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✦ The need for better simulation tools has spurred a very intense activity
✤ Matrix-element generation (MADGRAPH5, CALCHEP,  FEYNARTS, WHIZARD, etc.)

✤ Higher-order computations (MC@NLO, POWHEG, NNLO)

✤ Parton showering and hadronization (PYTHIA, HERWIG, SHERPA)

✤ Matrix element - parton showering matching

✤ Merging techniques (MLM, CKKW, FxFx, UNLOPS, etc.)

See talk by 
Peter Richardson

See talk by 
Marek Schoenherr

See talk by 
Gionata Luisoni
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✦ Standard Model simulations
✤ All processes relevant for the LHC can be simulated with a very good precision

✤ The precision will improve in the next few years (e.g. electroweak corrections)

Standard Model simulations under control
What about new physics?
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✦ The challenges with respect to new physics simulations are different
✤ Theoretically, we are still in the dark

★ No sign of new physics

★ All measurements are Standard-Model-like

✤ There is not any leading new physics candidate theory
★ Plethora of models to implement in the tools

However…
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✦ New physics is a standard in many tools today
✤ Result of 20 years of developments

✤ Simulations were usually mostly achieved at the leading-order accuracy in QCD

✤ This has started to change a couple of years ago (NLO-QCD is available)

What are the ingredients behind this success?
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✦ The links of a physics models to analyzed simulated collisions are streamlined
✤ This relies on a framework:

★ Any new physics model can be implemented 

★ Any new physics model can be tested against data

★ Easy to validate, to maintain

★ Easily integrable in a software chain

Idea 
Lagrangian

Simulated 
collisions

Event 
analysis

Other 
tools

Chain of 
tools
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✦ Specifications
✤ Inputs / Outputs

★ A physics object: the Lagrangian (unique and non ambiguous, no MC dependence) 

★ Flexible (a change in the model = a change in the Lagrangian)

★ Automatic derivation of the Feynman rules and generate MC model files

✤ Validation
★ Automatic and systematical

✤ Distribution
★ Public, transparent

★ No private tools
[ Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC’11) ]



New physics at colliders - a tools vision Benjamin Fuks - 12.09.2017 - 

Introduction                                     Models                                      Cascade decays                                      Merging & NLO                                      Summary

Towards an MC framework for BSM - step 1

10

✦ The first steps: LANHEP

✤ Automatic linking of Lagrangians to files in a given programming language

✤ Working environment: C

✤ Initially restricted to CALCHEP / COMPHEP

✤ Can now generate FEYNARTS and UFO outputs (≡ interface to many tools) 

[ Semenov (NIMA’97; CPC’98; CPC’09; CPC’16) ]

http://theory.sinp.msu.ru/~semenov/lanhep.html
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✦ The FEYNRULES platform
✤ Automatic linking of Lagrangians to files in a given programming language

✤ Working environment: MATHEMATICA

★ Flexibility, symbolic manipulations, easy implementation of new methods, etc.

★ Shipped with many computation tools (superspace, spectrum, decays, NLO, etc.) 

✤ Interfaced to many Monte Carlo tools
★ Dedicated translators to several tools (CALCHEP, FEYNARTS, and more in the past)

★ Interfaced to more tools via the UFO (HERWIG, MG5_AMC, SHERPA, WHIZARD, etc.)

[ Christensen & Duhr (CPC ’09); Alloul, Christensen, Degrande, Duhr & BF (CPC’14) ]

http://feynrules.irmp.ucl.ac.be/
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✦ The SARAH package
✤ Automatic linking of Lagrangians to files in a given programming language

✤ Working environment: MATHEMATICA

✤ Spectrum generator features

[ Staub (CPC’13; CPC’14) ]

https://sarah.hepforge.org/
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✦ The SARAH package
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Idea / Lagrangian
Simulated 
collisions

Event 
analysis

Analysis codes

✦ Implementation of any new physics theory in a MC tool is straightforward

✦ A comprehensive approach to Monte Carlo simulations

Matrix Element 
Generator

Shower
Hadronization

Detector
Reconstruction

FEYNRULES

LANHEP

SARAH

Many interfaces dedicated to specific tools
★ Removal of non compliant vertices
★ Translation to a specific format/language

Not efficient⚠

FEYNARTS: talk by
Thomas Hahn

MG5_AMC: talk by
Olivier Mattelaer

WHIZARD: talk by
Juergen Reuter

HERWIG: talk by
Peter Richardson

and more not 
represented here
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✦ A comprehensive approach to Monte Carlo simulations

One format to rule them all
★ Easier to maintain
★ The MC generator decides what is needed

Idea / Lagrangian
Simulated 
collisions

Event 
analysis

Analysis codes
Matrix Elements

Shower
Hadronization

Detector
Reconstruction

FEYNRULES

LANHEP

SARAH

UFO
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[ Degrande, Duhr, BF, Grellscheid, Mattelaer, Reiter (CPC ’12) ] 
[ Degrande, Duhr, BF, Hirschi, Mattelaer, Shao et al. (in prep.) ]✦ The UFO in a nutshell

✤ UFO ≣ Universal FEYNRULES output

★ Universal as not tied to any specific Monte Carlo program

✤ Consists of a PYTHON module to be linked to any code

✤ This module contains all the model information
★ Allows the models to contain generic color and Lorentz structures

✤ Can be employed for next-to-leading order calculations

✦ The UFO is now a standard and used by many other programs

MADGRAPH5_aMC@NLO

ALOHA GOSAM MADANALYSIS 5HERWIG ++ SHERPA

WHIZARD LANHEP SARAH
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✦ The UFO is a set of PYTHON files
✤ Factorization of the information: particles, interactions, propagation, 

parameters, NLO, etc.

✦ Example

NLO
Interactions

Parameters

Particles

Propagators
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✦ Particles are stored in the particles.py file
✤ Instances of the particle class
✤ Attributes: particle spin, color representation, mass, width, PDG code, etc.
✤ Antiparticles automatically derived
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✦ Parameters are stored in the parameters.py file
✤ Instances of the parameter class
✤ External parameters are organized following a Les Houches-like structure

(blocks and counters)
✤ PYTHON-compliant formula for the internal parameters
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✦ Vertices decomposed in a spin x color basis (coupling strengths ≡ coordinates)
✤ Example: the quartic gluon vertex can be written as

✤ Several files are used for the storage of the information

ig2s f
a1a2bf ba3a4 (⌘µ1µ4⌘µ2µ3 � ⌘µ1µ3⌘µ2µ4)

+ ig2s f
a1a3bf ba2a4 (⌘µ1µ4⌘µ2µ3 � ⌘µ1µ2⌘µ3µ4)

+ ig2s f
a1a4bf ba2a3 (⌘µ1µ3⌘µ2µ4 � ⌘µ1µ2⌘µ3µ4)

�
fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3

�

⇥

0

@
ig2s 0 0
0 ig2s 0
0 0 ig2s

1

A

0

@
⌘µ1µ4⌘µ2µ3 � ⌘µ1µ3⌘µ2µ4

⌘µ1µ4⌘µ2µ3 � ⌘µ1µ2⌘µ3µ4

⌘µ1µ3⌘µ2µ4 � ⌘µ1µ2⌘µ3µ4

1

A⇒

★ 3 elements for the color basis
★ 3 elements for the spin (Lorentz structure) basis
★ 9 coordinates (6 are zero)
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✦ General information in vertex.py

★  lorentz ≡ spin basis 
 (in lorentz.py; common to all vertices)

★  color ≡ color basis
★  couplings ≡ coordinates 

 (in couplings.py; common to all vertices)

�
fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3

�

⇥

0

@
ig2s 0 0
0 ig2s 0
0 0 ig2s

1

A

0

@
⌘µ1µ4⌘µ2µ3 � ⌘µ1µ3⌘µ2µ4

⌘µ1µ4⌘µ2µ3 � ⌘µ1µ2⌘µ3µ4

⌘µ1µ3⌘µ2µ4 � ⌘µ1µ2⌘µ3µ4

1

A
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✦ General information in vertex.py

★  lorentz ≡ spin basis 
 (in lorentz.py; common to all vertices)

★  color ≡ color basis
★  couplings ≡ coordinates 

 (in couplings.py; common to all vertices)

�
fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3

�

⇥

0

@
ig2s 0 0
0 ig2s 0
0 0 ig2s

1

A

0

@
⌘µ1µ4⌘µ2µ3 � ⌘µ1µ3⌘µ2µ4

⌘µ1µ4⌘µ2µ3 � ⌘µ1µ2⌘µ3µ4

⌘µ1µ3⌘µ2µ4 � ⌘µ1µ2⌘µ3µ4

1

A

✦ Lorentz structures: straightforward implementations in lorentz.py
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✦ General information in vertex.py

★  lorentz ≡ spin basis 
 (in lorentz.py; common to all vertices)

★  color ≡ color basis
★  couplings ≡ coordinates 

 (in couplings.py; common to all vertices)

�
fa1a2bf ba3a4 , fa1a3bf ba2a4 , fa1a4bf ba2a3

�

⇥

0

@
ig2s 0 0
0 ig2s 0
0 0 ig2s

1

A

0

@
⌘µ1µ4⌘µ2µ3 � ⌘µ1µ3⌘µ2µ4

⌘µ1µ4⌘µ2µ3 � ⌘µ1µ2⌘µ3µ4

⌘µ1µ3⌘µ2µ4 � ⌘µ1µ2⌘µ3µ4

1

A

✦ Lorentz structures: straightforward implementations in lorentz.py

Coupling orders: for selecting diagrams

✦ Couplings: straightforward implementations in couplings.py
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Cascade decays
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✦ Concrete models
✤ Many new states are supplemented to the Standard Model

★ Usually pair-produced

★ Cascade-decaying into each other

✤ The lightest new state can be stable
(and a dark matter candidate)

Is the simulation of 2 to N processes
(with a large N) a problem?
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Simulating cascade decays
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✦ The issue is the computing time 
✤ Connected to the final-state multiplicity 
✤ Practically useless: diagrams with intermediate resonances dominate

✦ 2-to-N matrix-element generation is possible
✤ Nothing really new or fancy
✤ Computationally challenging for event generation

✦ Factorization of the production from the decay
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Making decays easy: the key principle
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✦ Production and decay processes are factorized
✤ Propagators can be seen as sums of products of external wave functions

✤ Example for a vector resonance

[ Frixione, Laenen, Motylinksi, Webber  (JHEP ’07) ] 

✤ Off-shell effects are lost (as a result of the factorization)
★ Resonance mass smearing: partial recovery

Production of 
the resonance

Decay of the 
resonance

Propagation



New physics at colliders - a tools vision Benjamin Fuks - 12.09.2017 - 

Introduction                                     Models                                      Cascade decays                                      Merging & NLO                                      Summary

Practical implementations of decays
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  PYTHIA 8 [Sjostrand, et al. (CPC ’08) ] 

‘ ‘

‘

   PYTHIA 6 [Sjostrand, Mrenna, Skands (JHEP ’06) ] 

✤ Helicity sums performed independently at the production and decay levels
✦ Case 1: loss of spin correlations

≃
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Practical implementations of decays
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✤ Helicity sums performed after accounting for production and decays

  HERWIG [ Richardson (JHEP ’01) ] 

 MADSPIN [Artoisenet et al. (JHEP ’13) ] 

  SHERPA [Höche et al. (EPJC ’15) ] 

✦ Case 2: including spin correlations
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Importance of correctly handling decays
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✦ Is a correct decay handling important: this depends on the observable

MADSPIN

ttH production @ (N)LOQCD
[ LHC8,  dileptonic tt decay]

_

_

[ Artoisenet, Frederix, Mattelaer & Rietkerk (JHEP’13) ]

 Angle between the leptons in the respective 
mother top rest frames

[ Höche, Kuttimalai, Schumann & Siegert (EPJC’15) ]

[ Höche, Kuttimalai, Schumann & Siegert (EPJC’15) ]

SHERPA @ LO[ LHC8 ]
pp ! ũũ†

ũ ! d�̃+
1 ! d�0

1W
+ ! d�0

1µ
+⌫µ

ũ† ! ... ! ūe+e��̃0
1

Invariant mass between decay products 
originating from different cascade steps
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Importance of the extra QCD emissions
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✦ Initial (and final) state radiation modeling is crucial
✤ Monojet-based dark matter searches
✤ Compressed spectra searches
✤ Electroweak new physics
✤ etc.

t t* + 0 jet~ ~

✦ Effects on stop pair production

t t* + 0,1,2 jets ~ ~

[ M
A

DA
N

A
LY

SIS 5 ]

[ M
A

DA
N

A
LY

SIS 5 ]
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Matrix elements and parton showers
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✦ Matrix-element-based predictions
✤ Relies on the fixed-order theory

✤ Technical limit on the number of final-state particles

✤ Valid for hard and well-separated partons

✤ Correct handling of color and spin information, and of interferences

✦ Parton-shower-based predictions
✤ Resumation of large soft-collinear logarithms

✤ Technically easy and no limit on the final-state multiplicity

✤ Valid for soft and/or collinear partons

✤ Approximate handling of color and spin information, and of interferences
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Multipartonic matrix-element merging
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✦ Matrix-element and parton-showers are complementary
✤ Both can be combined

See talk by 
Marek Schoenherr

✦ The double-counting of specific radiation must be prevented

✤ Matrix elements:
     ⇒ only hard radiation

✤ Parton showers:
     ⇒ only soft-collinear

✤ Cut in phase space (Qc)

✤ Check of the procedure
★ Matrix elements mimic 

parton showers near Qc

★ Verification with Qc 
independent observables
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Higher-order corrections (in QCD)
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✦ Other option: NLO calculations
✤ Correct modeling of the first emission

✤ Merging of samples with different jet multiplicities also possible

✦ NLO calculations matched to parton shower (for BSM) are automated
✤ Model-dependent parts of calculations (on top of the tree-level information)

★ Counterterms

★ Finite pieces of the loop-integrals

✤ Model independent contributions
★ Subtraction of the divergences

★ Matching to the parton showers

UFO @ NLO
[ Degrande, Duhr, BF, Hirschi, Mattelaer, Shao et al. (in prep.) ]

See talk by 
Gionata Luisoni
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Recap’ on NLO calculations

34

✦ Contributions to an NLO result in QCD
✤ Three ingredients: the Born, virtual loop and real emission contributions

Born
Reals: one extra power

of αs and divergent
Virtuals: one extra power 

of αs and divergent

�NLO =

Z
d4�nB +

Z
d4�n

Z

loop

dd` V +

Z
d4�n+1

R

Extra information 
is needed
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Virtual contributions
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k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm�1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

m-point diagram with n external momenta
✦ Loop diagram calculations

✤ Calculations to be done in d=4-2𝞮 dimensions 
★ Divergences made explicit (1/𝞮2, 1/𝞮)

Z
dd`

N(`)

D0D1 · · ·Dm�1
=

X
ai

Z
dd`

1

Di0Di1 · · ·

★ Involves integrals with up to four denominators
 ➢ The decomposition basis is finite
 ➢ Can be computed once and for all

✤ Rewriting loop integrals with scalar integrals

★ The reduction is the process-dependent part
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The rational terms (R1 and R2)
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✦ The loop momentum lives in a d-dimensional space
✤ Reduction to be done in d dimensions

✤Numerical methods works in 4 dimensions: need to be compensated!

with ¯̀= `+ ˜̀

(-2𝞮)-dim

Z
dd`

N(`, ˜̀)

D̄0D̄1 · · · D̄m�1
D-dim 4-dim

✦ The R1 terms originates from the denominators
✤ Connected to the internal propagators

✦ The R2 terms originates from the numerator
✤ Can be seen as extra diagrams with special Feynman rules
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R1 terms
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✦ The R1 terms originates from the denominators

✤ These extra pieces can be calculated generically (3 integrals in total)

1

D̄
=

1

D

✓
1�

˜̀2

D̄

◆

✤ The denominator structure is already known at the reduction time
✤ The R1 coefficients are extracted during the reduction

Z
dd ¯̀

˜̀2

D̄iD̄j
= � i⇡2

2


m2

i +m2
j �

pi � pj)2

2

�
+O(")

Z
dd ¯̀

˜̀2

D̄iD̄jD̄k
= � i⇡2

2
+O(")

Z
dd ¯̀

˜̀2

D̄iD̄jD̄kD̄l
= � i⇡2

6
+O(")
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R2 terms
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✦ The R2 terms originates from the numerator

✤ Practically, we isolate the epsilon part

✤ There is only a finite set of loops for which it does not vanish

D-dim

N̄(¯̀) = N(`) + Ñ(˜̀, `, ")

(-2𝞮)-dim4-dim
R2 ⌘ lim

"!0

1

(2⇡)4

Z
dd ¯̀

Ñ(˜̀, `, ")

D̄0D̄1 · · · D̄m�1
⇒

✦ They can be re-expressed in terms of R2 Feynman rules

∝
Z

dd ¯̀
˜̀2

D̄iD̄jD̄k
= � i⇡2

2
+O(") ⇒ �i

↵

2⇡
e�µ
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R2 Feynman rules
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✦ The R2 are process dependent and model-dependent (like Feynman rules)
✤ In a renormalizable theory, there is a finite number of them

✤ They can be derived from the sole knowledge of the bare Lagrangian
[ Ossala, Papadopoulos, Pittau (JHEP’08) ]

[ Degrande (CPC’15) ]

✦ The R2 calculation can be automated and performed once and for all
✤ Development of the NLOCT package (extension of FEYNRULES)

✤ Computation, for any model, of all R2 and UV counterterms

★ In the on-shell and MSbar schemes

✤ Inclusion of the output in the UFO
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Automated NLO simulations with MG5_AMC

✦ A comprehensive approach to Monte Carlo simulations at the NLO in QCD

NLOCT

MADGRAPH5
aMC@NLO

Automatic 
matching

Idea / Lagrangian
Simulated 
collisions

Event 
analysis

Analysis codes

Shower
Hadronization

Detector
ReconstructionFEYNRULES

UFO
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Importance of NLO: gluino pair production

41

✦ We produce two gluinos that each decays into 2 jets and missing energy

P1

P2

g̃

g̃

b

b

χ̃0
1

χ̃0
1

b

bj
j

j

j

Gluino - multijet + MET

✤ Decays via decoupled virtual squarks

✤ Topology: 4 jets (2 for each gluinos) and missing energy

✤ Important jet activity (massive colored particle production)

✦ Two types of jets
✤ Decay jets arising from the massive gluino decays: hard
✤ Radiation jets: rather soft

[ Degrande, BF, Hirschi, Proudom & Shao (PRD’15; PLB’16) ]

Behavior of the 3rd jet
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3rd jet pT

✤ Origin of the third jet
★ Sometimes a decay jet (hard)

★ Sometimes a radiation jet (soft)
   ➢ Activity in the low-pT region

✤ Constant K-factors not accurate
★ In particular in the small pT region

✤ NLO effects
★ Crucial for a precise signal description

➢ Normalization enhancement
➢ Distortion of the shapes

★ Reduction of the theoretical uncertainties

1 TeV gluino

2 TeV gluino

[ Degrande, BF, Hirschi, Proudom & Shao (PRD’15; PLB’16) ]



New physics at colliders - a tools vision Benjamin Fuks - 12.09.2017 - 

Introduction                                     Models                                      Cascade decays                                      Merging & NLO                                      Summary

) [GeV] 
3

(j
T

p
0 100 200 300 400 500 600 700 800 900 1000

 [p
b 

pe
r b

in
]

σd

-510

-410

-310

-210

LO+Pythia 8
NLO+Pythia 8
fLO
fNLO

 = 13 TeVs

M
adG

raph5_aM
C

@
N

LO

) = (2000, 50) GeV
χ

, m
g~

(m

) = (1000, 50) GeV
χ

, m
g~

(m

) [GeV] 
3

(j
T

p
0 100 200 300 400 500 600 700 800 900 1000

K

0.5

1

1.5

2

) = (1000, 50) GeV
χ

, m
g~

(m
) = (2000, 50) GeV

χ
, m

g~
(m

Differential distributions (ME+PS)

43

3rd jet pT

✤ Mixed effects: origin of the third jet
★ Two peaks

1 TeV gluino

2 TeV gluino

✤ Parton showers populate the low-pT region
★ Emitted partons often not reclustered back

➢ Extra softer jets
★ Distortion of the spectrum
★ Effects milder for hard pT 

 (the matrix element drives the shape)

[ Degrande, BF, Hirschi, Proudom & Shao (PRD’15; PLB’16) ]
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Outline
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1.    New physics & Monte Carlo simulations

2.    Model implementations

3.    Cascade decays

4.    Towards precision: merging and NLO corrections

5.    Conclusions - summary
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Summary

45

✦ Many efforts have been invested in the simulations for new physics

✤ Model implementations

✤ Handling the heavy particle decays

✤ Description of the jet activity

✦ Implementation of any theory in MC tools is straightforward (LO and NLO)

✦Streamlining the links between models and simulations

✦ Can we reverse the chain (LHC recasting)?
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