov

2002

LanHEP -- a package for automatic generation of Feynman rules in field theory. Version 2.0

Abstract. The LanHEP program for Feynman rules generation in momentum representation is presented. It reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. The output is Feynman rules in terms of physical fields and independent parameters. This output can be written in LaTeX format and in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Although this job is rather straightforward and can be done manually, it requires careful calculations and in modern theories with many particles and vertices, such as supersymmetric models, can lead to errors and misprints. The program allows one to introduce into CompHEP new gauge theories as well as various anomalous terms.

http://theory.sinp.msu.ru/~semenov/lanhep.html

The SARAH program

The SARAH package

[Staub (CPC'13; CPC'14)]

- Automatic linking of Lagrangians to files in a given programming language
- Working environment: MATHEMATICA
- Spectrum generator features

SARAH

https://sarah.hepforge.org/

Current version

The current version is **4.12.2** (Download) Last update: 01.09.2017 (Changelog)

Description

SARAH is a Mathematica package for **building and analyzing SUSY and non-SUSY models**. It calculates all vertices, mass matrices, tadpoles equations, one-loop corrections for tadpoles and self-energies, and two-loop RGEs for a given model. SARAH writes **model files** for FeynArts, CalcHep/CompHep, which can also be used for dark matter studies using MicrOmegas, the UFO format which is supported by MadGraph 5 and for WHIZARD and OMEGA.

SARAH is also the first available **spectrum-generator-generator**: based on the derived, analytical expression it creates source code for **SPheno**. In that way, it is possible to implement new models in SPheno without the need to write any Fortran code by hand. The output for **Vevacious** can be used to check for the global minimum for a given model and parameter point.

The SARAH program

The SARAH package

[Staub (CPC'13; CPC'14)]

- Automatic linking of Lagrangians to files in a given programming language
- Working environment: MATHEMATICA
- Spectrum generator features

SARAH

https://sarah.hepforge.org/

Current version

The current version is **4.12.2** (Download) Last update: 01.09.2017 (Changelog)

Description

SARAH is a Mathematica package for **building and analyzing SUSY and non-SUSY models**. It calculates all vertices, mass matrices, tadpoles equations, one-loop corrections for tadpoles and self-energies, and two-loop RGEs for a given model. SARAH writes **model files** for FeynArts, CalcHep/CompHep, which can also be used for dark matter studies using MicrOmegas, the UFO format which is supported by MadGraph 5 and for WHIZARD and OMEGA.

SARAH is also the first available **spectrum-generator-generator**: based on the derived, analytical expression it creates source code for **SPheno**. In that way, it is possible to implement new models in SPheno without the need to write any Fortran code by hand. The output for **Vevacious** can be used to check for the global minimum for a given model and parameter point.

New physics at colliders - a tools vision

One format to rule them all

- \star Easier to maintain
- \star The MC generator decides what is needed

Cascade decays

Introduction

Models

Merging & NLO

The UFO in practice

Introduction	Models	Cascade decays	Merging & NLO	Summar
		Particles		
 Particle Instan Attrib Antipation 	es are stored in the stored in the stored in the stores of the particle outes: particle spin, carticles automatical	e particles.py file class color representation, mass, w ly derived	idth, PDG code, <i>etc</i> .	
G = Particle	<pre>e(pdg_code = 21, name = 'G', antiname = 'G', spin = 3, color = 8, mass = Param.ZERO, width = Param.ZERO, texname = 'G', antitexname = 'G', charge = 0) le(pdg_code = 1000021, name = 'go', antiname = 'go', spin = 2, color = 8, mass = Param.Mgo, width = Param.Wgo, texname = 'go', antitexname = 'go', charge = 0)</pre>	<pre>sq1 = Particle(pdg_code = 1000006,</pre>	<pre>q = Particle(pdg_code = name = 'q', antiname = spin = 2, color = 3, mass = Para width = Par texname = ' antitexname charge = 0) qtilde = q.anti()</pre>	6, 'q~', m.Mq, am.Wq, q', = 'q~',
		<pre>sq2_tilde = sq2.anti()</pre>		

Introduction	Models	Cascade decays	Merging & NLO	Summary
		Parameter	rs	
				,
🔶 🕈 Paran	neters are stored ir	n the parameters.py file		
🕈 Insta	ances of the paramet	er class		
* Exte (bloc * Pyth	ernal parameters are oks and counters) HON-compliant form	organized following a Lea ula for the internal param	s Houches-like structure neters	
aS = Par G = Par	<pre>rameter(name = 'aS', nature = 'external', type = 'real', value = 0.1184, texname = '\\alpha_ lhablock = 'SMINPUTS lhacode = [3]) rameter(name = 'G', nature = 'internal' type = 'real', value = '2*cmath.sq texname = 'G')</pre>	, 5 [°] , , , rt(aS)*cmath.sqrt(cmath.pi)',	<pre>Mgo = Parameter(name = 'Mgo',</pre>	<pre>hal', kt{Mgo}', b) kt{Mgo}', b) kt{Mgo}', h) h kt{Mgo}', h kt{Mgo}', h kt{Mg}', h k</pre>

Interactions: generalities

Vertices decomposed in a spin x color basis (coupling strengths = coordinates)
 Example: the quartic gluon vertex can be written as

$$\begin{split} ig_s^2 f^{a_1 a_2 b} f^{b a_3 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \right) \\ &+ ig_s^2 f^{a_1 a_3 b} f^{b a_2 a_4} \left(\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \right) \\ &+ ig_s^2 f^{a_1 a_4 b} f^{b a_2 a_3} \left(\eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \right) \end{split} \Longrightarrow \begin{pmatrix} f^{a_1 a_2 b} f^{b a_3 a_4}, f^{a_1 a_3 b} f^{b a_2 a_4}, f^{a_1 a_4 b} f^{b a_2 a_3} \right) \begin{pmatrix} \eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \\ \eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \\ \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \end{pmatrix} \end{split}$$

- \star 3 elements for the color basis
- \star 3 elements for the spin (Lorentz structure) basis
- \star 9 coordinates (6 are zero)

Several files are used for the storage of the information

Introduction	Models	Cascade decays	Merging & NLO	Summary
	Example: tl	ne quartic	gluon vertex	
🔶 Gei	neral information in ver	tex.py		· · · · · · · · · · · · · · · · · · ·
V_2 =	<pre>= Vertex(name = 'V_2',</pre>	P.G, P.G, P.G],)*f(3,4,-1)', 'f(-1,1, , L.VVVV2, L.VVVV3], C.GC_4,(0,0):C.GC_4,(2	3)*f(2,4,-1)', 'f(-1,1,4)*f(2,3 ,2):C.GC_4})	3,-1)'],
★ Ic (i ★ c	orentz = spin basis n lorentz.py; common to all olor = color basis	vertices) $(f^{a_1a_2b}f^b)$	$b^{a_3a_4}, f^{a_1a_3b}f^{ba_2a_4}, f^{a_1a_4b}f^{ba_2a_3})$ $ig_s^2 0 0 \setminus (\eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1})$	$\mu_3 \eta^{\mu_2 \mu_4} $
★ c (i	ouplings = coordinates n couplings.py; common to	all vertices)	$ \begin{pmatrix} 0 & ig_s^2 & 0 \\ 0 & 0 & ig_s^2 \end{pmatrix} \begin{pmatrix} \eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3} - \eta^{\mu_1} \\ \eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4} - \eta^{\mu_1\mu_3} \end{pmatrix} $	$\left(\begin{array}{c} \mu_{2} \eta^{\mu_{3}\mu_{4}} \\ \mu_{2} \eta^{\mu_{3}\mu_{4}} \end{array} \right)$

Introduction	Models	Cascade decays	Merging & NLO	Summary
E	xample: t	he quartic	gluon vertex	
🔶 Genera	l information in ve	rtex.py		
V_2 = Ver	<pre>tex(name = 'V_2', particles = [P.G, color = ['f(-1,1, lorentz = [L.VVVV couplings = {(1,1)</pre>	P.G, P.G, P.G], 2)*f(3,4,-1)', 'f(-1,1,3) /1, L.VVVV2, L.VVVV3], :C.GC_4,(0,0):C.GC_4,(2,2))*f(2,4,-1)', 'f(-1,1,4)*f(2, 2):C.GC_4})	3,-1)'],
 ★ lorent (in lor ★ color ★ coupli (in color 	z = spin basis rentz.py; common to a = color basis ngs = coordinates uplings.py; common to	Il vertices) $(f^{a_1a_2b}f^{ba_3})$ $\times \begin{pmatrix} a \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{cccc} & & & & & \\ g_{s}^{a_{4}}, & f^{a_{1}a_{3}b}f^{ba_{2}a_{4}}, f^{a_{1}a_{4}b}f^{ba_{2}a_{3}} \\ & & & \\ g_{s}^{2} & & & \\ 0 & & & ig_{s}^{2} & 0 \\ & & & & \\ 0 & & & & ig_{s}^{2} \end{array} \right) \begin{pmatrix} & & & & & \\ \eta^{\mu_{1}\mu_{4}}\eta^{\mu_{2}\mu_{3}} - \eta^{\mu} \\ & & & & \\ \eta^{\mu_{1}\mu_{3}}\eta^{\mu_{2}\mu_{4}} - \eta^{\mu_{1}} \\ \end{array} $	$\left(\begin{array}{c} {}^{1\mu_{3}}\eta^{\mu_{2}\mu_{4}} \\ {}^{1\mu_{2}}\eta^{\mu_{3}\mu_{4}} \\ {}^{1\mu_{2}}\eta^{\mu_{3}\mu_{4}} \end{array} \right)$
✦ Lorentz	z structures: straigh	ntforward implementa	tions in lorentz.py	·····、
VVVV	1 = Lorentz(name = 'V) spins = [structure	VVV1', 3, 3, 3, 3], = 'Metric(1,4)*Metric(2,3	3) - Metric(1,3)*Metric(2,4)')

New physics at colliders - a tools vision

troduction	Models Cas	cade decays	Merging & NLO	Summary
	Example: the q	uartic g	luon vertex	
🔶 Gen	neral information in vertex.py			
V_2 =	<pre>Vertex(name = 'V_2', particles = [P.G, P.G, P.G, color = ['f(-1,1,2)*f(3,4, lorentz = [L.VVVV1, L.VVVV couplings = {(1,1):C.GC_4,(</pre>	G, P.G], -1)', 'f(-1,1,3)*f /2, L.VVVV3], (0,0):C.GC_4,(2,2):	^f (2,4,-1)', 'f(-1,1,4)*f(2,3,-1) C.GC_4})	' 1,
★ lo (ir ★ cc ★ cc (ir	rentz = spin basis n lorentz.py; common to all vertices olor = color basis ouplings = coordinates n couplings.py; common to all vertic	(f ^{a₁a₂b} f ^{ba₃a₄) × $\begin{pmatrix} ig_s^2 \\ 0 \\ 0 \end{pmatrix}$}	$\begin{pmatrix} f^{a_1 a_3 b} f^{b a_2 a_4}, f^{a_1 a_4 b} f^{b a_2 a_3} \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ i g_s^2 & 0 \\ 0 & i g_s^2 \end{pmatrix} \begin{pmatrix} \eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} \\ \eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \\ \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4} - \eta^{\mu_1 \mu_2} \eta^{\mu_3 \mu_4} \end{pmatrix}$	$\begin{pmatrix} \iota_4 \\ \iota_4 \\ 4 \end{pmatrix}$
+ Lore	entz structures: straightforwar	rd implementatio	ons in lorentz.py	·,
	VVVV1 = Lorentz(name = 'VVVV1', spins = [3, 3, 3, structure = 'Metric	3], c(1,4)*Metric(2,3)	<pre>- Metric(1,3)*Metric(2,4)')</pre>	
	uplings: straightforward imploy	pontations in co		* , !
GC_4	4 = Coupling(name = 'GC_4', value = 'complex(0,1)* order = {'QCD':2})	G**2', <u>Co</u>	uplings.py upling orders: for selecting diagra	ams

Cascade decays

Concrete models

Many new states are supplemented to the Standard Model

- \star Usually pair-produced
- \star Cascade-decaying into each other
- The lightest new state can be stable (and a dark matter candidate)

Is the simulation of 2 to N processes (with a large N) a problem?

Simulating cascade decays

2-to-N matrix-element generation is possible

- Nothing really new or fancy
- Computationally challenging for event generation

The issue is the computing time

- Connected to the final-state multiplicity
- Practically useless: diagrams with intermediate resonances dominate
- ✦ Factorization of the production from the decay

Making decays easy: the key principle

Practical implementations of decays

Case I: loss of spin correlations

Helicity sums performed independently at the production and decay levels

$$\mathcal{M} \sim j_{1}^{\mu} \left[g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}} \right] j_{2}^{\nu} = \sum_{\lambda} \underbrace{j_{1}^{\mu} \varepsilon_{\mu}^{*}(\lambda)}_{\mathcal{M}_{prod}(\lambda)} \underbrace{\varepsilon_{\nu}(\lambda) j_{2}^{\nu}}_{\mathcal{M}_{dec}(\lambda)} \simeq \sum_{\lambda} \underbrace{j_{1}^{\mu} \varepsilon_{\mu}^{*}(\lambda)}_{\mathcal{M}_{prod}(\lambda)} \sum_{\lambda} \underbrace{\varepsilon_{\nu}(\lambda) j_{2}^{\nu}}_{\mathcal{M}_{dec}(\lambda)}$$
PYTHIA 8 [Sjostrand, et al. (CPC '08)]
PYTHIA 6 [Sjostrand, Mrenna, Skands (JHEP '06)]

Practical implementations of decays

New physics at colliders - a tools vision

Benjamin Fuks - 12.09.2017 - 28

[Höche, Kuttimalai, Schumann & Siegert (EPIC'15)

New physics at colliders - a tools vision

Importance of the extra QCD emissions

Initial (and final) state radiation modeling is crucial

- Monojet-based dark matter searches
- Compressed spectra searches
- Electroweak new physics
- ♣ etc.

Effects on stop pair production

Matrix elements and parton showers

- Matrix-element-based predictions
 - Relies on the fixed-order theory
 - Technical limit on the number of final-state particles
 - Valid for hard and well-separated partons
 - Correct handling of color and spin information, and of interferences
- Parton-shower-based predictions
 - Resumation of large soft-collinear logarithms
 - Technically easy and no limit on the final-state multiplicity
 - Valid for soft and/or collinear partons
 - Approximate handling of color and spin information, and of interferences

Higher-order corrections (in QCD)

Other option: NLO calculations

Correct modeling of the first emission

Merging of samples with different jet multiplicities also possible

NLO calculations matched to parton shower (for BSM) are automated

- Model-dependent parts of calculations (on top of the tree-level information)
 - ★ Counterterms
 - \star Finite pieces of the loop-integrals
- Model independent contributions
 - \bigstar Subtraction of the divergences
 - \star Matching to the parton showers

[Degrande, Duhr, BF, Hirschi, Mattelaer, Shao et al. (in prep.)]

Recap' on NLO calculations

Contributions to an NLO result in QCD

Three ingredients: the Born, virtual loop and real emission contributions

Virtual contributions

Can be seen as extra diagrams with special Feynman rules

Introduction	Models	Cascade decays	Merging & NLO	Summary
		R _I terms		
(♦ Tł	ne R ₁ terms originat	tes from the denominat	ors	
	$\frac{1}{\bar{D}} = \frac{1}{D} \left(1 - \frac{\tilde{\ell}^2}{\bar{D}} \right)$			
*	These extra pieces ca	an be calculated generical	ly (3 integrals in total)	
	$\int \mathrm{d}^d \bar{\ell} \frac{\tilde{\ell}^2}{\bar{D}_i \bar{D}_j} = -\frac{i\pi^2}{2} \left[m \right]$	$\left[\frac{p_i^2}{i} + m_j^2 - \frac{p_i - p_j^2}{2}\right] + \mathcal{O}(\varepsilon)$		
	$\int \mathrm{d}^d \bar{\ell} \frac{\tilde{\ell}^2}{\bar{D}_i \bar{D}_j \bar{D}_k} = -\frac{i\pi^2}{2}$	$+ O(\varepsilon)$		
	$\int \mathrm{d}^d \bar{\ell} \frac{\tilde{\ell}^2}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} = -\frac{i\pi}{2}$	$\frac{\pi^2}{6} + \mathcal{O}(\varepsilon)$		
*] *]	The denominator stru The R1 coefficients ar	ucture is already known a re extracted during the re	it the reduction time eduction	
*				*

R₂ Feynman rules

The R₂ calculation can be automated and performed once and for all
 Development of the NLOCT package (extension of FEYNRULES)
 Computation, for any model, of all R₂ and UV counterterms

 In the on-shell and MSbar schemes
 Inclusion of the output in the UFO

Importance of NLO: gluino pair production

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

Differential distributions at the fixed order

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

Origin of the third jet

- * Sometimes a decay jet (hard)
- ★ Sometimes a radiation jet (soft)
 ➤ Activity in the low-p_T region
- Constant K-factors not accurate
 ★ In particular in the small p⊤ region

NLO effects

- ★ Crucial for a precise signal description
 ➤ Normalization enhancement
 - Distortion of the shapes
- \star Reduction of the theoretical uncertainties

Differential distributions (ME+PS)

[Degrande, BF, Hirschi, Proudom & Shao (PRD'15; PLB'16)]

New physics at colliders - a tools vision