Pre-NQ-manifolds and derived brackets in generalized geometry and double field theory

Andreas Deser¹, Christian Sämann² arXiv: 1611.02772

¹Istituto Nazionale di Fisica Nucleare, Torino ² Department of Mathematics, Heriot-Watt University, Edinburgh

> 18. Sept. 2017 Corfu Summer Institute

> > ▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contents

Motivation: What is double field theory?

Questions

(Pre)-NQ-manifolds and derived brackets

Different brackets from the same principle Courant bracket C-bracket

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathsf{Outlook} + \mathsf{Questions}$

Canonical momenta and winding

• Sigma model
$$X : \Sigma \to M = T^d$$

$$S = \int_{\Sigma} h^{lphaeta} \partial_{lpha} X^i \partial_{eta} X^j G_{ij} d\mu_{\Sigma} + \int_{\Sigma} X^* B ,$$

where $h \in \Gamma(\otimes^2 T^*\Sigma)$, $G \in \Gamma(\otimes^2 TM)$, $B \in \Gamma(\wedge^2 T^*M)$.

• Classical solutions to e.o.m. (take *closed* string $\Sigma = \mathbb{R} \times S^1$)

$$\begin{aligned} X_R^i &= x_{0R}^i + \alpha_0^i (\tau - \sigma) + i \sum_{n \neq 0} \frac{1}{n} \alpha_n^i e^{-in(\tau - \sigma)} , \quad X_L^i = \dots , \\ \alpha_0^i &= \frac{1}{\sqrt{2}} G^{ij} \left(p_j - (G_{jk} + B_{jk}) w^k \right) , \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► *p_k*: Canonical momentum zero modes
- w^k : Winding zero modes, $w^k := \frac{1}{2\pi} \int_0^{2\pi} \partial_\sigma X^k d\sigma$.

Two sets of coordinates

▶ Two sets of momenta in $\alpha_0^i \rightarrow \text{differential operators:}$

$$p_k \simeq \frac{1}{i} \partial_k , \quad w^k \simeq \frac{1}{i} \tilde{\partial}^k .$$

• Level matching $L_0 - \bar{L}_0$, with $L_0 = \frac{1}{2} \alpha_0^i G_{ij} \alpha_0^j + N - 1$ gives

$$N - \bar{N} = \partial_i \tilde{\partial}^i$$

Want: If two fields obey the constraint, then also their product. Thus choose a subset, which also has:

$$\partial_k \phi \, \tilde{\partial}^k \psi + \tilde{\partial}^k \phi \, \partial_k \psi = \mathbf{0} \; ,$$

for all elements ϕ, ψ of the subset.

O(d, d)-transformations, generalized tangent bundle, Gualtieri, Hitchin

Observation 1: The strong constraint is given by

$$\eta^{MN} \partial_M \phi \, \partial_N \psi = 0 \,, \quad \eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

And stays the same if we apply a constant transformation that leaves η invariant:

$$A^t \eta A = \eta$$
 i.e. $A \in O(d, d; \mathbb{R})$

<u>Observation 2</u>: This is the structure group of the generalized tangent bundle, locally isomorphic to $TM \oplus T^*M$:

- Sections: $TM \oplus T^*M \ni s = s^i \partial_i + s_i dx^i$.
- Fundamental rep of O(d, d): $s^M := (s^i, s_i)$.
- Bilinear pairing η : $\langle s, t \rangle = s^i t_i + s_i t^i = \eta_{MN} s^M t^N$.

Action of DFT, C-bracket, Hohm, Hull, Zwiebach

Observation 3:

$$S_{DFT} = \int d^{2D} x \, e^{-2d} \left(\frac{1}{8} \mathcal{H}_{MN} \partial^{M} \mathcal{H}_{KL} \partial^{N} \mathcal{H}^{KL} - \frac{1}{2} \mathcal{H}_{MN} \partial^{M} \mathcal{H}_{KL} \partial^{L} \mathcal{H}^{KN} - 2 \partial^{M} d \, \partial^{N} \mathcal{H}_{MN} + 4 \mathcal{H}_{MN} \partial^{M} d \, \partial^{N} d \right).$$

Properties:

► The action has a global O(d, d; ℝ)-symmetry, and a gauge symmetry given by applying the generalized Lie derivative:

$$(\delta_{X}\mathcal{H})_{MN} := X^{P}\partial_{P}\mathcal{H}_{MN} + (\partial_{M}X^{P} - \partial^{P}X_{M})\mathcal{H}_{PN} + (\partial_{N}X^{P} - \partial^{P}X_{N})\mathcal{H}_{MP}$$

► The commutator of two such transformations gives the C-bracket:

$$[V,W]_{\mathcal{C}}^{M} := V^{K} \partial_{K} W^{M} - W^{K} \partial_{K} V^{M} - \frac{1}{2} \left(V^{K} \partial^{M} W_{K} - W^{K} \partial^{M} V_{K} \right).$$

Questions

- ► What is the geometric meaning of double fields, such as d(x, x̃), V^M(x, x̃), H_{MN}(x, x̃)? At least locally?
- Is there an algebraic way to understand the C-bracket?
- How does this apply to the Lie- and Courant bracket?

What is a derived bracket?

Motivation: An easy calculation...

Given a manifold M, consider T[1]M with local coordinates (x^{μ}, ξ^{μ}) . Its shifted cotangent bundle $T^*[1]T[1]M$ locally has $(x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu})$ of degree (0, 1, 0, 1) and is Poisson:

$$\{p_{\mu}, x^{\nu}\} = \delta^{\nu}_{\mu} \qquad \{\zeta_{\mu}, \xi^{\nu}\} = \delta^{\nu}_{\mu} .$$

In general, consider $T^*[n]T[1]M$ (Vinogradov algebroid of degree n). Let us call a degree (n - 1) object a *extended vector field*. E.g. above $X = X^{\mu}\zeta_{\mu}$.

What is a derived bracket?

Motivation: An easy calculation...

Let's take the operator $Q = \xi^{\mu} p_{\mu}$, and vector fields $X = X^{\mu} \zeta_{\mu}$, $Y = Y^{\nu} \zeta_{\nu}$, then we can do the following exercise:

$$\begin{split} \left\{ \{Q, X\}, Y \right\} &= \left\{ \{\xi^{\mu} p_{\mu}, X^{\nu} \zeta_{\nu}\}, Y^{\rho} \zeta_{\rho} \right\} \\ &= \left\{ \xi^{\mu} \partial_{\mu} X^{\nu} \zeta_{\nu} + X^{\nu} p_{\nu}, Y^{\rho} \zeta_{\rho} \right\} \\ &= -Y^{\rho} \partial_{\rho} X^{\nu} \zeta_{\nu} + X^{\rho} \partial_{\rho} Y^{\nu} \zeta_{\nu} \\ &= [X, Y]_{\text{Lie}}^{\nu} \zeta_{\nu} \; . \end{split}$$

We say, that the Lie bracket is a **derived bracket** (due to Kosmann-Schwarzbach, Roytenberg, Voronov).

The Courant bracket as derived bracket

Roytenberg, Weinstein

For a manifold M, take now $T^*[2]T[1]M$. Locally, coordinates are $(x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu})$ of degrees 0, 1, 1, 2. We get

- $Q = \xi^{\mu} p_{\mu}$ squares to zero.
- Generalized vectors are degree 1 objects, i.e. V = X^μζ_μ + α_μξ^μ, W = Y^μζ_μ + β_μξ^μ.
- \mathcal{Q} on functions gives the de Rham differential.
- ▶ The derived bracket, i.e. $\{\{Q, V\}, W\} V \leftrightarrow W$ results in

$$[X,Y]^{\mu}\zeta_{\mu}+(L_{X}\beta-L_{Y}\alpha-\frac{1}{2}d(\iota_{X}\beta-\iota_{Y}\alpha))_{\mu}\xi^{\mu}$$

i.e. we get the Courant bracket.

So we recover generalized geometry on a Courant algebroid.

More interesting: C-bracket as derived bracket

New result: Interpretation of the C-bracket

We take the same setting as before, but instead of M as base, we take T^*M , i.e. we take $T^*[2]T[1](T^*M)$. Local coordinates are now $(x^M, \xi^M, \zeta_M, p_M)$ of degree (0, 1, 1, 2).

Problem: We now have too many "vectors". We solve this by defining

$$\theta^M := \frac{1}{\sqrt{2}} (\xi^M + \eta^{MN} \zeta_N) \quad \text{and} \quad \beta^M := \frac{1}{\sqrt{2}} (\xi^M - \eta^{MN} \zeta_N) ,$$

and taking only θ^{M} as degree-1 coordinates. Taking

$$\left\{ \theta^{M}, \theta^{N} \right\} = \eta^{MN}$$

we get a pre-NQ-manifold (no time to explain...Q gives a sh Lie algebra).

More interesting: C-bracket as derived bracket

New result: Interpretation of the C-bracket

With this we get the following results:

- ► $\{Q, f\} = \theta^M \partial_M f$, i.e. the de Rham on the doubled space.
- ► For vectors $X = X_M \theta^M$, $Y = Y_M \theta^M$ we get, using $\eta^{MN} X_M \partial_N = X^N \partial_N$, the derived bracket $\{\{Q, X\}, Y\} X \leftrightarrow Y$ gives

$$(X^M \partial_M Y_K - Y^M \partial_M X_K - \frac{1}{2} (Y^M \partial_K X_M - X^M \partial_K Y_M)) \theta^K$$

i.e. the C-bracket of double field theory.

Outlook + Questions

- ▶ We gave a unified algebraic view on Lie-, Courant- and C-brackets.
- Everything was local. Global analysis? Gerbes, groupoids... What is the global description of double field theory? T-duality?
- ▶ For higher Vinogradov algebroids $V_n(M)$, degree n 1-objects are

$$X = X^{\mu}\zeta_{\mu} + X_{\mu_1\ldots\mu_{n-1}}\xi^{\mu_1}\cdots\xi^{\mu_{n-1}},$$

i.e. sections of $TM \oplus \wedge^{n-1}T^*M$. For n = 3, we get the easiest case of *exceptional generalized geometry*, where the U-duality group is $SL(5, \mathbb{R})$. How about the other exceptional tangent bundles?

What are torsion and Riemann tensors in exceptional generalized geometries? Do they have a meaning in Poisson geometry on certain Vinogradov algebroids?

Quantization: If we can write the brackets in terms of Poisson brackets, we can do deformation quantization!

Outlook + Appendices

(Pre)-NQ-manifolds and derived brackets: Important definitions

Definition 1.

A symplectic pre-NQ-manifold of \mathbb{N} -degree n is an \mathbb{N} -graded manifold \mathcal{M} , together with symplectic form ω of degree n and a vector field Q of degree 1, satisfying $L_Q\omega = 0$.

Examples

An important class where in addition $Q^2 = 0$, are the **Vinogradov Lie** *n*-algebroids:

$$\mathcal{V}_n(M) := T^*[n]T[1]M$$
.

They have the following properties:

- Local coordinates $(x^{\mu}, \xi^{\mu}, \zeta_{\mu}, p_{\mu})$ of degrees 0, 1, n 1, n.
- Symplectic form $\omega = dx^{\mu} \wedge dp_{\mu} + d\xi^{\mu} \wedge d\zeta_{\mu}$
- ► Nilpotent vector field Q with Hamiltonian $Q = \xi^{\mu} p_{\mu}$, i.e. $\{Q, Q\} = 0$.

Constructing the brackets

Getzler, Fiorenza, Manetti

Let \mathcal{M} be a symplectic pre-NQ-manifold. Functions on the body M are degree-0 objects, i.e. $f \in C_0^{\infty}(\mathcal{M})$. We choose as analogue of vector fields degree (n-1)-objects $X \in C_{n-1}^{\infty}(\mathcal{M})$, call them **extended vector fields**. Then define *n*-ary brackets by

$$\begin{split} \mu_1(V) &= \begin{cases} \{\mathcal{Q}, V\}, & \text{if } V \text{ has degree } 0\\ 0, & \text{otherwise} \end{cases} \\ \mu_2(V, W) &= \frac{1}{2}(\{\delta V, W\} - \{\delta W, V\}) \\ \mu_3(V, W, U) &= -\frac{1}{12}(\{\{\delta V, W\}, U\} \pm \dots) \\ & \dots \\ & \text{where } \delta V := \begin{cases} \{\mathcal{Q}, V\}, & \text{if } V \text{ has degree } n-1\\ 0, & \text{otherwise} \end{cases} \end{split}$$

Conditions for L_{∞} -structure

If $Q^2 = 0$, the above brackets form an L_{∞} structure. In our case we want to investigate conditions that this is also true, especially for n = 2, where we found the following

Theorem 1.

Consider the subset of $C^{\infty}(\mathcal{M})$ consisting of functions and extended vector fiels, i.e. $C_0^{\infty}(\mathcal{M}) \oplus C_1^{\infty}(\mathcal{M})$. If the Poisson brackets and the maps μ_i close on this subset, the latter is an L_{∞} -algebra if and only if

$$\{Q^2 f, g\} + \{Q^2 g, f\} = 0,$$

$$\{Q^2 X, f\} + \{Q^2 f, X\} = 0,$$

$$\{\{Q^2 X, Y\}, Z\}_{[X, Y, Z]} = 0,$$

for all functions f, g and extended vector fields X, Y, Z. The notation $Q^2 f$ means $\{Q, \{Q, f\}\}$ and the subscript [X, Y, Z] means the alternating sum over X, Y, Z.