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Frequently asked questions

FAQ I: Does string theory make any predictions (beyond what
is already known) that can be tested with current technology?

Landscape crisis: It does make too many predictions, like
anything goes

FAQ II: Is there anything that cannot be realized in string
theory (swampland)? Thus, can string theory be falsified?

Potential candidate: Large field inflation with r > O(10−3).

Corfu2017, September 24, 2017 – p.2/23



Introduction

Corfu2017, September 24, 2017 – p.3/23



Introduction
PLANCK 2015, BICEP2 results:

• upper bound: r < 0.07

• spectral index: ns = 0.9667± 0.004 and its running
αs = −0.002± 0.013.

• amplitude of the scalar power spectrum
P = (2.142± 0.049) · 10−9

Single field slow role inflation
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Introduction
If r is detected → large field inflation:
Lyth bound implies ∆Φ > Mpl

∆φ

Mpl
> O(1)

√

r

0.01and

Minf = (Vinf)
1

4 ∼
( r

0.1

)
1

4

× 1.8 · 1016GeV

Inflationary mass scales:

• Hubble constant during inflation: H ∼ 1014 GeV.

• mass scale of inflation: Vinf = M4
inf = 3M2

PlH
2
inf ⇒

Minf ∼ 1016 GeV

• mass of inflaton during inflation: M2
Θ = 3ηH2 ⇒

MΘ ∼ 1013 GeV
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UV sensitivity
Quantum gravity generates Planck suppressed operators of
the form (Φ/Mpl)

n

Φ

V

Impossible to control flatness over a large region in field
space.

• Makes it important to control Planck suppressed
operators (eta-problem)

• Invoking a symmetry like the shift symmetry of axions
helps
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Axion inflation

Axions are ubiquitous in string theory so that many scenarios
have been proposed

• Natural inflation with a potential
V (θ) = Ae−SE(1− cos(θ/f)). Hard to realize in string
theory, as f > 1 lies outside perturbative control.
(Freese,Frieman,Olinto)

• Aligned inflation with two axions, feff > 1. (Kim,Nilles,Peloso)

• N-flation with many axions and feff > 1.
(Dimopoulos,Kachru,McGreevy,Wacker)

Comment: These models have come under pressure by the
weak gravity conjecture, which for instantons was proposed to
be f · SE < 1.
(Rudelius),(Montero,Uranga,Valenzuela),(Brown,Cottrell,Shiu,Soler)
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Natural inflation

Shift symmetry θ → θ + c is broken via a non-perturbative
effect V (θ) = Ae−Sinst(1− cos(θ/f)).

Weak gravity conjecture: gravity is the weakest force, i.e. for
a U(1) gauge theory m ≤ q (Arkani-Hamad,Motl,Nicolis,Vafa)

• strong version: the lightest particle must satisfy this

• weak version: this holds for some particle

Claim: Any consistent theory of quantum gravity must satisfy
the WGC.

Via T-duality is has been argued that there should exist such
a relation for any p-form gauge field.
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Natural inflation

For a 0-form

m→ Sinst q → 1/f

so that

fSinst ≤ 1 .

Large field inflation requires θ > 1 ⇒ f > 1 ⇒ Sinst < 1.

However, this spoils the instanton expansion, as higher order
terms cannot be neglected, i.e. large field regime θ > 1 is not
controlled.

More refined but similar arguments have been applied to
aligned inflation.
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Axion monodromy

A second mechanism to generate a potential for axions: axion
monodromy

Field theory: Axion φ and a four-form field strength F4 = dC3

and a Lagrangian (Dvali), (Kaloper, Sorbo)

L = −f2dφ ∧ ⋆dφ− F4 ∧ ⋆F4 + 2F4(mφ+ f0)

Equation of motion for C3

d ⋆ F4 = d(mφ+ f0) ⇒ ⋆F4 = f0 +mφ

where f0 can be considered as background value of the flux.

Scalar potential

V = (f0 +mφ)2
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Axion monodromy

The scalar potential and F4 is invariant under the extended
shift symmetry

φ→ φ− c/m f0 → f0 + c

• The system still preserves the shift symmetry, that is
broken spontaneously by a choice of branch f0

• This shift symmetry and the gauge symmetry of C3

highly constrains higher order corrections: they must be
functions of F4, i.e.

δV ∼
∑

(F4)
2n ∼

∑

(V0)
n

Even for δφ≫ 1, as long as δV ≪ 1 one controls the
expansion.
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Axion monodromy for Strings

• Monodromy inflation: Shift symmetry is broken by
branes unwrapping the compact axion. (Silverstein,Westphal)

Proposal: Realize axion monodromy inflation via the F-term
scalar potential induced by background fluxes.
(Marchesano.Shiu,Uranga),(Hebecker, Kraus, Wittkowski),(Bhg, Plauschinn)

Advantages

• Avoids the explicit supersymmetry breaking of models
with the monodromy induced by branes

• Supersymmetry is broken spontaneously by the very
same effect by which usually moduli are stabilized

• Generic in the sense that the potential for the axions
arise from the R-R field strengths
Fp+1 = dCp +H ∧ Cp−2 involving the gauge potentials
Cp−2 explicitly.
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Axion inflation

Recall: Large field inflationary models with periodic axions
have come under pressure by the weak gravity conjecture.
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Axion inflation

Recall: Large field inflationary models with periodic axions
have come under pressure by the weak gravity conjecture.

What about F-term axion monodromy models based on
tree-level fluxes?

Systematic study of realizing single-field fluxed F-term axion
monodromy inflation, taking into account the interplay with
moduli stabilization.
series of papers by Bhg,Font,Fuchs,Herschmann,Plauschinn,Sekiguchi,Sun,Wolf and

many papers by Buchmueller,Dudas,Escobar,Hebecker,Ibanez,Landete,Marchesano,

McAllister,Regalado,Valenzuela,Westphal,Wieck,Winkler,Witkowski,...

All attempts so far failed to provide a fully controllable model
respecting the hierarchy

MPl > Ms > MKK > Mmod > Hinf > |MΘ|

Why?
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Swampland Conjecture
Proposal: axionic version of the swampland conjecture
(Kläwer,Palti)

Swampland Conjecture:(Ooguri,Vafa)

For any point p0 in the continuous scalar moduli space of a
consistent quantum gravity theory, there exist other points p
at arbitrarily large distance. As the distance d(p0, p) diverges,
an infinite tower of states exponentially light in the distance
appears, i.e. the mass scale of the tower varies as

m ∼ m0 e
−λd(p0,p) .

Here, distance is measured by the metric on the moduli space.

Note, the swampland conjecture describes a property of
models in the landscape!
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Swampland Conjecture
Comments:

• Beyond d(p0, p) ∼ λ−1 the exponential drop-off becomes
essential

• Infinitely many light states → quantum gravity theory
valid at the point p0 only has a finite range dc of validity

• At this level, the axions have a shift symmetry and are
compact
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Swampland Conjecture
Comments:

• Beyond d(p0, p) ∼ λ−1 the exponential drop-off becomes
essential

• Infinitely many light states → quantum gravity theory
valid at the point p0 only has a finite range dc of validity

• At this level, the axions have a shift symmetry and are
compact

How is this related to large field inflation with non-compact
and non-flat axions? Recall, the procedure

• stabilize the moduli: one light axion with mass hierarchy
MΘ < Mheavy

• Integrating out heavy moduli → Veff(θ), potentially
supporting large field inflation.
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SC and large field inflation
However, this picture is too naive, as: (Baume,Palti) (Bhg,Font,...).

• for trans-Planckian field excursion, one has to take the
backreaction sheavy(θ) into account

• proper field distance:

Θ =

∫

K
1

2

θθ
(s) dθ ∼

∫

dθ

s(θ)
∼

1

λ
log(θ)

for s(θ) = λθ gives rise to Θ = λ−1 log (θ).

• Mass of KK-modes: MKK ∼ s(θ)−n ∼ exp(−nλΘ)
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SC and large field inflation
• Can one extend OV-swampland conjecture to axions
with a potential?

• What is the value of Θc?
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SC and large field inflation
• Can one extend OV-swampland conjecture to axions
with a potential?

• What is the value of Θc?

Concrete closed string examples suggest that

Θc ≈Mpl

(Bhg,Font,Fuchs,Herschmann,Plauschinn), (Baume,Palti).

Led to the Refined Swampland Conjecture (Kläwer,Palti).

Proposal: Open string moduli could give rise to a
parametrically larger value

Θc ≫Mpl

(Valenzuela),(Bielleman, Ibanez, Pedro, Valenzuela, Wieck)
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Objectives

(Bhg,Valenzuela,Wolf)

• Revisit former attempts from this perspective

• Identify simple, representative models of open string
moduli stabilization to clarify the issue
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Objectives

(Bhg,Valenzuela,Wolf)

• Revisit former attempts from this perspective

• Identify simple, representative models of open string
moduli stabilization to clarify the issue

Quantum gravity ingredients in the string effective action:

• The leading order Kähler potential always shows a
logarithmic dependence on the saxions

• The moduli dependence of the various mass scales,
resulting from dimensional reduction and moduli
stabilization

• Fluxes are quantized
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Mass scales: large field
To relate to the Swampland Conjecture, we evaluated the
various mass-scales in the large field regime:

M2
i = M2

i

∣

∣

0
exp

(

−4
Θ

Θc

)

,

where M2
i |0 denotes the various mass scales in the minimum

and Θc ∼
√

h/µ flux ratio.

• All these mass scales show the expected exponential
drop off

• For Θ/Θc ≫ 1 this invalidates the use of the EFT.

• This is all consistent with the Swampland Conjecture.

The question now is whether we also get constraints on the
critical value Θc ∼ λ−1.
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Constraint on Θc

For this purpose, we computed

M2
KK

M2
mod

∼
1

h
.

1. If we could tune Θc =
√

h/µ large by choosing the open
string flux µ small, there is no parametric problem with
the mass hierarchies.

2. However, µ is quantized. Thus, for large flux h (i.e.

Θc ≫ 1) one finds Mmod
&
p
MKK, invalidating EFT.

For case 2. one has λ ∼ Θc ≈ O(1) (Refined Swampland

Conjecture ).
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More models
A couple of examples have been checked with very similar
results:

• Closed and open string (toroidal-like) models with pure
flux stabilization: Θc > 1 implies MKK < Mmod

• Kähler moduli stabilization via

KKLT : µ < W0 LVS : µ < V−
1

6

• Tuning effective µeff in the landscape:

W ∼ (µ1 + µ2U
2)Φ2 + . . . ,⇒ µeff ≥

63

64
µ21

• All this supports the refined SC
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Summary

Invalidity of effective theory
due to Swampland Conjecture

sub-Planckian

due to RSC

Starobinsky-like

Inflation

Polynomial
Inflation

Θ
Θc

V (Θ)
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Conclusions

Thus we conclude: all the failed attempts and the Refined
Swampland Conjecture support the conjecture:

In string theory (quantum gravity) it is impos-
sible to achieve a parametrically controllable
EFT-model of large (single) field inflation.
The tensor-to-scalar ratio is thus bounded
from above r / 10−3.
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Thank You!
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