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Introduction

Direct detection of gravitational waves by LIGO and Virgo
Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

ñ new observational tool to probe nature and test theories.

ãÑ models beyond four-dimensional (4d) General Relativity
Here: test idea of having N extra dimensions: D “ 4`N .

If D extra dimensions
Ñ (detectable) effect on 4d gravitational waves?

Many models with extra dimensions, from pheno. to
qu. grav.: large extra dimensions (ADD models),
Randall-Sundrum models, universal extra dimensions,
supergravities, string theories, M-theory...
Variety of models: number, size, shape of extra dimensions...
Previous literature: typically very model dependent
ñ here, remain as generic as possible.
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Most work on gravitational waves is about source: compute
waveform for some emission. In 4d, governed by

˝4hµν « T
p1q
µν ` gauge fixing.

Here: away from source (avoids model dependence).
Assume waves emitted (initial conditions), study propagation
ãÑ corrections to ˝4hµν “ 0 ` gauge fixing due to extra dim.?

D-dimensional General Relativity with cosmo. constant
Ñ derive gravitational wave equation and gauge fixing on
generic background
Ñ split dimensions: D “ 4`N ñ split equations
ãÑ modifications of those on hµν? Yes!
In general, too complicated to read-off effect on wave
ãÑ restrict background to Minkowski ˆMN .
Minkowski: X for physical purposes; MN compact Ricci-flat.
ñ Two effects:
1. Breathing mode: new polarization mode in massless wave.
2. Additional (massive) waves of high frequencies.

ãÑ Observable in a near future?
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General equations for gravitational waves

In D dimensions
General Relativity: S “ 1

2κD

ş

dDx
a

|gD| pRD ´ 2ΛDq
ãÑ Einstein equation: RMN ´

2 ΛD
D´2 gDMN “ 0

Background + fluctuation: gDMN “ gMN ` hMN

ãÑ develop equation at 0th and 1st order:
Rp0q
MN ´

2 ΛD
D´2 gMN “ 0 , Rp1q

MN ´
2 ΛD
D´2 hMN “ 0

1st order: ´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS `∇p0q

pMGNq “ 0
where GN “ ∇p0q

P gPQhQN ´
1
2 ∇p0q

N hD, with hD “ gMNhMN .

de Donder (Lorenz) gauge fixing: GN “ 0

´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS “ 0



David
ANDRIOT

Introduction

General
equations
D dimensions

4 ` N dimensions

Analysis

Effects

Conclusion

General equations for gravitational waves

In D dimensions
General Relativity: S “ 1

2κD

ş

dDx
a

|gD| pRD ´ 2ΛDq
ãÑ Einstein equation: RMN ´

2 ΛD
D´2 gDMN “ 0

Background + fluctuation: gDMN “ gMN ` hMN

ãÑ develop equation at 0th and 1st order:
Rp0q
MN ´

2 ΛD
D´2 gMN “ 0 , Rp1q

MN ´
2 ΛD
D´2 hMN “ 0

1st order: ´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS `∇p0q

pMGNq “ 0
where GN “ ∇p0q

P gPQhQN ´
1
2 ∇p0q

N hD, with hD “ gMNhMN .

de Donder (Lorenz) gauge fixing: GN “ 0

´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS “ 0



David
ANDRIOT

Introduction

General
equations
D dimensions

4 ` N dimensions

Analysis

Effects

Conclusion

General equations for gravitational waves

In D dimensions
General Relativity: S “ 1

2κD

ş

dDx
a

|gD| pRD ´ 2ΛDq
ãÑ Einstein equation: RMN ´

2 ΛD
D´2 gDMN “ 0

Background + fluctuation: gDMN “ gMN ` hMN

ãÑ develop equation at 0th and 1st order:
Rp0q
MN ´

2 ΛD
D´2 gMN “ 0 , Rp1q

MN ´
2 ΛD
D´2 hMN “ 0

1st order: ´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS `∇p0q

pMGNq “ 0
where GN “ ∇p0q

P gPQhQN ´
1
2 ∇p0q

N hD, with hD “ gMNhMN .

de Donder (Lorenz) gauge fixing: GN “ 0

´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS “ 0



David
ANDRIOT

Introduction

General
equations
D dimensions

4 ` N dimensions

Analysis

Effects

Conclusion

General equations for gravitational waves

In D dimensions
General Relativity: S “ 1

2κD

ş

dDx
a

|gD| pRD ´ 2ΛDq
ãÑ Einstein equation: RMN ´

2 ΛD
D´2 gDMN “ 0

Background + fluctuation: gDMN “ gMN ` hMN

ãÑ develop equation at 0th and 1st order:
Rp0q
MN ´

2 ΛD
D´2 gMN “ 0 , Rp1q

MN ´
2 ΛD
D´2 hMN “ 0

1st order: ´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS `∇p0q

pMGNq “ 0
where GN “ ∇p0q

P gPQhQN ´
1
2 ∇p0q

N hD, with hD “ gMNhMN .

de Donder (Lorenz) gauge fixing: GN “ 0

´ 1
2 ˝

p0q
D hMN `Rp0qS

MNP g
PQhQS “ 0



David
ANDRIOT

Introduction

General
equations
D dimensions

4 ` N dimensions

Analysis

Effects

Conclusion

Split into 4 ` N dimensions
Background: ds2

“ e2Apyqg̃µνpxqdxµdxν ` gmnpyqdymdyn

hMN : hµν , hµm, hmn, generic coordinate dependence
traces h̃4 “ hµν g̃

νµ, h4 “ hµν g̃
νµe´2A, hN “ hmng

nm.

D-dimensional wave equation: MN components:
e´2A˜̋4hµν `∆Mhµν ´ hµν∆M ln e2A

´ 2R̃π
µνσg

σρhρπ ´
1
2e
´2AgpqBpe

2A
Bqe

2A
´

g̃νµh4 ´ hνµe
´2A

¯

´ e´2A∇̃pµhνqmg
mn
Bne

2A
´ g̃µνh

rp
´

∇rBpe
2A
` 1

2e
´2A

Bre
2A
Bpe

2A
¯

“ 0

e´2A˜̋4hµn `∆Mhµn ` e
´2Agpq∇phµnBqe

2A
` e´2Ahµmg

mp∇nBpe
2A

´ 2e´4Ahµmg
mp
Bpe

2A
Bne

2A
´ e´4Ahµng

pq
Bpe

2A
Bqe

2A
´ 1

2hµn∆M ln e2A

´ e´4Ag̃πρ∇̃πhµρBne
2A
` e´2AgpqBµhnpBqe

2A
“ 0

e´2A˜̋4hmn `∆Mhmn ` 2e´2AgpqBpe
2A∇qhmn ` 2gpqBpe´2AhqpmBnqe

2A

´ 2Rs
mnpg

pqhqs ´ 2e´4Ag̃πρ∇̃πhρpmBnqe
2A
´ h4∇npe

´2A
Bme

2A
q “ 0

D-dimensional de Donder gauge:
e´2Ag̃πρ∇̃πhρν ´

e´2A

2 ∇̃ν h̃4 ´
1
2 ∇νhN `∇qhqν ` 2hpνgpqe´2A

Bqe
2A
“ 0

gpq∇phqr ´
e´2A

2 ∇rh̃4 ´
1
2 ∇rhN ` g

πρ∇̃πhρr ` 2hmrgmpe´2A
Bpe

2A
“ 0
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“ 0. e2A
“ 1, g̃µν Ñ gµν .

For physics: Minkowski
background equation ñ Ricci-flat MN : Rmn “ 0 (e.g. any CY).

˝4hµν `∆Mhµν “ 0
˝4hµn `∆Mhµn “ 0

gmn ˆ

˝4 hmn `∆Mhmn “ 2Rs
mnpg

pqhqs

ãÑ ˝4hN `∆MhN “ 0

gπρ∇πhρν ´
1
2 ∇νh4 ´

1
2 ∇νhN ` g

pq∇phqν “ 0
gπρ∇πhρr ´

1
2 ∇rh4 ´

1
2 ∇rhN ` g

pq∇phqr “ 0
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Equation analysis

Interested in 4d wave hµν , e.g. in ˝4hµν `∆Mhµν “ 0

Consider MN compact (without boundary)
Ñ use basis of eigenfunctions tωkpyqu of ∆M,
discrete basis, label k: ∆M ωk “ ´m

2
k ωk (e.g. TN : ωkpyq “ eik¨y)

Field (Kaluza–Klein mode) decomposition:
hMN px, yq “

ř

k h
k
MN pxqωkpyq ñ ˝4h

k
µν ´m

2
k h

k
µν “ 0 .

Massless modes
Focus on zero-mode: m0 “ 0. Properties: ω0 unique, constant.
Equations with 4d wave h0

µν :

˝4 h
0
µν “ 0

, ˝4h
0
N “ 0

gπρ∇πh
0
ρν ´

1
2∇νh

0
4 “

1
2∇νh

0
N

“Coupling” with zero-mode of internal trace h0
N “ pg

mnhmnq
0.

Both decouple from other fields/modes Ñ analyse this system.
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With these equations: residual gauge freedom

- verify that h0
N cannot be gauged away ñ deviation w.r.t.

usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge Ñ expression
(solution) of the wave h0

µν (textbook procedure).
Fourier expansion on plane waves with wave vector kρ:

h0
µν “

ż

d4k ekµν Reteikρxρu , h0
N “

ż

d4k fkN Reteikρxρu

ekµν polarization matrix, fkN amplitude of internal trace.
kρ: light-like ñ kρ “ pω, 0, 0, kq with ω “ k (take c “ ~ “ 1),
i.e. coordinates such that propagation along x3.
On each plane-wave, gauge condition + residual gauge freedom
ekij “

h0
ijpt, x

3
q “

¨

˝

ek11 ek12 0
ek12 ´ek11 ´ f

k
N 0

0 0 0

˛

‚

ij

¨

˝

h`´ 1
2fN hˆ 0

hˆ ´h`´ 1
2fN 0

0 0 0

˛

‚

ij

cospωpt´ x3
qq

” hˆij ` h
`
ij ` h

#
ij

ãÑ G. R. hˆij , h
`
ij polarization modes and breathing mode h#

ij .
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hˆ ´h`´ 1
2fN 0

0 0 0

˛

‚

ij

cospωpt´ x3
qq

” hˆij ` h
`
ij ` h

#
ij

ãÑ G. R. hˆij , h
`
ij polarization modes and breathing mode h#

ij .
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Massive modes
Focus on hk‰0

µν : equations: ˝4h
k
µν ´m

2
k h

k
µν “ 0 + gauge cond.

Residual gauge freedom ñ fix it (subtle)
ñ standard Transverse–Traceless massive graviton:

B
νhk

µν “ 0 , hk
4 “ 0

To get an expression for hk‰0
µν :

Fourier expansion on plane waves with wave vector pρk:

hk
µν “

ż

d4pk e
pk
µν Reteipkρx

ρ

u

pρk “ pωk, ~pkq, massive dispersion relation ω2
k “ m2

k ` ~p
2
k .

Pick reference frame s.t. pρk “ pωk, 0, 0, 0q, solve:
eij “

hk‰0
ij ptq “

¨

˝

e11 e12 e13
e12 ´e11 ´ e33 e23
e13 e23 e33

˛

‚

¨

˝

h`´ 1
2h

l,# hˆ hl1
hˆ ´h`´ 1

2h
l,# hl2

hl1 hl2 hl,#

˛

‚

ij

cospωk tq

All six polarization modes, only 5 independent ones.
(High) angular frequency ωk „ mk.
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Two effects and observability
1. New polarization mode in massless wave: breathing mode.
2. Additional (massive) waves of high frequencies.

Breathing mode in the massless wave
Each polarization mode Ñ specific space deformation
(stretch and shrink) with ξi “ xi0 `∆xi

Geodesic equation :ξi “
1
2
:h0
ijξ

j ù ∆xi “ 1
2h

0
ijx

j
0

Deformation of test-point circle in transverse plane:
h`ij h#

ij

Breathing mode: need several detectors, different orientations
Amplitude? Related to that h0

N ... Emission?
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Additional (massive) waves
All six polarization modes Ñ various space deformations.

Angular frequency: ω2
k “ m2

k ` ~p
2
k .

~pk: Minkowski spatial components, governed by 4d physics
ñ ||~pk|| „ 1{λ4

But mk „ 1{rN , (Kaluza–Klein) internal length rN .

ãÑ rN ! λ4 so that mk " ||~pk|| ñ ωk „ mk very high.

Table-top experiment bound: rN À 10´4 m (about 10´3 eV)
ñ ν „ 1012 Hz " upper bound of LIGO „ 103-104 Hz
ãÑ unobservable.

Worse in future (planned) detectors.
Energy Ñ amplitude is low...
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Conclusion
Done:

Propagation equations on most general 4`N -dimensional
background
On Minkowski4 ˆ compact Ricci-flat MN : two effects of
extra dimensions on 4d gravitational waves
The new polarization mode in the massless 4d wave, the
breathing mode, could be observed with more detectors.

To-do:
Compare to scalar-tensor models and their emission
constraints
Study emission
Start from D-dimensional supergravity, get more involved
MN and a mass for h0

N?

Thank you for your attention!
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