

Analyzing local Lorentz violation with gravitational experiments

ChengGang Shao, Ya-Fen Chen, and Yu-Jie Tan

Center for Gravitational Experiment (CGE), Huazhong University of Science and Technology (HUST), Wuhan, China

2017.09.24 Corfu2017

Outline

• Lorentz violation in the gravitational sector

• Limits on Lorentz violation from gravimeters and tests of the gravitational inverse square law

• Recent experimental design for Lorentz violation in short-range gravity

I. Lorentz violation in the gravitational sector

Gravitational phenomena \leftarrow

GR ← Einstein Equivalence Principle (three logical parts):

Weak equivalence principle (WEP), has been widely tested

Local Lorentz invariance (LLI), tested for many sectors of the SM

Local Position invariance (LPI), also no violation

• Lorentz violation in gravity

Lorentz violation ---- Described by the presence of background general tenser fields in spacetime $(s_{\mu\nu}, k_{\mu\nu\kappa\lambda}, \cdots)$ The topic :

How to constrain LV from laboratory gravitational experiments and how to design experiments to improve constraints of LV?

General framework: Standard-Model Extension (SME) (developed by Kostelecky and collaborators)

Lagrangian of LV in **gravity**

$$L_{\rm LV} = \frac{\sqrt{g}}{16\pi G} \left(L_{\rm LV}^{(4)} + L_{\rm LV}^{(5)} + L_{\rm LV}^{(6)} + \cdots \right) \qquad \text{Bailey, PRD91,022006(2015)}$$

a series involving operators of increasing mass dimension d

 $L_{LV}^{(4)}$ \leftarrow Tested by interaction between Earth and a small test body.

- $L_{\rm LV}^{(5)}$ has no effect on nonrelativistic gravity
- $L_{LV}^{(6)} \leftarrow$ Tested in short-range gravity.

minimal SME (mSME)

The minimal term with d = 4

The dimensionless coefficient

- Atom-interferometer
- Lunar laser ranging
- Pulsar-timing observations

$$L_{LV}^{(4)} = (k^{(4)})_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta}$$

at tracel

$$-uR + s^{\mu\nu}R_{\mu\nu} + t^{\kappa\lambda\mu\nu}R_{\kappa\lambda\mu\nu}$$

$$\downarrow$$

$$V(r) = -G \frac{m_1 m_2}{|\vec{x}_1 - \vec{x}_2|} \left[1 + \frac{1}{2} \hat{x}^j \hat{x}^k \overline{s}_{jk} \right]$$

9 independent components $\overline{s}^{\mu\nu} \square 10^{-10}$

Laboratory experiments: To measure the acceleration of a free body

Due to the Earth's orbit and rotation

the local acceleration for LV
$$\frac{g_{\rm LV}}{g} \propto \sum_m C_m \cos \omega_m t + D_m \sin \omega_m t$$

Six frequencies $\omega_m = (2\omega_{\oplus}, \omega_{\oplus}, 2\omega_{\oplus} + \Omega, 2\omega_{\oplus} - \Omega, \omega_{\oplus} + \Omega, \omega_{\oplus} - \Omega)$

Non-minimal term with d = 6

LV in short-range gravity. Bailey, PRD91,022006(2015)

Lagrangian includes quadratic couplings of Riemann curvature

 $L_{LV}^{(6)} = \frac{1}{2} (k_1^{(6)})_{\alpha\beta\gamma\delta\kappa\lambda} \{D^{\kappa}, D^{\lambda}\} R^{\alpha\beta\gamma\delta} + (k_2^{(6)})_{\alpha\beta\gamma\delta\kappa\lambda\mu\nu} R^{\alpha\beta\gamma\delta} R^{\kappa\lambda\mu\nu}$ Nonrelativistic effects in post-Newtonian gravity $(\bar{k}_{eff})_{jklm}$ effective coefficients

Totally symmetric indices \rightarrow 15 independent coefficients

Modified Possion equation $\nabla^2 U + 4\pi G \rho(\vec{r}) + (\bar{k}_{eff})_{jklm} \partial_j \partial_k \partial_l \partial_m U = 0$

In the case of two point masses V

$$V(r) = -G\frac{m_1m_2}{r} \left[1 + \frac{\overline{k}(\hat{r})}{r^2}\right]$$

Potential between two point masses

$$V_{\rm LV}(\vec{r}) = -Gm_1m_2\frac{k(\hat{r})}{r^3}$$
 $r = |\vec{x}_1 - \vec{x}_2|$

Bailey, PRD91,022006(2015)

anisotropic combination of coefficients $(\overline{k}_{eff})_{ijkl}$, function of \hat{r} direction

$$\overline{k}(\hat{r}) = \frac{3}{2} (\overline{k}_{eff})_{iijj} - 9(\overline{k}_{eff})_{ijkk} \hat{r}^{i} \hat{r}^{j} + \frac{15}{2} (\overline{k}_{eff})_{ijkl} \hat{r}^{i} \hat{r}^{j} \hat{r}^{k} \hat{r}^{l}$$

Compare to usual Yukawa potential

 $V_{Yuk}(r) = -Gm_1m_2\frac{\alpha e^{-r/\lambda}}{r}$

Distinctive feature of LV : anisotropic cubic potential

depends on sidereal time in lab frame

Tests in short-range gravity $- \begin{cases} constrain Yukawa parameter (\alpha, \lambda) \\ constrain Lorentz violation (\overline{k}_{eff})_{jklm} \end{cases}$

II. Limits on Lorentz violation from gravimeters and tests of the gravitational inverse square law

Current lab test for minimal term d=4: Gravimeter

Such as atom-interferometer or superconductor gravimeter

Theory of Lorentz violation analysis with tidal data

Data analysis

 $g_{tide model} = G_{theory}$ -Ocean Loading correction+ pressure correction

LV from worldwide superconducting gravimeters

TABLE III: The comparison of Lorentz violation (LV) bounds from atom interferometry [11], the superconducting gravimeter at Bad Homburg [13] and a worldwide array of superconducting gravimeters in this work. This is the first bound of Lorentz violation obtained by a first-principles tidal model with ocean tides. The possible systematic error given here is based on residual spectrum at 2 ω .

Coefficient	Atom interferometry [11]	Superconducting gravimeter at Bad Homburg [13]	LV estimate with statistical errors	LV systematic errors from the tidal model	Overall estimate of LV in this work
$\bar{s}^{XX} - \bar{s}^{YY}$	$(4.4 \pm 11) \times 10^{-9}$	$(2\pm1)\times10^{-10}$	$(-8.8 \pm 0.5) \times 10^{-10}$	2.4×10^{-9}	$(-0.9 \pm 2.4) \times 10^{-9}$
\bar{s}^{XY}	$(0.2 \pm 3.9) \times 10^{-9}$	$(-4 \pm 1) \times 10^{-10}$	$(-11.0 \pm 0.3) \times 10^{-10}$	1.2×10^{-9}	$(-1.1 \pm 1.2) \times 10^{-9}$
\bar{s}^{XZ}	$(-2.6 \pm 4.4) \times 10^{-9}$	$(0 \pm 1) \times 10^{-10}$	$(-3.0 \pm 1.4) \times 10^{-11}$	1.8×10^{-10}	$(-0.3 \pm 1.8) \times 10^{-10}$
\bar{s}^{YZ}	$(-0.3 \pm 4.5) \times 10^{-9}$	$(3 \pm 1) \times 10^{-10}$	$(-2.4 \pm 1.4) \times 10^{-11}$	1.8×10^{-10}	$(-0.2 \pm 1.8) \times 10^{-10}$

Current test for non-minimal term d=6: test of ISL

LV(*d*=6) in short-range gravity

Potential between
two point masses
$$V_{LV}(r) \equiv -G \frac{m_{1}m_{2}}{r^{3}} \bar{k}(\hat{r}) \qquad r = |\vec{x}_{1} - \vec{x}_{2}|$$

$$\bar{k}(\hat{r}) \equiv \frac{3}{2} (\bar{k}_{eff})_{iijj} - 9(\bar{k}_{eff})_{ijkk} \hat{r}^{i} \hat{r}^{j} + \frac{15}{2} (\bar{k}_{eff})_{ijkl} \hat{r}^{i} \hat{r}^{j} \hat{r}^{k} \hat{r}^{l}$$
Sidereal Time T-dependent
$$(\bar{k}_{eff})_{jklm} \equiv R^{jJ} R^{kK} R^{lL} R^{mM} (\bar{k}_{eff})_{JKLM}$$
Laboratory frame
$$x: \text{ colatitude of the lab} \qquad R^{jJ} = \begin{pmatrix} \cos \chi \cos \omega_{\oplus} T & \cos \chi \sin \omega_{\oplus} T & -\sin \chi \\ -\sin \omega_{\oplus} T & \cos \omega_{\oplus} T & \cos \chi \end{pmatrix}$$
Earth's sidereal Frequency
In laboratory frame
$$\bar{k}(\hat{r},T) = c_{0} + \sum_{m=1}^{4} (c_{m} \cos m\omega_{\oplus} T + s_{m} \sin m\omega_{\oplus} T)$$
up to and including the fourth harmonic
$$12$$

LV force between two plates

Planar geometry: to suppress the Newtonian background However, it also suppresses the LV signal

$$F_{Newton}^{y}(d)\Big|_{\text{infinite}} = \text{constant} \qquad t_{p}$$

$$F_{LV}^{y}(d)\Big|_{\text{infinite}} = 0 \qquad t$$

Force between two finite plates is dominated by the edge effect.

$$\Delta F_{LV}^{y} = F_{LV}^{y}(d_{\min}) - F_{LV}^{y}(d_{\max}) \sim \varepsilon \Delta C(\overline{k}_{eff})_{jkjk} \qquad \text{HUST-2011}$$
$$\Delta C = 2\pi G \rho_{p} \rho A_{p} \left[\ln \frac{(d_{\min} + t_{p})(d_{\min} + t)}{(d_{\min} + t_{p} + t)d_{\min}} - \ln \frac{(d_{\max} + t_{p})(d_{\max} + t)}{(d_{\max} + t_{p} + t)d_{\max}} \right]$$

dimensionless parameter ε : edge effect

Edge effect ε is typically of order ~0.01 or d/\sqrt{A}

Experimental result of LV in HUST-2011

$$\tau_{LV}(T) = C_0 + \sum_{m=1}^{7} \left[C_m \cos(m\omega_{\oplus}T) + S_m \sin(m\omega_{\oplus}T) \right]$$

	10 ⁻¹⁶ Nm
C ₀	-0.22±0.95
C ₁	0.13±0.22
S ₁	-0.40±0.23
C ₂	-0.04 ± 0.22
S ₂	0.20±0.22
C ₃	-0.30±0.22
S ₃	-0.25±0.23
C ₄	-0.06±0.23
S ₄	0.05±0.23

/	U		$\mathcal{O}_m \mathcal{O}_m$
		<i>m</i> =1	
		Keff	$10^{-8}m^2$
	1	XXXX	-0.2±2.8
	2	YYYY	0.4±2.8
	3	ZZZZ	-0.9±7.7
	4	XXXY	0.4±1.3
	5	XXXZ	-0.1±0.5
	6	YYYX	0.6±1.3
	7	YYYZ	-0.4±0.5
	8	ZZZX	-1.3±1.4
	9	ZZZY	-0.2±1.3
	10	XXYY	-0.1±1.7
	11	XXZZ	-0.2±1.0
	12	YYZZ	0.2±1.0
	13	XXYZ	0.5±0.5
	14	YYXZ	-0.2±0.5
	15	ZZXY	-0.2±0.5

 $16 \times 16 \times 1.8 \text{ mm}^3$ $21 \times 21 \times 1.8 \text{ mm}^3$ f_s Area
C.G. Shao,et.al.
PRD91, 102007 (2015)

Each constraint of $(\overline{k}_{eff})_{JKLM}$ was obtained in turn by setting the other 14 degrees of freedom to be zero.

```
J.C. Long,et.al.
PRD91, 092003 (2015)
```

Our result: similar to that of IU-2002,2012, a shorter range ISL experiment ($80\mu m$)

ISL Experiment in HUST-2015

HUST-2015 separation: 0.295 mm

Improved the constraint of Yukawa parameter by a factor of 2.

Combined analysis for HUST-2015, HUST-2011, IU-2012, IU-2002

TABLE II. Independent coefficient values $(2\sigma, \text{ units } 10^{-9} \text{ m}^2)$ obtained by combining HUST and IU data [8–10].

Coefficient	Measurement	
Coefficient $(\bar{k}_{eff})_{XXXX}$ $(\bar{k}_{eff})_{XXXY}$ $(\bar{k}_{eff})_{XXXZ}$ $(\bar{k}_{eff})_{XXYZ}$ $(\bar{k}_{eff})_{XXYZ}$ $(\bar{k}_{eff})_{XXZZ}$ $(\bar{k}_{eff})_{XYYZ}$ $(\bar{k}_{eff})_{XYYZ}$ $(\bar{k}_{eff})_{XYYZ}$	Measurement 6.4 ± 32.9 0.0 ± 8.1 -2.0 ± 2.6 -0.9 ± 10.9 1.1 ± 1.2 -2.6 ± 17.1 3.9 ± 8.1 -0.6 ± 1.2 -1.0 ± 1.0	
$(\bar{k}_{\text{eff}})_{XZZZ} \\ (\bar{k}_{\text{eff}})_{XZZZ} \\ (\bar{k}_{\text{eff}})_{YYYY} \\ (\bar{k}_{\text{eff}})_{YYYZ} \\ (\bar{k}_{\text{eff}})_{YYZZ} \\ (\bar{k}_{\text{eff}})_{YZZZ} $	$-8.1 \pm 10.3 7.0 \pm 32.9 0.3 \pm 2.6 -2.5 \pm 17.1 3.6 \pm 10.2$	

Shao et.al, PRL117,071102(2016)

III. Recent experimental design for Lorentz violation **CGE** in short-range gravity

- Almost all experiments on ISL adopt planar geometry to search for Yukawa-type non-Newton gravity, which also suppressed LV signal
- LV force between two finite flat plates is dominated by edge effect

Our intuition tell us: plate with striped or checkered pattern

homogeneous-plate

14 measurable independently coefficients of LV

Double trace of $(\overline{k}_{eff})_{ijij}$ is a rotational scalar, and can't be measured in short-range gravity

Measured LV torque provides nine components

$$\tau_{LV} = C_0 + \sum_{m=1}^{4} C_m \cos(m\omega_{\oplus}T) + S_m \sin(m\omega_{\oplus}T)$$

Equivalently,
$$\overline{k}(\hat{r}) = c_0 + \sum_{m=1}^{4} c_m \cos(m\omega_{\oplus}T) + s_m \sin(m\omega_{\oplus}T)$$

Nine components in $\overline{k}(\hat{r})$ are functions of the 14 constant coefficients (\overline{k}_{eff}) in Sun-centered frame.

14 measurable coefficients can be redefined by excluding the unmeasurable degree of freedom

A spherical decomposition

A convenient formalism for analyzing short-range test of LV

Lagrange density
$$L = L_0 + L_{LV} = L_0 + \frac{1}{4}h_{\mu\nu}(\hat{s}^{\mu\rho\nu\sigma} + \hat{q}^{\mu\rho\nu\sigma} + \hat{k}^{\mu\nu\rho\sigma})h_{\rho\sigma}$$

V. A. Kostelecky. et al, PLB/66,13/-143(201/)

Cartesian coordinate system $\langle - \rangle$ spherical coordinate system

 $\bar{k}(\hat{\mathbf{r}},\mathbf{T}) = \sum Y_{jm}(\theta,\phi) \; k_{jm}^{N(d)lab} \Longrightarrow$ Lorentz violation coefficients -i - d) or d = A $- \mathbf{Re} k^{N(d)}$

The spherical decomposition provide a clean separation of the observable harmonics in sidereal time.

Transformation matrix(d=6)

Newton spherical coefficients

Effective Cartesian coefficients

					_		_					_		_	-	$\left[(\bar{k}_{eff})_{XXXX}\right]$
k _{2,0}		36/√5	0	0	72/√5	0	36/ √5	0	0	0	0	36/ √5	0	36/	0	$\left (\bar{k}_{eff})_{XXXY} \right $
$\operatorname{Re}k_{2,1}$		0	0	$12\sqrt{6/5}$	0	0	0	0	$12\sqrt{6/5}$	0	$12\sqrt{6/5}$	0	0	0	0	(\bar{k})
$Im k_{2,-1}$		0	0	0	0	$-12\sqrt{6/5}$	0	0	0	0	0	0	$-12\sqrt{6/5}$	0	$-12\sqrt{6/5}$	$\left \begin{pmatrix} \kappa_{eff} \end{pmatrix}_{XXXZ} \right $
$\operatorname{Re}k_{2,2}$		$-6\sqrt{6/5}$	0	0	0	0	$6\sqrt{6/5}$	0	0	0	0	$6\sqrt{6/5}$	0	$6\sqrt{6/5}$	0	$\binom{(k_{eff})_{XXYY}}{-}$
$\operatorname{Im} k_{2,-2}$		0	$12\sqrt{6/5}$	0	0	0	0	$12\sqrt{6/5}$	0	$12\sqrt{6/5}$	0	0	0	0	0	$(k_{eff})_{XXYZ}$
k _{4,0}		-5	0	0	-10	0	$-40\sqrt{10}$	0	0	0	0	-5	0	-40	0	$(\bar{k}_{eff})_{XXZZ}$
Re <i>k</i> _{4,1}	$\sqrt{\pi}$	0	0	6	0	0	0	0	6√5	0	$-8\sqrt{5}$	0	0	0	0	$(\bar{k}_{eff})_{XYYY}$
$\operatorname{Im} k_{4,-1}$	7	0	0	0	0	-6\sqrt{5}	0	0	0	0	0	0	$-6\sqrt{5}$	0	8√5	$(\bar{k}_{eff})_{XYYZ}$
$\operatorname{Re}k_{4,2}$		$-\sqrt{10}$	0	0	0	0	-10\sqrt{5}	0	0	0	0	$\sqrt{10}$	0	-6\sqrt{10}	0	$(\bar{k}_{eff})_{XYZZ}$
$\operatorname{Im} k_{4,-2}$		0	$2\sqrt{10}$	0	0	0	0	$2\sqrt{10}$	0	$-12\sqrt{10}$	0	0	0	0	0	$\left (\overline{k}_{aff}) \right _{V777}$
$\operatorname{Re}k_{4,3}$		0	0	$-2\sqrt{35}$	0	0	0	0	6√35	0	0	0	0	0	0	(\overline{k})
$\operatorname{Im} k_{4,-3}$		0	0	0	0	6√35	0	0	0	0	0	0	$-2\sqrt{35}$	0	0	$(\kappa_{eff})_{YYYY}$
$\operatorname{Re}k_{4,4}$		$\sqrt{5/2}$	0	0	$-3\sqrt{70}$	0	0	0	0	0	0	$\sqrt{5/2}$	0	0	0	$\begin{pmatrix} (k_{eff})_{YYYZ} \\ - \end{pmatrix}$
$\operatorname{Im} k_{4,-4}$		0	$-2\sqrt{70}$	0	0	0	0	$2\sqrt{70}$	0	0	0	0	0	0	0	$(k_{eff})_{YYZZ}$
		L													-	$(\bar{k}_{eff})_{YZZZ}$

V. A. Kostelecky. Et al, PLB766,137-143(2017)

$C_i, S_i \leftrightarrow k_{jm}$ through functions 14 $\Gamma_j(\theta, \chi)$

20

Experimental design: striped geometry

The feature for test and source masses

shifted up and left half of the width of the strip

Transfer coefficients vary with angle

According to the typical design parameters, we calculate transfer

coefficients as functions of angle

Horizontal stripe-type

Vertical stripe-type

Compare to the best current constraint[1]

Assuming 3 μm systemic error

Ratio of the total error in the current best constraint to that in our new design

Coefficients	Current constraint (10^{-8}m^2) [21]	Ratio in horizontal stripe-type for $\theta = \pi/7$ and $\pi/2$	Ratio in vertical stripe-type for $\theta = \pi/6$ and $3\pi/5$
k _{2,0}	3 ± 23	4	5
${\rm Re}\dot{k}_{1,1}$	-4 ± 4	16	21
$Im k_{2,1}$	-2 ± 4	16	21
${\rm Re}k_{2,2}$	0 ± 9	67	73
$Im k_{2,2}$	1 ± 4	30	32
$k_{4,0}$	4 ± 25	4	4
${\rm Re}k_{4,1}$	3 ± 5	13	14
$\operatorname{Im} k_{4,1}$	1 ± 5	13	14
$\operatorname{Re} k_{2,2}$	0 ± 12	44	92
$Im k_{2,2}$	2 ± 2	7	15
$\operatorname{Re} k_{4,3}$	0 ± 1	7	7
$\operatorname{Im} k_{4,3}$	1 ± 1	7	7
$\operatorname{Re} k_{4,4}$	2 ± 9	97	49
$Im k_{4,4}$	2 ± 5	54	27

[1] V. A. Kostelecky. Et al, PLB766,137-143(2017)

Conclusion:

- For the mSME (d=4), the vertical acceleration can be used to test LV. However, the current constraints of LV coefficients are limited by the precision of tidal model.
- For Quadratic couplings of Riemann curvature with d=6, only the short-range gravity be used to test LV. We suggested an experiment with periodic striped geometry, which may improve the current constraints of LV by about one order of magnitude

Thanks for your attention!