The QCD phase diagram from the lattice

Philippe de Forcrand ETH Zürich & CERN

Corfu, Sept. 3, 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 $\mathcal{O}Q(\mathcal{O})$

Motivation

What happens to matter when it is heated and/or compressed?

Water changes its state when heated or compressed

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

What happens to quarks and gluons when heated or compressed?

QCD under extreme conditions

Confinement: quarks are bound in color-neutral hadrons: qqq baryons & $q\bar{q}$ mesons Compress or heat baryons: hadrons overlap \rightarrow confinement "lost" \Rightarrow expect interesting/unusual behaviour

The wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

 $\langle \Xi \rangle$

1

SQ (~

Minimal, possible phase diagram

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Heavy-ion collisions

Knobs to turn:

- atomic number of ions
- collision energy \sqrt{s}

So far, no sign of QCD critical point (esp. RHIC beam energy scan)

"critical opalescence" ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

non-Gaussian fluctuations (Stephanov)

Finite μ : what is known?

Lattice: Sign problem as soon as $\mu \neq 0$

Minimal, possible phase diagram

Lattice QCD: Euclidean path integral

space + imag. time $\rightarrow 4d$ hypercubic grid:

$$Z = \int \mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-S_{E}[\{U,\bar{\psi},\psi\}]}$$

• Discretized action S_E :

•
$$\psi(x) U_{\mu}(x) \psi(x + \hat{\mu}) + h.c.,$$

• $\psi(x) U_{\mu}(x) \psi(x + \hat{\mu}) + h.c.,$
• $\psi(y) \psi$

• Monte Carlo: with Grassmann variables $\psi(x)\psi(y) = -\psi(y)\psi(x)$?? Integrate out analytically (Gaussian) \rightarrow determinant *non-local*

 $\operatorname{Prob}(\operatorname{config}\{U\}) \propto \operatorname{det}^2 \mathcal{D}(\{U\}) e^{+\beta \sum_P \operatorname{ReTr} U_P}$ real non-negative when $\mu = 0$

Why are we stuck at $\mu = 0$? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

Why are we stuck at $\mu = 0$? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu
ight) = \det^{*} \mathcal{D}\left(-\mu^{*}
ight)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

• Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

$$\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\overline{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$$

 $\mu \neq 0 \Rightarrow F_q \neq F_{\overline{q}} \Rightarrow \text{Im}d\varpi \neq 0$

Why are we stuck at $\mu = 0$? The "sign problem"

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu\right) = \det^* \mathcal{D}\left(-\mu^*\right)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

• Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$ $\mu \neq 0 \Rightarrow F_a \neq F_{\bar{a}} \Rightarrow \text{Im} d\varpi \neq 0$

<□▶ <⊡▶ < ⊒▶

• Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \implies no probabilistic interpretation \longrightarrow Monte Carlo ??

Sampling oscillatory integrands

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

•
$$\langle \operatorname{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \operatorname{sign}(\rho(x))|\rho(x)|}{\int dx \, |\rho(x)|} = \boxed{\frac{Z_{\rho}}{Z_{|\rho|}}} = \exp(-\frac{V}{T} \Delta f(\mu^2, T)), \text{ exponentially small}$$

diff. free energy dens.

Each meas. of sign(ρ) gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$

Constant relative accuracy \implies need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$

Large V, low T inaccessible: signal/noise ratio degrades exponentially

"Figure of merit" Δf : measures severity of sign pb.

Frogs and birds

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

- Birds: *solve* the sign pb
 - solve QCD ?

- find "QCD-ersatz" which can be made sign-pb free

Complex Langevin, Lefschetz thimble – fermion bags, QC_2D , isospin μ ,...

• *Think different*: build an analog QCD simulator with cold atoms

First frog steps: $\frac{\mu}{T} \lesssim 1$

Approximate $\langle W \rangle (\frac{\mu}{T})$ by truncated Taylor expansion: $\sum_{k=0}^{n} c_k(T) (\frac{\mu}{T})^k$

- Measure $c_k, k = 0, ..., n$ in a sign-pb-free $\mu = 0$ simulation
- Cheaper variant: fit $c_k, k = 0, ..., n$ to results of *imaginary* μ simulations

State of the art: Fodor et al, 1507.07510

Steve Weinberg's Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

in "Asymptotic realms of physics", 1983

Steve Weinberg's Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

in "Asymptotic realms of physics", 1983

Optimal choice: Monte Carlo on physical states (no sign pb)

Integrate out quarks, then Monte Carlo on gluons: Not good (sign pb)
 Integrate out gluons, then Monte Carlo on color singlets: Much better

like physical states

Easy at strong coupling $\beta = \frac{6}{g_0^2} = 0$: 4-link interaction $\beta \operatorname{ReTr} U_P$ drops out

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop Undate with worm algorith

Update with worm algorithm: "diagrammatic" Monte Carlo

3

 $\checkmark Q (~$

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop

The dense (crystalline) phase: 1 baryon per site; no space left $\rightarrow \langle \bar{\psi}\psi \rangle = 0$

Ξ.

 $\checkmark Q (~$

Update with worm algorithm: "diagrammatic" Monte Carlo

Conclusions

- QCD phase diagram: possibly rich -- or not
- QCD critical point: not at small chem. pot.
- Sign problem: hot, interdisciplinary topic

Remember: Corfu is home of Princess Nausicaa, one of the few women with whom Odysseus did **not** reach a critical point...

Steve Weinberg's Third Law of Progress in Theoretical Physics

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry

in "Asymptotic realms of physics", 1983

 Second Law: do not trust arguments based on lowest-order perturbation theory

• First Law: you will get nowhere by just churning equations

Basic properties of QCD

- QCD describes properties of *quarks* (cf. electrons fermions) interacting by exchanging *gluons* (cf. photons – bosons)
- QCD is *asymptotically free*: weaker interaction at higher energy

The flip side of asymptotic freedom: "infrared slavery"

 \bullet Strong coupling at low energy \rightarrow non-perturbative

• Quarks are **confined** into color-neutral (color singlet) **bound-states** (hadrons):

qqq baryons: proton & neutron (ordinary matter), ...

qqqmesons: pion (lightest), kaon, rho, ...

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ◇ ◇ ◇

Exotics: glueballs, tetraquarks $qq\bar{q}\bar{q}$, pentaquarks $qqqq\bar{q}$, etc...

In principle, all calculable by Lattice QCD simulations

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

Example: hadron masses

BMW collaboration arXiv:0906.3599 \rightarrow Science PACS-CS collaboration arXiv:0807.1661

Follow-up: neutron-proton mass diff.

arXiv:1406.4088 \rightarrow Science

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

hard-core + pion exchange?

▲□▶▲□▶▲≡▶▲≡ めへ⊙

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

*** Many-[composite]-body physics: nuclear matter phase diagram vs (temperature T, density $\leftrightarrow \mu_B$)

・ロ・・中国・・ 中国・ ・ 日・ シック

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi\rangle|e^{-\frac{\beta}{N}H}|\psi\rangle = e^{-\frac{\beta}{N}E_k}\delta_{\text{ex}} > 0$, λ are sign

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

・ロ・・日・・ヨ・・日・ 白・ うへぐ

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

▲□▶ ▲□▶ ▲ ☲▶ ▲ ☲▶ ☲ ∽ � �

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ > りへで

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ Reverse order: • integrate over gluons $\{U\}$ analytically

Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn off 4-link coupling

in $\beta \sum_{P} \operatorname{ReTr} U_{P}$ by setting $\beta = 0$

 $\left(eta=rac{6}{g_0^2}=0$: strong-coupling limit \longleftrightarrow continuum limit $(eta o\infty)$

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ Reverse order: • integrate over gluons $\{U\}$ analytically

Monte Carlo over quark color singlets (hadrons)

$$Z(\beta=0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$$

Product of 1-link integrals performed analytically

More difficulties: the overlap problem

• Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states \rightarrow WRONG estimates in reweighted ensemble for finite statistics

• Example: sample
$$\exp(-\frac{x^2}{2})$$
, reweight to $\exp(-\frac{(x-x_0)^2}{2}) \rightarrow \langle x \rangle = x_0$?

Insufficient overlap ($x_0 = 5$)

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

< ⊒ >

SQ (~

3

Solution: Need stats $\propto \exp(\Delta S)$

The CPU effort grows exponentially with L^3/T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...

Severity of sign problem? Monitor $\Delta f = -\frac{1}{V} \log \langle \text{sign} \rangle$

• $\langle \text{sign} \rangle = \frac{Z}{Z_{||}} \sim \exp(-\frac{V}{T}\Delta f(\mu^2))$ as expected

• Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}(10^4)$ in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of *local* neg. signs caused by spatial baryon hopping:
 - no baryon \rightarrow no sign pb (no silver blaze pb.)
 - \bullet saturated with baryons \rightarrow no sign pb

Results – Crude nuclear matter: spectroscopy w/Fromm

Can compare masses of differently shaped "isotopes"

- $am(A) \sim a\mu_B^{\text{crit}}A + (36\pi)^{1/3}\sigma a^2 A^{2/3}$, ie. (bulk + surface tension) empirical mass formula, parameter-free (μ_B^{crit} and σ measured separately)
- "Magic numbers" with increased stability: A = 4, 8, 12 (reduced area)