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I. Lorentz violation in the gravitational sector

Lorentz violation ---- Described by the presence of background 

general tenser fields in spacetime

• Lorentz violation in gravity 

GR   Einstein Equivalence Principle (three logical parts):

Weak equivalence principle (WEP), has been widely tested

Local Lorentz invariance (LLI), tested for many sectors of the SM

Local Position invariance (LPI), also no violation

The topic : 

How to constrain LV from laboratory gravitational experiments and 

how to design experiments to improve constraints of LV?

Gravitational phenomena 



General framework: 
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Standard-Model Extension (SME)

(developed by Kostelecky and collaborators)

Lagrangian of LV in gravity

a series involving operators of increasing mass dimension d
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 Tested by interaction between Earth and a small test body.

 Tested in short-range gravity.

Theoretical model of LV in gravity 
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The minimal term with d = 4 

The dimensionless coefficient 
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• Atom-interferometer

• Lunar laser ranging

• Pulsar-timing observations

minimal SME (mSME)

Laboratory experiments:

Due to the Earth’s orbit and rotation

(2 , ,2 ,  2 , , )m               

the local acceleration for LV
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To measure the acceleration of a free body

LV cos sinm m m m

m

g
C t D t

g
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Six frequencies

trace

9 independent components

Due to the Earth’s orbit and rotation
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Nonrelativistic effects

in post-Newtonian gravity
( )eff jklmk

2 4 ( ) ( ) 0eff jklm j k l mU G r k U        Modified Possion equation
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LV is described by the 

effective coefficients

Totally symmetric indices   15 independent coefficients 

Non-minimal term with d = 6

In the case of two point masses 1 2

2
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Bailey, PRD91,022006(2015)

Lagrangian includes quadratic couplings of Riemann curvature

LV in short-range gravity.



7

Potential between two point masses

LV 1 2 3
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Tests in short-range gravity

1 2r x x 

Distinctive feature of LV : anisotropic cubic potential

depends on sidereal time in lab frame

Compare to usual Yukawa potential 
/
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constrain Yukawa parameter ( , ) 

constrain Lorentz violation ( )eff jklmk

Bailey, PRD91,022006(2015)

anisotropic combination of 

coefficients

function  of      direction 
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Current lab test for minimal term d=4: Gravimeter

Such as atom-interferometer or superconductor gravimeter

Vertical acceleration measure tide

z z z

LVg g g g  

measure tide

z z z

LVg g g g  

tidal effect

tidal model 

involves the frequencies of LV

Constraint of LV

II. Limits on Lorentz violation from gravimeters 

and tests of the gravitational inverse square law
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Theory of Lorentz violation analysis with tidal data

gtide model=Gtheory-Ocean Loading correction+ pressure correction

1
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Corrected Amplitude factor Phase delay

Data analysis

Tidal model

Theoretical  model

Empirical model

n

n

W

h
Data fitting

Theoretical calculation

Lorentz violation frequencies
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measure tide modelg g g  

Superconducting-Gravimeter data

superposition of 

different wave groups
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LV from worldwide superconducting gravimeters 

Combined  result for 12 stations data 

Example

Medicina, Italy (-5.7152).

The constraints for LV coefficients  

are limited by the precision of tidal 

model

C.G.Shao. et al, arXiv: 1707.02318v1
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Test mass (W1)

Source mass (W3)

Translation stage (fs)

Fiber

Glass

Counterbalance mass (W2)

Gravitational calibration mass

Turntable (fc)

Counterbalance mass (W4)

x
y

z

plane-to-plane 
Geometry

ISL Experiment,  HUST-2011

PRL 108,081101(2012)

Ranging from

0.4 to 1.0 mm

Basic feature: I-shaped pendulum

Source mass platform: facing the 

pendulum, I-shaped structure

The separation was modulated by 

driving a motor translation stage

Current test for non-minimal term d=6: test of ISL



12
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Sun-centered frame 

LV(d=6) in short-range gravity
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Sidereal Time T-dependent

1 2r x x 

Laboratory frame 

: colatitude of the lab

Earth’s sidereal Frequency

2 / 23h56min 

In laboratory frame 

Potential between 

two point masses

up to and including the fourth harmonic
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HUST-2011

Force between two finite plates is dominated by the edge effect.

LV force between two plates

y

x

d
t

pt

infinite
( ) 0y

LVF d 

min max( ) ( ) ~  ( )y y y

LV LV LV eff jkjkF F d F d C k   

min min max max

min min max max

( )( ) ( )( )
2 ln ln

( ) ( )

p p

p p
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d t d t d t d t
C G A

d t t d d t t d
  
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dimensionless parameter ε ：edge effect

Edge effect ε is typically of order ~0.01 or /d A

infinite
( ) constanty

NewtonF d 

Planar geometry: to suppress the Newtonian background

However, it also suppresses the LV signal
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Experimental result of LV  in HUST-2011

 
4

0

1

( ) ( )cos(2 )

                  ( ) cos( ) sin( )

z

measured LV s

LV m m

m

t T f t

T C C m T S m T

   

   



 
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10-16Nm

C0 -0.220.95

C1 0.130.22

S1 -0.400.23

C2 -0.040.22

S2 0.200.22

C3 -0.300.22

S3 -0.250.23

C4 -0.060.23

S4 0.050.23

sf

16×16×1.8 mm3

21×21×1.8 mm3

Keff 10-8m2

1 XXXX -0.22.8

2 YYYY 0.42.8

3 ZZZZ -0.97.7

4 XXXY 0.41.3

5 XXXZ -0.10.5

6 YYYX 0.61.3

7 YYYZ -0.40.5

8 ZZZX -1.31.4

9 ZZZY -0.21.3

10 XXYY -0.11.7

11 XXZZ -0.21.0

12 YYZZ 0.21.0

13 XXYZ 0.50.5

14 YYXZ -0.20.5

15 ZZXY -0.20.5

C.G. Shao,et.al. 

PRD91, 102007 (2015)

Our result:  similar to that of IU-2002,2012, a shorter range ISL experiment (80m)

Area

LV torque was modulated by changing d

Each constraint of                 was obtained 

in turn by setting the other 14 degrees of 

freedom to be zero.

( )eff JKLMk

J.C. Long,et.al. 

PRD91, 092003 (2015)
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ISL Experiment  in HUST-2015

HUST-2015 separation: 0.295 mm

Improved the constraint of Yukawa 

parameter by a factor of 2.

Tan et.al, PRL116,031101(2016)

Shao et.al, PRL117,071102(2016)

Combined analysis for HUST-2015, 

HUST-2011, IU-2012, IU-2002
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III. Recent  experimental design for Lorentz violation 

in short-range gravity 

• Almost all experiments on ISL adopt planar geometry to search for 

Yukawa-type non-Newton gravity, which also suppressed LV signal

• LV force between two finite flat plates is dominated by edge effect

Our intuition tell us: plate with striped or checkered pattern

homogeneous-plate
striped pattern 


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Measured LV torque provides nine components
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1

ˆ( ) cos( ) sin( )m m

m

k r c c m T s m T  



  

4

0

1

cos( ) sin( )LV m m

m

C C m T S m T   



  

Nine components in          are functions of the 14 constant 

coefficients          in Sun-centered frame.( )effk

14 measurable coefficients can be redefined by excluding the 

unmeasurable degree of freedom

14 measurable independently coefficients of LV

Double trace of             is a rotational scalar, and can’t be 

measured in short-range gravity

( )eff ijijk

Equivalently,

ˆ( )k r
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A spherical decomposition

V. A. Kostelecky. et al, PLB766,137-143(2017)

0 0

1 ˆˆ ˆ = ( )
4

LVL L L L h s q k h  

     Lagrange density

( ) ( ) ( )( )
im TN d lab im j N d

jm mm jm

m

k e e d k
 

 



 
2  - 4

,

j d or d

m j j

 

 

( )

( )

Re

Im

N d

jm

N d

jm

k

k

Lorentz violation coefficients
( )ˆ(r,T) ( , ) N d lab

j

j

mjm

m

k Y k 

Cartesian coordinate system spherical coordinate system

A convenient formalism for analyzing short-range test of LV

Lab frame Sun-centered frame

The spherical decomposition provide a clean separation of the 

observable harmonics in sidereal time.
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Transformation matrix(d=6)

V. A. Kostelecky. Et al, PLB766,137-143(2017)

Newton spherical coefficients

2,0

2,1

2, 1

2,2

2, 2

4,0

4,1

4, 1

4,2

4, 2

4,3

4, 3

4,4

4, 4

36 / 5 0 0 72 / 5 0 36 / 5 0 0 0 0 36 / 5 0 36 / 5 0

Re 0 0 12 6 / 5 0 0 0 0 12 6 / 5 0 12 6 / 5 0 0 0 0

Im 0 0 0 0 1

Re

Im

Re

Im 7

Re

Im

Re

Im

Re

Im

k

k

k

k

k

k

k

k

k

k

k

k

k
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
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






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 
 
 
 
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 
 
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 
 
 
 
 
  





2 6 / 5 0 0 0 0 0 0 12 6 / 5 0 12 6 / 5

6 6 / 5 0 0 0 0 6 6 / 5 0 0 0 0 6 6 / 5 0 6 6 / 5 0

0 12 6 / 5 0 0 0 0 12 6 / 5 0 12 6 / 5 0 0 0 0 0

5 0 0 10 0 40 10 0 0 0 0 5 0 40 0

0 0 6 0 0 0 0 6 5 0 8 5 0 0 0 0

0 0 0 0 6 5 0 0 0 0 0 0 6 5 0 8 5

10 0 0 0 0 10 5 0 0 0 0 10 0 6 10 0

0 2 10 0 0 0 0 2 10 0 12 10 0 0 0 0 0

0 0 2 35 0 0 0 0 6 35 0 0 0 0 0 0

 



    



 

  





( )

( )

( )

( )

( )

( )

( )

( )

( )

(

0 0 0 0 6 35 0 0 0 0 0 0 2 35 0 0

5 / 2 0 0 3 70 0 0 0 0 0 0 5 / 2 0 0 0

0 2 70 0 0 0 0 2 70 0 0 0 0 0 0 0

XXXXeff

XXXYeff

XXXZeff

XXYYeff

XXYZeff

XXZZeff

XYYYeff

XYYZeff

XYZZeff

k

k

k

k

k

k

k

k

k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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





)
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XZZZeff

YYYYeff

YYYZeff

YYZZeff

YZZZeff

k

k

k

k

k

 
 
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 
 
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 
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 
 
 
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 
 
 
 
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 
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 
 
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 
 
 
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Effective Cartesian coefficients
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 
4

LV 0

1

( ) cos sinm m

m

T C C m T S m T   



  

0 1 2

2 3 4 5 6

2 4 3 6 5

4 7 8

4 8 7

1 9 10 11 12

1 10 9 12 11

3 13 14

3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

C

C

S

C

S

C

S

C

S

  
     
 

    
 

  
    
 

    
     
 

  
 
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2,0

4,0

2,2

2,2

4,2

4,2

4,4

4,4

2,1

2,1

4,1

14 13

4,1

4,3

4,3

Re

Im

Re

Im

Re

Im

Re

Im

Re
0 0 0 0 0 0 0 0

Im

Re

Im

k

k

k

k

k

k

k

k

k

k

k

k

k

k

 
 
 
 

   
   
   
   
   
   
   
   
   
   
   
   
     

 
 
 
  Any experimental design should make Γj  as large as possible.

,   through functions  14  ( , )i i jm jC S k  

1 1 1dm dV

2 2 2dm dV

Test mass element：

Source  mass element：
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1.3×19.8×2.2 mm3

Each strip:

motor translation stage:

gap varies from 0.4 to 1 mm

Experimental design：striped geometry 

horizontal 

stripe-type

vertical

stripe-type
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The feature for test and source masses  

Set horizontal stripe as an example 

shifted up and left half of the width of the strip
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Transfer coefficients vary with angle

According to the typical design parameters，we calculate transfer 

coefficients as functions of angle
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Expected signal

Compare to the best current constraint[1]  

Assuming 3 μm systemic error

[1] V. A. Kostelecky. Et al, PLB766,137-143(2017)

Ratio of the total error in the current best constraint to that in our new design
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Conclusion: 

 For Quadratic couplings of Riemann curvature with d=6, only the 

short-range gravity be used to test LV. We suggested an experiment 

with periodic striped geometry, which may improve the current 

constraints of LV by about one order of magnitude 

 For the mSME (d=4), the vertical acceleration can be used to test 

LV. However, the current constraints of LV coefficients are limited 

by the precision of tidal model. 

Thanks for your attention!


