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Main content of this talk 
Phenomenological facts: 

1. Role of Pauli principle to account for the isospin asymmetry in proton sea 

    x is the proton momentum fraction 

2. Quantum statistical mechanics implies that the fermion parton distributions are the 
product of Fermi Dirac functions of the variables, which appear in the sum rules for the 
longitudinal momentum and the transverse energy sum rules. 

The equilibrium for the elementary QCD processes:

A. Relates the “potentials” of the valence partons and their antiparticles 

B. Fix a Planck distribution for the gluons 

C. For the low x behaviour of the structure functions an additional contribution of a 
diffractive isoscalar unpolarized term is required, that correspond to the presence of 
an infinite number of partons

Proton Parton Distribution Functions seems 
to obey to quantum statistical mechanics

d̄(x) > ū(x) }



3. The statistical approach has a successful predictive power

‣ for the isospin and spin asymmetries of the sea 

‣ in decoupling the contributions of the valence partons and their antiparticles 

‣ in describing the x dependance of the ratios 

‣ also the Boltzmann behaviour exp(-x/x) for x larger than the higher potential, 
X(u↑)  is in good agreement with experiment 

Main content of this talk 

-

F

n
2 (x)

F

p
2 (x)

,

�u(x)

u(x)
,

�d(x)

d(x)
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Main content of this talk 

4. The parametrization implied by the statistical approach has several advantages 
with respect to the standard ones : AxB(1−x)CP(x) 

‣ It describes at the same time the unpolarized and polarized distributions

‣ It relates the distributions of the valence partons and of their antiparticles as a 
consequence of the QCD equilibrium conditions 

‣ Gives a better information for the regions, where the experimental knowledge 
is scarce. 



Phenomenological motivations for the Statistical Parton Distributions 

d̄(x) > ū(x)

• The isospin asymmetry in the sea of the proton

advocated many years ago by Niegawa and Sisiki and by Feynman and Field as a 
consequence of Pauli principle and confirmed by the defect in the Gottfried sum rule 
and by the larger Drell-Yan production of muon pairs in pn scattering than in pp 
scattering. 

• The correlation between the first moments of the valence partons and the shapes of 
their x distributions is the one expected for a quantum gas:

Broader shapes for higher first moments
‣ the dramatic decrease at high x of the ratio            as a consequence of a similar 

behaviour of the ratio

‣ the increasing with x of the positive ratio

‣ and the decreasing with x of the negative ratio
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Variables to be used for the Statistical Parton Distributions 

• the usual choice of the energy as the variable to be used in statistical mechanics 
follows from its appearing in the constraint which fixes the total available energy

• The resulting Boltzmann expression 

• is modified by quantum statistics into the Bose-Einstein and Fermi-Dirac expressions 
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The proper variable for the Statistical Parton Distributions 

• The role of Pauli principle suggests to write Fermi-Dirac functions for the quarks in 
the variable x, which is the one appearing in the parton model sum rules for the 
proton 

• Remember that the usual choice of the energy as the variable appearing in statistical 
mechanics follows from its appearing in the constraint, which fixes the total energy 
available 
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The “Potentials” and the “Temperature” 

• We write the Fermi-Dirac expressions for the valence partons defined by their flavor (u or d) 
and spin along the proton momentum 

• where x and Xq play the role of the ”temperature” and the ”potentials” respectively and

• we expect decreasing values for the “potentials” 
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The Melosh transformation 

• The transverse degrees of freedom of the quarks in the hadrons play an important 
role, since they account for the generator of the transformation from constituent to 
current quarks in the infinite pz frame found at CERN in March 1970 

with W a SU(3) singlet of the adjoint representation (35) of SU(6) and M a vector with 
respect to the orbital momentum L 

• In 1973 Melosh wrote the Wigner rotation of the spin of the quarks for its projection 
along the momenta of the quark and the containing hadron, the angle, for which the 
tangent is 

Z = ( ~W ⇥ ~M)z

(~� ⇥ ~p)z
p0 + pz +m



The Transverse Energy sum rule 

• The transverse distributions have been fixed by a sum rule for the transverse energy, defined 
as the difference between the energy and the momentum. For the initial hadron it is given by

approximately equal for large Pz to 

• For a massless parton, which carries the fraction x of the hadron momentum and with 
transverse momentum pT the transverse energy is given by 

• By multiplying by 2Pz we get the sum rule with M2 in the right hand side. By taking Pz the 
momentum of the initial hadron in the frame of the final hadrons, one gets (neglecting terms  
in (xM)2) 

M2

2Pz

P0 � Pz

p

2
T

pz +
p

p

2
z + p

2
T

=
p

2
T

Pz(x+
q
x

2 +
p2
T

P 2
z
)

P

2
z =

Q

2

4x(1� x)



The Parton Trasverse Distributions 

• This implies the following dependance on x and p2
T for the non- diffractive part of x q(x) 

where Yq is the ”transverse potential. With the transformation 

we obtain the integral in η of                                  which gives rise to

for the factor that multiplies

A

0
x

b�1

(µ)2f(x,Xq)g(x, p2T , Yq) { f(x,Xq) = e

⇣
x�x

q

x̄

⌘

+ 1

g(x, p2T , Xq) = e

0

BBB@
2P2

T

x+

vuut
x

2+
p

2
T

P

2
z

�Y
q

1

CCCA

+ 1

P

2
T =

µ

2
⌘(x+

q
x

2 + p2

P 2
z
)

2

1 + 2⌘(µ)2(1�x)
Q

2

e(⌘�Yq) + 1

[ln (1 + e

Yq ) +
2(1� x)µ2

Q

2
Li2(�eYq)]

A

0
x

b

e

⇣
x�X

q

x̄

⌘

+ 1



The Parton Trasverse Distributions 

• For the polarized distributions the Melosh-Wigner rotation implies the absence of the 
second term.

• The parameter (μ)2  will be fixed by the transverse energy sum rule to be 0.200 GeV2 
and is proportional to the denominator of the gaussian form assumed by the transverse 
distribution for p2

T larger than μ2xYq 



The QCD equilibrium conditions 
• By requiring equilibrium for the two elementary QCD processes, the emission of a gluon by a 

fermion parton and the conversion of the gluon into a qq pair with opposite helicity, one has 
the important consequence to have a vanishing potential for the gluons of both helicities and 
opposite values for the potentials for a quark and its antiparticle with opposite helicity
 

‣ the Bose-Einstein expression for the gluons xG(x) turns into a Planck form

‣ quark and antiquark contributions in the e. m. DIS disentangled thanks to the relation:

‣ for the unpolarized distributions the disentangling is obtained from the obvious conditions 

‣ for the polarized distributions the equilibrium conditions allow to determine the polarization 
of the light antiquarks from the knowledge of the shapes of the valence quark distributions 

and
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The Diffractive Contribution 

• At small x parton distribution is dominated by a diffractive contribution, probably a 
consequence of the gluon distribution, implying an infinite number of partons

• To be consistent with the parton sum rules

the diffractive contribution should be the same for the particles and the antiparticles and 
should not contribute to the Bjorken sum rule 

qD(x) proportional to x
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The Diffractive Contribution 

• To reproduce data one had to modify the Fermi-Dirac function with the factor               
and add a diffractive contribution  

‣ x plays the role of the “temperature”

‣ Xq is the potential of the parton depending on its flavor and helicity 

‣ diffractive contribution isoscalar and unpolarized to avoid an infinite contribution to the 
parton model sum rules (since b = -0.25 is negative)
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The Description of the Statistical parton Distributions and the 
Comparison with the HERA Fit for the Unpolarized Ddistributions

• Some years ago a joint analysis of the DIS data measured in the H1 and ZEUS experiments 
has been performed to give the unpolarized parton distributions and Jacques Soffer 
immediately realized the similarity with the statistical distributions

• To perform a check for the quantum statistical parton distributions, we determine the 
parameters introduced in order to reproduce the Hera result for the unpolarized distributions 
of the light parton fermions, while for the polarized ones we require to reproduce the 
expressions found in 2002, which have been successful to describe the polarized structure 
functions gp,d,He3(x) and the production of W± weak bosons

• The description of 2002 polarized distributions is shown in the following figures and the 
parameters are compared with the ones determined in that paper



The Description of the Statistical parton Distributions
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The Description of the Statistical parton Distributions



• Our results on                                  (solid) and                                    (dashed dot) at Q2 = 4(GeV )2 

in comparison to the HERMES data at Q2 = 2.5 GeV2

   

• The agreement is very good for both the comparisons for the fermions. 
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The Description of the Statistical parton Distributions



The Comparison of the Parameters in the 2002 paper with HERA fit 

• From a selected choice of Deep Inelastic Scattering we have been able to determine the small 
number of parameters introduced, getting the following values:

• In the second column we report the values of the parameters obtained by demanding that our 
expressions reproduce the H1−ZEUS fit 

• The values of the parameters agree, according to an analysis by Claude Bourrely, within 2 
maximizing the entropy defined by J. Cleymans and D. Worku in a 2012 paper



Parton Range 
u (0.0 - 0.2) 0.00177 0.00057 0.00356
u (0.2 - 0.5) 0.00046 0.0001 0.00025
u (0.5 - 0.7) 0.000077 0.00084 0.0013
u (0.7 - 0.8) 0.0109 0.00057 0.00356
u (0.8 - 0.9) 319 16.2 478
d (0.0 - 0.2) 0.00116 0.0002 0.00078
d (0.2 - 0.5) 0.00193 0.0067 0.0042
d (0.5 - 0.6) 0.00048 0.008 0.012
d (0.6 - 0.7) 0.018 0.0074 0.025
g (0.0 - 0.7) 0.0675 0.29 0.54

The Comparison with NNPDF

• A good test for the statistical parton distributions is provided by the comparison with NNPDF with 
the parameters fixed by the comparison with HERA

• It is instructive the comparison of the three square differences between statistical, NNPDF and 
Hera divide by the square of NNPDF result integrated on ranges of the x variable for u, d and 
gluons for unpolarized distributions:
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The Comparison with NNPDF

• Interestingly enough  for u in the range (0.5,0.8), for d in the range (0.2,0.7) and for gluons in the 
range (0,0.7) the agreement with NNPDF is better than  the one of HERA and the one with HERA.

• As long as for the strong disagreement with both NNPDF and HERA for u above 0.8 one should 
say that at Q2 = 4GeV2, $ M'2 = M2 + Q2 (1/x - 1) is  < 1.9, just in the region of the Δ resonance, 
away from the deep inelastic regime and the large numbers come from the fast decrease at high x 
induced by the factor (1 - x)C: the fact that the limit of the  ratio d(x)/u(x) at large x supplied by the 
Boltzmann limit, exp{-x/x} is in perfect  agreement with the value found by Orwell, Accardi and 
Melnitchuk is a further point in favour  of the hypothesis  that the low Q2 boundary condition for 
DGLAP equation is fixed by quantum statistical mechanics.

• As long as for the light sea the isospin and spin asymmetries are automatically predicted in sign 
and order oif magnitude from the QCD equilibrium conditions.



The Comparison with the Standard Form for Parton Distributions  

• Despite the fact that x = 0 ( Q2 = 0 ) and the neighborough of x = 1 (elastic and resonance 
production) are not in the domain of DIS, the standard parametrization for parton distribution 
has the following form:

with A, B and C fixed by the comparison with experiment for each parton distribution and a 
separate analysis for unpolarized and polarized distributions 

• Sometimes to improve the agreement with data some polynomial factor is introduced 

• Indeed the diffractive component has a singular power behaviour near x = 0, while the valence 
partons, which dominate the intermediate and the high x regions have a different (more soft) 
power behaviour at small x, while the positive value of C gives rise to a decrease with x and 
also to a different weight for the valence partons, 2 (u and d) for the unpolarized distributions 
and 4 if one considers also the polarized ones 
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The difference between the Statistical 
and the Standard Parton Distributions  

• For the statistical distributions the decrease at high x is naturally explained by the Boltzmann 
behaviour of the parton distributions for x larger than the “potential” of each parton 

• The variation of the ratios between the different valence parton distributions 

is concentrated in the range between the lowest and highest potential 
 

while in the Boltzmann regime their ratios vary more slowly  

• This behaviour is the opposite for the standard parametrization, for which the effect of the 
different exponents for the power (1 − x)C becomes more important as x approaches 1  
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• The ratio                         at high x depends on the ratio d(x)/u(x) in the same region 

• The difficult to obtain the neutron unpolarized structure function at high x is related to the 
Fermi motion of the two nucleons in the deuton, which makes very problematic to get it from 
the ones measured for the proton and for the deuton. So to get the ratio d(x)/u(x) in that region 
is not a trivial task. The small statistics and the choice of the standard parametrization give 
rise to a big uncertainty on that ratio. In the statistical approach the free parameters, from 
which that ratio depends, the “temperature” and the “longitudinal and transverse potentials” 

are fixed in regions, the intermediate x region (0.22,0.46), where the statistics is large and the 
systematic errors are small. The perfect agreement of the prediction for 

with the result of the careful analysis by Orwell, Accardi and Mecnitchouk is a good confirm for 
the statistical parton distributions 

Comparison with d(1)/u(1) 
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• The form AxB(1−x)CP(x) for the different parton distributions has the disadvantage that the 
high x behaviour for each distribution is fixed by the exponent C, which comes out different 

for the different valence quarks with the consequence that the limit d(x)/u(x) for x → 1 
comes out or 0 or infinity. Indeed in the fit of the joined Hera-Zeus group parameter C is 
larger for u than for d, while for the sea it is still smaller in such a way that it dominates in 
that limit. To comply with the experimental behaviour of the ratio d(x)/u(x) they introduce for 
the parton u the ad-hoc factor (1 + 9.7x2). 

 

Disadvantages of the Standard Parametrization 



• The equilibrium conditions fix the “potentials” for the gluon to vanish for both helicities, 
which implies

                                      and a Planck form:

where the exponent 1 for the power follows by the idea that the hadron is a black body 
cavity for the chromomagnetic radiation and Ag is fixed by the sum rule for the longitudinal 
momentum 

• Indeed the fact that HERA data show that xG(x) is growing at small x for Q2 = 1.9(GeV )2 

and decreasing at Q2 = 10(GeV 2 suggests that the Q2, where it is stationary, will not be so 
different from 4(GeV )2  

In fact BH(Q2) =−0.0257 
 

The Gluon Distribution: THE PLANCK FORM 
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• The standard form 

implies that the decreasing at high x depends on the exponent C and gets faster at 
increasing x, while the Planck form, as soon as one can neglect the −1 in the denominator, 
has a more regular behaviour 
 

• Since the gluon distribution in DIS has influence on the logarithmic scaling violation, a 
method to establish the degree of agreement of the Planck distribution with the 
experimental information obtained at HERA is to compare at Q2 = 4: 

                                                             with 
 

The Comparison between Gluon Distributions  
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• The agreement is good for 

in the range, where most gluons are concentrated, while for x larger than 0.2 HERA gives a 
faster decrease 

• Since for the fermion partons the decrease at high x is better described by the statistical 
distributions, it is legitimate to make the conjecture that the fast decrease at high x 
advocated by HERA is more a consequence of their parametrization than of the 
experimental evidence

Standard or Planck ?  
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Comparison with NNPDF and HERA: up
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Comparison with NNPDF and HERA: down
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Comparison with NNPDF and HERA: ubar
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Comparison with NNPDF and HERA: dbar
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Comparison with NNPDF and HERA: gluon

 
³

� 2)(
NNPDF

NNPDFTMD

xg
xgxg

dx  ³
� 2)(
NNPDF

NNPDFHERA

xg
xgxg

dx  ³
� 2)(
NNPDF

HERATMD

xg
xgxg

dx  

0.00001-0.1 0.00190835 
 

0.000736242 
 

0.00384873 
 

0.1-0.2 0.00713221 
 

0.000340814 
 

0.0090403 
 

0.2-0.3 0.0173979 
 

0.00838282 
 

0.0490799 
 

0.3-0.4 0.0161694 
 

0.0328795 
 

0.0943154 
 

0.4-0.5 0.00873125 
 

0.063188 
 

0.118073 
 

0.5-0.6 0.0035346 
 

0.0869633 
 

0.125171 
 

0.6-0.7 0.00393113 
 

0.0982558 
 

0.140749 
 

0.7-0.8 0.120633 
 

0.0882559 
 

0.372319 
 

    
    

 
 
 
 
 
 
 
 
 
 
 
 
 



Conclusion  

1. The agreement with the Hera distributions with the form dictated by the quantum statistical 
approach for the fermion parton distributions is an impressive confirm of the validity of the 
proposal in the 2002 paper with the improved theoretical foundation achieved with the 
extension of the transverse degrees of freedom and with the consideration of the Melosh-
Wigner rotation

2. The similarity of the values of the parameters with the ones found in the previous work 
supports the validity of the statistical approach

3. As long as the pT dependance in the Boltzmann limit, neglecting the power dependance and 
with the gaussian approximation for the exponential we get the behaviour

with an “effective temperature” 49MeV, smaller than the range proposed in the paper by 
Cleymans, Lykasov, Sorin and Teryaev, 120 − 150MeV , but the important quantum effect 
gives rise to a harder pT distribution
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Conclusion  

4. The decrease at high x and the ratios between the different valence partons seem to be 
better described by the statistical distribution than by the standard distributions 

In fact the ratios change more fastly in the range (0.22, 0.46 ) than above 0.46 

5. An attractive feature of the statistical model is that the parameters are fixed by regions of x, 
where there is a large statistics and small systematic errors, small x for the two parameters 
needed for the diffractive term, the intermediate region (0.22, 0.46 ) for the ones associated
to the valence partons, which fix both the high x Boltzmann behaviour proportional to      
and the disentangling of the valence partons and their antiparticles

6. As long as for the gluons at high x of the Planck form is in better agreement with the 
“parametrization independent” of NNPDF than the standard parametrization AxB(1 − x)C 

proposed by HERA 
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Conclusion  

7. A crucial test will be provided by the measurement at high x of                    , for which a 
previous experiment gave a weird behaviour abruptly decreasing based on uncertain data. 

8. For the spin and isospin asymmetries of the sea,              and              the result found by 
NNPDF appears very weird with changes of sign, while the Boltzmann behaviour predicted 
by the statistical model shows a more regular behaviour 

d̄(x)/ū(x)

�ū(x) �d̄(x)



Conclusion  

9. At high x the Boltzmann behaviour seems to better reproduce the distributions than the 
commmonly used factors (1−x)C for the valence quarks and for their antiparticles as well as for 
the gluons 

10. The comparison with HERA and NNPDF shows that, despite the free parameters of the 
statistical distributions have been fited to agrre with HERA, in the central region of x, in the 
region of the “potentials” of the valence partons, they often agree better with NNPDF than 
HERA. This shows once again that the parametrization of the statistical distributions, which 
has a theoretical foundation, is more suitable than the standard one to predict the distributions 
before a better experimental knowledge is achieved. Typical the case of  ̄the ratio            
where the more recent and precise experiment has confirmed the pattern predicted fifteen 
years ago 

d̄(x)/ū(x)


