The QCD phase diagram from the lattice

Philippe de Forcrand ETH Zürich \＆CERN

Corfu，Sept．3， 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

What happens to matter when it is heated and/or compressed?

Water changes its state when heated or compressed

critical opalescence

QCD under extreme conditions

Confinement: quarks are bound in color-neutral hadrons: $q q q$ baryons \& $q \bar{q}$ mesons
Compress or heat baryons: hadrons overlap \rightarrow confinement "lost"
\Rightarrow expect interesting/unusual behaviour

thermal excitation of mesons (pions)

increased baryon density

pressure, chemical potential μ

The wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

Finite μ : what is known? really

Minimal, possible phase diagram

Heavy-ion collisions

Knobs to turn:

- atomic number of ions
- collision energy \sqrt{s}

So far, no sign of QCD critical point (esp. RHIC beam energy scan)
"critical opalescence" ?
non-Gaussian fluctuations (Stephanov)

Finite μ : what is known?

Lattice:
 Sign problem as soon as $\mu \neq 0$

Minimal, possible phase diagram

Lattice QCD: Euclidean path integral

$$
\text { space }+ \text { imag. time } \rightarrow 4 d \text { hypercubic grid: }
$$

$$
Z=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{E}[\{U, \bar{\psi}, \psi\}]}
$$

- Discretized action S_{E} :
- Ninh $\longrightarrow \bar{\psi}(x) U_{\mu}(x) \psi(x+\hat{\mu})+$ h.c.,

Dirac operator
$\bar{\psi} \not D \psi$
$\longrightarrow \beta \operatorname{Re} \operatorname{Tr} U_{P}, U_{P}$ plaquette matrix \square Yang-Mills action

$$
a \rightarrow 0 \Leftrightarrow \beta=\frac{6}{g_{0}^{2}} \rightarrow \infty \quad \quad \quad \frac{1}{4} F_{\mu \nu} F_{\mu \nu}
$$

- Monte Carlo: with Grassmann variables $\psi(x) \psi(y)=-\psi(y) \psi(x)$?? Integrate out analytically (Gaussian) \rightarrow determinant non-local
$\operatorname{Prob}(\operatorname{config}\{U\}) \propto \operatorname{det}^{2} \not D(\{U\}) e^{+\beta \sum_{p} \operatorname{ReTr} U_{p}}$ real non-negative when $\mu=0$

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}
$$

$$
\operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}
$$

$$
\operatorname{det} \mathscr{D}(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Measure $d \varpi \sim \operatorname{det} D$ must be complex to get correct physics:

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$
$\left\langle\right.$ Tr Polyakov* $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}
$$

$$
\operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Measure $d \varpi \sim \operatorname{det} D$ must be complex to get correct physics:

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$\left\langle\right.$ Tr Polyakov* $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

- Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \Longrightarrow no probabilistic interpretation \longrightarrow Monte Carlo ??

Sampling oscillatory integrands

- Example: $Z(\lambda)=\int d x \exp \left(-x^{2}+\mathbf{i} \lambda \mathbf{x}\right)=\int d x \exp \left(-x^{2}\right) \cos (\lambda x)$

- $Z(\lambda) / Z(0)=\exp \left(-\lambda^{2} / 4\right)$: exponential cancellations
\rightarrow truncating deep in the tail at $x \sim \lambda$ gives $\mathcal{O}(100 \%)$ error "Every x is important" \leftrightarrow How to sample?

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W\rangle \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W\rangle \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

- $\langle\operatorname{sign}(\rho)\rangle_{|\rho|}=\frac{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}{\int d x|\rho(x)|}=\frac{Z_{\rho}}{Z_{|\rho|}}=\exp (-\frac{V}{T} \underbrace{\Delta f\left(\mu^{2}, T\right)})$, exponentially small diff. free energy dens.
Each meas. of $\operatorname{sign}(\rho)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text { meas }}}$
Constant relative accuracy \Longrightarrow need statistics $\propto \exp \left(+2 \frac{\mathrm{~V}}{\bar{T}} \Delta f\right)$
Large V, low T inaccessible: signal/noise ratio degrades exponentially
"Figure of merit" Δf : measures severity of sign pb .

Frogs and birds

- Frogs: acknowledge the sign problem
- explore region of small $\frac{\mu}{T}$ where sign pb is mild enough

- find tricks to enlarge this region

Taylor expansion, imaginary μ, strong coupling expansion,...

- Birds: solve the sign pb
- solve QCD ?
- find "QCD-ersatz" which can be made sign-pb free

Complex Langevin, Lefschetz thimble - fermion bags, $Q C_{2} D$, isospin μ, \ldots

- Think different: build an analog QCD simulator with cold atoms
\longrightarrow "Sign problem" conferences...

First frog steps: $\frac{\mu}{T} \lesssim 1$

Approximate $\langle W\rangle\left(\frac{\mu}{T}\right)$ by truncated Taylor expansion: $\sum_{k=0}^{n} C_{k}(T)\left(\frac{\mu}{T}\right)^{k}$

- Measure $c_{k}, k=0, . ., n$ in a sign-pb-free $\mu=0$ simulation
- Cheaper variant: fit $c_{k}, k=0, . ., n$ to results of imaginary μ simulations

State of the art: Fodor et al, 1507.07510

Crossover temp. versus chem. pot.

Baryonic chemical potential (MeV)

Steve Weinberg's
 Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

Steve Weinberg's
 Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

Optimal choice: Monte Carlo on physical states (no sign pb)
Integrate out quarks, then Monte Carlo on gluons: Not good (sign pb)

* Integrate out gluons, then Monte Carlo on color singlets: Much better

like physical states

Easy at strong coupling $\beta=\frac{6}{g_{0}^{2}}=0$: 4-link interaction $\beta \operatorname{Re} \operatorname{Tr} U_{P}$ drops out

Strong coupling limit at finite density (staggered quarks)

Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

- Integrate over U's, then over quarks: exact rewriting of $Z(\beta=0)$ New, discrete "dual' degrees of freedom: meson \& baryon worldlines

Constraint at every site:
3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop)
or a baryon loop
Update with worm algorithm: "diagrammatic" Monte Carlo

Strong coupling limit at finite density (staggered quarks)

Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

- Integrate over U's, then over quarks: exact rewriting of $Z(\beta=0)$

New, discrete "dual" degrees of freedom: meson \& baryon worldlines

Constraint at every site:
3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop) or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left
$\rightarrow\langle\bar{\psi} \psi\rangle=0$
"diagrammatic" Monte Carlo

Results $\beta \approx 0$

w/Unger, Langelage, Philipsen

- Sign pb almost gone: accessible volumes multiplied by 10^{4}
- Phase diagram $\left(m_{q}=0\right)$: chiral) phase transition

cf. Wikipedia:
$\left(m_{q} \neq 0\right)$

Conclusions

- QCD phase diagram: possibly rich -- or not
- QCD critical point: not at small chem. pot.
- Sign problem: hot, interdisciplinary topic

Remember: Corfu is home of Princess
 Nausicaa, one of the few women with
 whom Odysseus did not reach a critical point...

Steve Weinberg's
 Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

$$
\text { in "Asymptotic realms of physics", } 1983
$$

- Second Law: do not trust arguments based on lowest-order perturbation theory
- First Law: you will get nowhere by just churning equations

Basic properties of QCD

- QCD describes properties of quarks (cf. electrons - fermions) interacting by exchanging gluons (cf. photons - bosons)
- QCD is asymptotically free: weaker interaction at higher energy

The flip side of asymptotic freedom: "infrared slavery"

- Strong coupling at low energy \rightarrow non-perturbative
- Quarks are confined into color-neutral (color singlet) bound-states (hadrons):
qqq baryons: proton \& neutron (ordinary matter), ...

$q \bar{q}$ mesons: pion (lightest), kaon, rho, ...

Exotics: glueballs, tetraquarks $q q \bar{q} \bar{q}$, pentaquarks $q q q q \bar{q}$, etc...

In principle, all calculable by Lattice QCD simulations

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement
hadron masses
form factors, etc..

Example: hadron masses

BMW collaboration
arXiv:0906.3599 \rightarrow Science

PACS-CS collaboration
arXiv:0807.166|

Follow-up: neutron-proton mass diff.
arXiv:|406.4088 \rightarrow Science

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

*** Many-[composite]-body physics: nuclear matter phase diagram vs (temperature T, density $\leftrightarrow \mu_{B}$)

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy:
choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy:

$$
\text { choose }\{|\psi\rangle\} \text { "close" to physical eigenstates of } H
$$

QCD physical states are colorsinglets \rightarrow Monte Carlo on colored gluon links is bad idea

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are colorsinglets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \operatorname{det}(\{U\})$

- Monte Carlo over gluon fields $\{U\}$

Reverse order: - integrate over gluons $\{U\}$ analytically

- Monte Carlo over quark color singlets (hadrons)
- Caveat: must turn off 4-link coupling in $\beta \sum_{P} \operatorname{Re} \operatorname{Tr} U_{P}$ by setting $\beta=0$

$$
\beta=\frac{6}{g_{0}^{2}}=0: \text { strong-coupling limit } \longleftrightarrow \text { continuum limit }(\beta \rightarrow \infty)
$$

Motivation: how to make the sign problem milder?

- Severity of sign pb . is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \operatorname{det}(\{U\})$

- Monte Carlo over gluon fields $\{U\}$

Reverse order: - integrate over gluons $\{U\}$ analytically

- Monte Carlo over quark color singlets (hadrons)

$$
Z(\beta=0)=\int \prod_{x} d \bar{\psi} d \psi \quad \prod_{x, \nu}\left(\int d U_{x, \nu} e^{-\left\{\bar{\psi}_{x} U_{x, \nu} \psi_{x+\hat{\nu}}-\text { h.c. }\right\}}\right)
$$

Product of 1-link integrals performed analytically

More difficulties: the overlap problem

- Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states
\rightarrow WRONG estimates in reweighted ensemble for finite statistics

- Example: sample $\exp \left(-\frac{x^{2}}{2}\right)$, reweight to $\exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2}\right) \rightarrow\langle x\rangle=x_{0}$?

- Estimated $\langle x\rangle$ saturates at largest sampled x-value - Error estimate too small

Insufficient overlap $\left(x_{0}=5\right)$ Solution: Need stats $\propto \exp (\Delta S)$

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

The CPU effort grows exponentially with L^{3} / T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of $10 \ldots$

Crudely based on: • 1 sec on 1 GF laptop for 2^{4} lattice, $a=0.1 \mathrm{fm}$

- effort $\propto \exp (2 \frac{V}{T} \underbrace{\rho_{\text {nucl. }}\left(m_{B}-3 / 2 m_{\pi}\right)}_{\Delta f})$

Severity of sign problem? Monitor $\Delta f=-\frac{1}{V} \log \langle\operatorname{sign}\rangle$

- $\langle\operatorname{sign}\rangle=\frac{Z}{Z_{\| \mid}} \sim \exp \left(-\frac{V}{T} \Delta f\left(\mu^{2}\right)\right)$ as expected
- Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}\left(10^{4}\right)$ in the exponent!
- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of local neg. signs caused by spatial baryon hopping:
- no baryon \rightarrow no sign pb (no silver blaze pb.)
- saturated with baryons \rightarrow no sign pb

Results - Crude nuclear matter: spectroscopy w/Fromm

- Can compare masses of differently shaped "isotopes"
- $\operatorname{am}(A) \sim a \mu_{B}^{\text {crit }} A+(36 \pi)^{1 / 3} \sigma a^{2} A^{2 / 3}$, ie. (bulk + surface tension) empirical mass formula, parameter-free ($\mu_{B}^{\text {crit }}$ and σ measured separately)
- "Magic numbers" with increased stability: $A=4,8,12$ (reduced area)

