Non-linear left-right dynamical Higgs effects

Juan Yepes

Institute of Theoretical Physics Chinese Academy of Sciences

Corfu Summer School and Workshop, 2015 JY, arXiv:1507.03974.

R. Kunming, J. Shu and JY arXiv:1507.04745.

SCALAR RESONANCE FOUND 1 Higgs particle @ LHC Hierarchy problem NP @ TeV * Perturbative regimes MSSM SUSY particles

Heavy fermion resonances

SCALAR RESONANCE FOUND !

╢

Hierarchy problem

₩

NP @ TeV

- $\label{eq:strong} \downarrow^* \ {\sf Non-perturbative regime} \ {\sf strong dynamics @ } \Lambda_s \sim {\sf TeV}$
 - ► Technicolor ⇒ 3 GB encoded but no light Higgs h
 - Composite Higgs ⇒ SM light Higgs as a composite PGB from a strongly coupled theory (similar to pions in QCD). 3/28

SCALAR RESONANCE FOUND !

1

Hierarchy problem

₩

NP @ TeV

 $\begin{array}{c} \Downarrow\\ & \\ \text{Non-perturbative regime}\\ & \\ \text{strong dynamics } @ \ \Lambda_s \sim \text{TeV} \end{array}$

To cope possible BSM signals through effective gauge invariant operators

To cope possible BSM signals through effective gauge invariant operators

To cope possible BSM signals through effective gauge invariant operators

Linear expansion

To cope possible BSM signals through effective gauge invariant operators

Linear expansion

Espinosa's talk

- * SM EW doublet Φ in \mathcal{O}_i
- * n-dimensional operators $\mathcal{O}_i^{(n)}$ suppressed by powers of Λ^{n-4}
- * Lagrangian expansion $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + h.c. + ...$
- * CP-conserving gauge-Higgs couplings: HISZ basis

$$\begin{split} \mathcal{O}_{GG} &= -\frac{g_s^2}{4} \Phi^{\dagger} \Phi \ G_{\mu\nu}^a \ G^{a\mu\nu} & \mathcal{O}_{WW} = -\frac{g^2}{4} \Phi^{\dagger} W_{\mu\nu} W^{\mu\nu} \Phi \\ \mathcal{O}_{BB} &= -\frac{g'^2}{4} \Phi^{\dagger} B_{\mu\nu} B^{\mu\nu} \Phi & \mathcal{O}_{BW} = -\frac{g \ g'}{4} \Phi^{\dagger} B_{\mu\nu} W^{\mu\nu} \Phi \\ \mathcal{O}_W &= \frac{i \ g}{2} (D_{\mu} \Phi)^{\dagger} W^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_B = \frac{i \ g'}{4} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi,1} &= (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi) & \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) \\ \mathcal{O}_{\Phi,4} &= (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) (\Phi^{\dagger} \Phi) & \mathcal{O}_{\Box \Phi} = (D_{\mu} D^{\mu} \Phi)^{\dagger} (D_{\nu} D^{\nu} \Phi) \end{split}$$

Büchmuller and Wyler, 1986 Hagiwara, Ishihara, Szalapski, and Zeppenfeld, 1993 Grzadkowski, Iskrzynski, Misiak, and Rosiek, 2010

Espinosa's talk

Linear expansion

$$\mathcal{O}_{\Phi,4} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) (\Phi^{\dagger}\Phi)$$

= $\frac{1}{2}e^{2} (v+h)^{4} [W_{\mu}^{-} W_{\mu}^{+} \csc^{2}\theta_{W} + 2 \csc^{2}(2\theta_{W}) Z_{\mu}^{2}] + (v+h)^{2} (\partial_{\mu}h)^{2}$

$\mathcal{O}_{\Phi,4}$ induces

- * Λ^{-2} suppressed W & Z masses corrections
- * Purely cubic and quartic *h* interactions
- * Cubic and quartic gauge-*h* interactions

To cope possible BSM signals through effective gauge invariant operators

Linear expansion

Non-linear expansion

Effective non-linear σ -model

* GB d.o.f now encoded as

$$\mathbf{U}_{L(R)}\left(x
ight)=e^{i\, au_{a}\,\pi_{L(R)}^{a}\left(x
ight)/f_{L(R)}}\,,\qquad f_{L(R)}-\mathsf{GB}\ \mathsf{scales}$$

* Larger $\mathcal{G} = SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$, with local rotations

$$\begin{split} \mathbf{L}(x) &\equiv e^{\frac{i}{2}\tau^a \alpha_L^a(x)}, \qquad \mathbf{R}(x) \equiv e^{\frac{i}{2}\tau^a \alpha_R^a(x)}, \qquad \mathbf{U}_{\mathbf{Y}}(x) \equiv e^{\frac{i}{2}\tau^3 \alpha^0(x)} \\ &\mathbf{U}_L \to \mathbf{L} \, \mathbf{U}_L \, \mathbf{U}_Y^\dagger, \qquad \mathbf{U}_R \to \mathbf{R} \, \mathbf{U}_R \, \mathbf{U}_Y^\dagger \end{split}$$

*
$$D^{\mu}\mathbf{U}_{\chi} \equiv \partial^{\mu}\mathbf{U}_{\chi} + \frac{i}{2}g_{\chi}W_{\chi}^{\mu,a}\tau^{a}\mathbf{U}_{\chi} - \frac{i}{2}g'B^{\mu}\mathbf{U}_{\chi}\tau^{3}, \qquad \chi = L, R$$

* Covariant vectorial & scalar objects

$$\mathbf{V}^{\mu}_{\chi} \equiv (D^{\mu}\mathbf{U}_{\chi}) \; \mathbf{U}^{\dagger}_{\chi}, \qquad \qquad \mathbf{T}_{\chi} \equiv \mathbf{U}_{\chi} \, \tau_{3} \, \mathbf{U}^{\dagger}_{\chi}$$

$$SU(2)_L - SU(2)_R$$
 interplay

* Left-right mixing operators

$$\operatorname{Tr}\left(\mathcal{O}_{L}^{i}\mathcal{O}_{R}^{j}\right) \implies \operatorname{Tr}\left(\mathbf{U}_{L}^{\dagger}\mathcal{O}_{L}^{i}\mathbf{U}_{L}\mathbf{U}_{R}^{\dagger}\mathcal{O}_{R}^{j}\mathbf{U}_{R}\right)$$

Introduction of
$$\implies \widetilde{\mathcal{O}}_{\chi}^{i} \equiv \mathbf{U}_{\chi}^{\dagger} \, \mathcal{O}_{\chi}^{i} \, \mathbf{U}_{\chi} \,, \qquad \chi = L, \, R$$

 $\widetilde{\mathbf{V}}_{\chi}^{\mu} \equiv \mathbf{U}_{\chi}^{\dagger} \, \mathbf{V}_{\chi}^{\mu} \, \mathbf{U}_{\chi} \qquad \& \qquad \widetilde{\mathbf{T}}_{\chi} \equiv \mathbf{U}_{\chi}^{\dagger} \, \mathbf{T}_{\chi} \, \mathbf{U}_{\chi} = \tau_{3}$

*

$$\widetilde{W}^{\mu
u}_{\chi}\equiv {f U}^{\dagger}_{\chi}\,W^{\mu
u}_{\chi}\,{f U}_{\chi}$$

(EFT non-linear σ -model)

Pure gauge non-linear operators

 $\mathcal{F}(h), \ \partial_{\mu}\mathcal{F}(h), \ \partial_{\mu}\partial^{\mu}\mathcal{F}(h)$

NON LINEAR LEFT-RIGHT DYNAMICAL HIGGS

EFT Lagrangian

$$\mathscr{L}_{\mathsf{chiral}} = \mathscr{L}_0 \, + \, \mathscr{L}_{0,R} \, + \, \mathscr{L}_{0,LR} \, + \, \Delta \mathscr{L}_{\mathsf{CP}} \, + \, \Delta \mathscr{L}_{\mathsf{CP},LR}$$

- * \mathscr{L}_0 : LO SM Lagrangian
- * $\mathscr{L}_{0,R} \supset$ up to p^2 -right handed ops.
- * $\mathscr{L}_{0,LR} \supset$ up to p^2 left-right mixing ops.
- * $\Delta \mathscr{L}_{\mathsf{CP}} \supset$ up to p^4 left & right ops.
- * $\Delta \mathscr{L}_{CP,LR} \supset$ up to p^4 left-right mixing ops.

 $\begin{aligned} \mathscr{L}_{0} & \& \quad \mathscr{L}_{0,R} & \& \quad \mathscr{L}_{0,LR} \\ & \mathscr{L}_{0} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu,L} W^{\mu\nu,a}_{L} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} + \\ & + \frac{1}{2} (\partial_{\mu} h) (\partial^{\mu} h) - V(h) - \frac{f_{L}^{2}}{4} \operatorname{Tr} \left(\mathbf{V}^{\mu}_{L} \mathbf{V}_{\mu,L} \right) \left(1 + \frac{h}{f_{L}} \right)^{2} \end{aligned}$

$$\mathscr{L}_{0,R} = -\frac{1}{4} W^{a}_{\mu\nu,R} W^{\mu\nu,a}_{R} - \frac{f^{2}_{R}}{4} \operatorname{Tr} \left(\mathbf{V}^{\mu}_{R} \mathbf{V}_{\mu,R} \right) \left(1 + \frac{h}{f_{L}} \right)^{2},$$

$$\mathscr{L}_{0,LR} = -rac{1}{2} \operatorname{Tr} \left(\widetilde{W}_{L}^{\mu
u} \, \widetilde{W}_{\mu
u,\,R}
ight) - rac{f_L f_R}{2} \operatorname{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \widetilde{\mathbf{V}}_{\mu,\,R}
ight) \left(1 + rac{h}{f_L}
ight)^2 \,,$$

- Mixing effects sourced by L_{0,LR}
- $V_{\chi}V_{\chi}h$, $V_{\chi}V_{\chi}hh$, $V_{L}V_{R}h$, $V_{L}V_{R}hh$ couplings

CP-conserving part: $\Delta \mathscr{L}_{CP} = \Delta \mathscr{L}_{CP,L} + \Delta \mathscr{L}_{CP,R}$

$$\Delta \mathscr{L}_{\mathsf{CP},L} = c_G \mathcal{P}_G(h) + c_B \mathcal{P}_B(h) + \sum_{i=\{W,C,T\}} c_{i,L} \mathcal{P}_{i,L}(h) + \sum_{i=1}^{26} c_{i,L} \mathcal{P}_{i,L}(h) + \dots$$

$$\Delta \mathscr{L}_{\mathsf{CP},R} = \sum_{i=\{W,C,T\}} c_{i,R} \mathcal{P}_{i,R}(h) + \sum_{i=1}^{26} c_{i,R} \mathcal{P}_{i,R}(h)$$

$$\begin{aligned} \mathcal{P}_{G} &= -\frac{g_{s}^{2}}{4} \, G_{\mu\nu}^{a} \, G_{a}^{\mu\nu} \, \mathcal{F}_{G} \\ \mathcal{P}_{B} &= -\frac{g^{\prime 2}}{4} \, B_{\mu\nu} \, B^{\mu\nu} \, \mathcal{F}_{B} \\ \mathcal{P}_{W,\chi} &= -\frac{g_{\chi}^{2}}{4} \, W_{\mu\nu,\chi}^{a} \, W_{\chi}^{\mu\nu,a} \, \mathcal{F}_{W,\chi} \\ \mathcal{P}_{C,\chi} &= -\frac{f_{\chi}^{2}}{4} \, \mathrm{Tr} \Big(\mathbf{V}_{\chi}^{\mu} \, \mathbf{V}_{\mu,\chi} \Big) \, \mathcal{F}_{C,\chi} \\ \mathcal{P}_{T,\chi} &= \frac{f_{\chi}^{2}}{4} \, \Big(\mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \mathbf{V}_{\chi}^{\mu} \Big) \Big)^{2} \, \mathcal{F}_{T,\chi} \end{aligned}$$

*
$$\mathcal{F}_{i}(h) \equiv 1 + 2 a_{i} \frac{h}{f_{L}} + b_{i} \frac{h^{2}}{f_{L}^{2}} + \dots$$

* $\mathcal{P}_{i,L}(h)$: Alonso, Gavela, Merlo, Rigolin & JY, PLB **722** (2013) 330

*
$$\mathcal{P}_{i,R}(h)$$
 from $\mathcal{P}_{i,L}(h)$

18/28

COMPLETE CP-PRESERVING BASIS $\mathcal{P}_{i,\chi}(h)$

$$\begin{split} & \mathcal{P}_{1,\,\chi} = \mathbf{g}_{\chi} \, \mathbf{g}' \, \mathbf{B}_{\mu\nu} \, \mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \mathbf{W}_{\chi}^{\mu\nu} \Big) \, \mathcal{F}_{1,\,\chi} \, , \\ & \mathcal{P}_{2,\,\chi} = i \, \mathbf{g}' \, \mathbf{B}_{\mu\nu} \, \mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \Big[\mathbf{V}_{\chi}^{\mu}, \mathbf{V}_{\chi}^{\nu} \Big] \Big) \, \mathcal{F}_{2,\,\chi} \, , \\ & \mathcal{P}_{3,\,\chi} = i \, \mathbf{g}_{\chi} \, \mathrm{Tr} \Big(\mathbf{W}_{\chi}^{\mu\nu} \left[\mathbf{V}_{\mu,\,\chi}, \mathbf{V}_{\nu,\,\chi} \right] \Big) \, \mathcal{F}_{3,\,\chi} \, , \\ & \mathcal{P}_{4} = i \, \mathbf{g}' \, \mathbf{B}_{\mu\nu} \, \mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \mathbf{V}_{\chi}^{\mu} \Big) \, \partial^{\nu} \, \mathcal{F}_{4} \, , \\ & \mathcal{P}_{5,\,\chi} = i \, \mathbf{g}_{\chi} \, \mathrm{Tr} \Big(\mathbf{W}_{\chi}^{\mu\nu} \, \mathbf{V}_{\mu,\,\chi} \Big) \, \partial_{\nu} \, \mathcal{F}_{5,\,\chi} \, , \\ & \mathcal{P}_{6,\,\chi} = \left(\mathrm{Tr} \Big(\mathbf{V}_{\mu,\,\chi} \, \mathbf{V}_{\chi}^{\mu} \Big) \Big)^{2} \, \mathcal{F}_{6,\,\chi} \, , \\ & \mathcal{P}_{7,\,\chi} = \mathrm{Tr} \Big(\mathbf{V}_{\mu,\,\chi} \, \mathbf{V}_{\chi}^{\mu} \Big) \, \partial_{\nu} \, \mathcal{P}_{7,\,\chi} \, , \\ & \mathcal{P}_{8,\,\chi} = \mathrm{Tr} \Big(\mathbf{V}_{\chi}^{\mu} \, \mathbf{V}_{\chi}^{\nu} \Big) \, \partial_{\mu} \, \mathcal{F}_{8,\,\chi} \, \partial_{\nu} \, \mathcal{F}_{8,\,\chi} \, , \\ & \mathcal{P}_{9,\,\chi} = \mathrm{Tr} \Big(\Big(\mathcal{D}_{\mu} \, \mathbf{V}_{\chi}^{\mu} \Big)^{2} \, \mathcal{F}_{9,\,\chi} \, , \\ & \mathcal{P}_{10,\,\chi} = \mathrm{Tr} \Big(\Big(\mathbf{V}_{\chi}^{\nu} \, \mathcal{D}_{\mu} \, \mathbf{V}_{\chi}^{\mu} \Big) \, \partial_{\nu} \, \mathcal{F}_{10,\,\chi} \, , \\ & \mathcal{P}_{11,\,\chi} = \Big(\mathrm{Tr} \Big(\mathbf{V}_{\chi}^{\mu} \, \mathbf{V}_{\chi}^{\mu} \Big) \Big)^{2} \, \mathcal{F}_{11,\,\chi} \, , \\ & \mathcal{P}_{12,\,\chi} = g_{\chi}^{2} \, \Big(\mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \, \mathcal{W}_{\chi}^{\mu\nu} \Big) \Big)^{2} \, \mathcal{F}_{12,\,\chi} \, , \\ & \mathcal{P}_{13,\,\chi} = i \, \mathbf{g}_{\chi} \, \mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \, \mathcal{W}_{\chi}^{\mu\nu} \Big) \, \mathrm{Tr} \Big(\mathbf{T}_{\chi} \, \Big[\mathbf{V}_{\mu,\,\chi} \, , \mathbf{V}_{\nu,\,\chi} \Big] \Big) \, \mathcal{F}_{13,\,\chi} \, . \end{split}$$

Alonso, Gavela, Merlo, Rigolin & JY, PLB 722 (2013) 330

 $\mathcal{P}_{14, \chi} = g_{\chi} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} \left(\mathsf{T}_{\chi} \mathsf{V}^{\mu}_{\chi} \right) \operatorname{Tr} \left(\mathsf{V}^{\nu}_{\chi} W^{\rho\sigma}_{\chi} \right) \mathcal{F}_{14, \chi},$ $\mathcal{P}_{15, \chi} = \left(\operatorname{Tr} \left(\mathsf{T}_{\chi} \, \mathcal{D}_{\mu} \mathsf{V}_{\chi}^{\mu} \right) \right)^2 \mathcal{F}_{15, \chi} \,,$ $\mathcal{P}_{16, \chi} = \mathrm{Tr}\left(\left[\mathbf{T}_{\chi}, \mathbf{V}_{\nu, \chi}\right] \mathcal{D}_{\mu} \mathbf{V}_{\chi}^{\mu}\right) \mathrm{Tr}\left(\mathbf{T}_{\chi} \mathbf{V}_{\chi}^{\nu}\right) \mathcal{F}_{16, \chi},$ $\mathcal{P}_{17, \chi} = i g_{\chi} \operatorname{Tr} \left(\mathbf{T}_{\chi} W_{\chi}^{\mu \nu} \right) \operatorname{Tr} \left(\mathbf{T}_{\chi} \mathbf{V}_{\mu, \chi} \right) \partial_{\nu} \mathcal{F}_{17, \chi} ,$ $\mathcal{P}_{18, \chi} = \left(\mathsf{T}_{\chi} \left[\mathsf{V}_{\chi}^{\mu}, \mathsf{V}_{\chi}^{\nu} \right] \right) \left(\mathsf{T}_{\chi} \, \mathsf{V}_{\mu, \chi} \right) \partial_{\nu} \mathcal{F}_{18, \chi} \,,$ $\mathcal{P}_{19, \chi} = \mathrm{Tr} \left(\mathbf{T}_{\chi} \, \mathcal{D}_{\mu} \mathbf{V}_{\chi}^{\mu} \right) \, \mathrm{Tr} \left(\mathbf{T}_{\chi} \, \mathbf{V}_{\chi}^{\nu} \right) \, \partial_{\nu} \mathcal{F}_{19, \chi} \,,$ $\mathcal{P}_{20, \chi} = \operatorname{Tr} \left(\mathbf{V}_{\mu, \chi} \, \mathbf{V}_{\chi}^{\mu} \right) \partial_{\nu} \mathcal{F}_{20, \chi} \partial^{\nu} \mathcal{F}_{20, \chi}^{\prime} \,,$ $\mathcal{P}_{21, \chi} = \left(\left(\mathsf{T}_{\chi} \mathsf{V}_{\chi}^{\mu} \right) \right)^2 \partial_{\nu} \mathcal{F}_{21, \chi} \partial^{\nu} \mathcal{F}_{21}^{\prime} ,$ $\mathcal{P}_{22, \chi} = \left(\left(\mathsf{T}_{\chi} \mathsf{V}_{\chi}^{\mu} \right) \partial_{\mu} \mathcal{F}_{22, \chi} \right)^{2},$ $\mathcal{P}_{23, \chi} = \operatorname{Tr} \left(\mathbf{V}_{\mu, \chi} \, \mathbf{V}_{\chi}^{\mu} \right) \left(\left(\mathbf{T}_{\chi} \, \mathbf{V}_{\chi}^{\nu} \right) \right)^2 \mathcal{F}_{23, \chi} \,,$ $\mathcal{P}_{24, \chi} = \operatorname{Tr} \left(\mathbf{V}^{\mu}_{\chi} \mathbf{V}^{\nu}_{\chi} \right) \operatorname{Tr} \left(\mathbf{T}_{\chi} \mathbf{V}_{\mu, \chi} \right) \left(\mathbf{T}_{\chi} \mathbf{V}_{\nu, \chi} \right) \mathcal{F}_{24, \chi}$ $\mathcal{P}_{25, \chi} = \left(\left(\mathsf{T}_{\chi} \mathsf{V}_{\chi}^{\mu} \right) \right)^2 \partial_{\nu} \partial^{\nu} \mathcal{F}_{25, \chi} ,$ $\mathcal{P}_{26, \chi} = \left(\operatorname{Tr} \left(\mathsf{T}_{\chi} \mathsf{V}_{\chi}^{\mu} \right) \operatorname{Tr} \left(\mathsf{T}_{\chi} \mathsf{V}_{\chi}^{\nu} \right) \right)^2 \mathcal{F}_{26, \chi},$

All $\mathcal{F}_i \equiv \mathcal{F}_i(h)$

JY, arXiv:1507.03974

CP-conserving left-right mixing: $\Delta \mathscr{L}_{CP,LR}$

$$\Delta \mathscr{L}_{\mathsf{CP},LR} = \sum_{i=\{W,C,T\}} c_{i,LR} \mathcal{P}_{i,LR}(h) + \sum_{i=2, i\neq 4}^{26} c_{i(j),LR} \mathcal{P}_{i(j),LR}(h)$$

$$\mathcal{P}_{W,LR}(h) = -\frac{1}{2} g_L g_R \operatorname{Tr}\left(\widetilde{W}_L^{\mu\nu} \widetilde{W}_{\mu\nu,R}\right) \mathcal{F}_{W,LR}(h),$$

$$\mathcal{P}_{C,LR}(h) = -\frac{1}{2} f_L f_R \operatorname{Tr}\left(\widetilde{\mathbf{V}}_L^{\mu} \widetilde{\mathbf{V}}_{\mu,R}\right) \mathcal{F}_{C,LR}(h),$$

$$\mathcal{P}_{T, LR}(h) = \frac{1}{2} f_L f_R \operatorname{Tr}\left(\widetilde{\mathbf{T}}_L \widetilde{\mathbf{V}}_L^{\mu}\right) \operatorname{Tr}\left(\widetilde{\mathbf{T}}_R \widetilde{\mathbf{V}}_{\mu, R}\right) \mathcal{F}_{T, LR}(h),$$

* 75 $\mathcal{P}_{i(j),LR}(h)$ in total: JY, arXiv:1507.03974

* CP-violating counterpart: R. Kunming, J. Shu and JY arXiv:1507.04745

COMPLETE CP-PRESERVING BASIS $\mathcal{P}_{i(i),LR}(h)$

$$\begin{split} & \mathcal{P}_{2(1)} = i \, g' \, \mathcal{B}_{\mu\nu} \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \left[\widetilde{\mathbf{V}}_{L}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\mu} \right] \right) \, \mathcal{F}_{2(1)} \, , \\ & \mathcal{P}_{3(1)} = i \, g_{L} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \left[\widetilde{\mathbf{V}}_{\mu, R}, \widetilde{\mathbf{V}}_{\nu, R} \right] \right) \, \mathcal{F}_{3(1)} \, , \\ & \mathcal{P}_{3(2)} = i \, g_{R} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \left[\widetilde{\mathbf{V}}_{\mu, L}, \widetilde{\mathbf{V}}_{\nu, R} \right] \right) \, \mathcal{F}_{3(2)} \, , \\ & \mathcal{P}_{3(3)} = i \, g_{L} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \left[\widetilde{\mathbf{V}}_{\mu, L}, \widetilde{\mathbf{V}}_{\nu, R} \right] \right) \, \mathcal{F}_{3(3)} \, , \\ & \mathcal{P}_{3(4)} = i \, g_{R} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \left[\widetilde{\mathbf{V}}_{\mu, L}, \widetilde{\mathbf{V}}_{\nu, R} \right] \right) \, \mathcal{F}_{3(4)} \, , \\ & \mathcal{P}_{5(1)} = i \, g_{L} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \, \widetilde{\mathbf{V}}_{\mu, R} \right) \, \partial_{\nu} \, \mathcal{F}_{5(1)} \, , \\ & \mathcal{P}_{5(2)} = i \, g_{R} \, \mathrm{Tr} \left(\widetilde{W}_{L}^{\mu\nu} \, \widetilde{\mathbf{V}}_{\mu, R} \right) \, \partial_{\nu} \, \mathcal{F}_{5(2)} \, , \\ & \mathcal{P}_{6(1)} = \left(\mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \, \widetilde{\mathbf{V}}_{\mu, R} \right) \right)^{2} \, \mathcal{F}_{6(1)} \, , \\ & \mathcal{P}_{6(2)} = \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \, \widetilde{\mathbf{V}}_{\mu, L} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\nu} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \mathcal{F}_{6(2)} \, , \\ & \mathcal{P}_{6(3)} = \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \, \widetilde{\mathbf{V}}_{\mu, L} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\nu} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \mathcal{F}_{6(3)} \, , \\ & \mathcal{P}_{6(4)} = \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \, \widetilde{\mathbf{V}}_{\mu, R} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{V}_{L}^{\nu} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \mathcal{F}_{6(4)} \, , \\ & \mathcal{P}_{7(1)} = \mathrm{Tr} \left(\widetilde{\mathbf{V}}_{L}^{\mu} \, \widetilde{\mathbf{V}}_{\mu, R} \right) \, \partial_{\nu} \, \partial^{\nu} \, \mathcal{F}_{7(1)} \, , \\ \end{split} \right.$$

$$\begin{split} \mathcal{P}_{16(4)} &= \mathrm{Tr} \left([\widetilde{\mathbf{T}}_{R}, \widetilde{\mathbf{V}}_{R}^{\nu}] \, \mathcal{D}_{\mu} \widetilde{\mathbf{V}}_{L}^{\mu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\nu, L} \right) \, \mathcal{F}_{16(4)} \,, \\ \mathcal{P}_{16(5)} &= \mathrm{Tr} \left([\widetilde{\mathbf{T}}_{R}, \widetilde{\mathbf{V}}_{R}^{\nu}] \, \mathcal{D}_{\mu} \widetilde{\mathbf{V}}_{L}^{\mu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\nu, R} \right) \, \mathcal{F}_{16(5)} \,, \\ \mathcal{P}_{16(6)} &= \mathrm{Tr} \left([\widetilde{\mathbf{T}}_{L}, \widetilde{\mathbf{V}}_{L}^{\nu}] \, \mathcal{D}_{\mu} \widetilde{\mathbf{V}}_{R}^{\mu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\nu, L} \right) \, \mathcal{F}_{16(6)} \,, \\ \mathcal{P}_{17(1)} &= i \, g_{L} \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{W}}_{L}^{\mu\nu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \widetilde{\mathbf{V}}_{\mu, R} \right) \, \partial_{\nu} \mathcal{F}_{17(1)} \,, \\ \mathcal{P}_{17(2)} &= i \, g_{R} \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \widetilde{\mathbf{W}}_{R}^{\mu\nu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\mu, L} \right) \, \partial_{\nu} \mathcal{F}_{18(2)} \,, \\ \mathcal{P}_{18(1)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \left[\widetilde{\mathbf{V}}_{R}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\mu, L} \right) \, \partial_{\nu} \mathcal{F}_{18(2)} \,, \\ \mathcal{P}_{18(2)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \left[\widetilde{\mathbf{V}}_{R}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \widetilde{\mathbf{V}}_{\mu, L} \right) \, \partial_{\nu} \mathcal{F}_{18(2)} \,, \\ \mathcal{P}_{18(3)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \left[\widetilde{\mathbf{V}}_{L}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \partial_{\mu} \mathcal{F}_{18(3)} \,, \\ \mathcal{P}_{18(4)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \left[\widetilde{\mathbf{V}}_{L}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \partial_{\mu} \mathcal{F}_{18(4)} \,, \\ \mathcal{P}_{18(5)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \left[\widetilde{\mathbf{V}}_{L}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \, \widetilde{\mathbf{V}}_{\nu, R} \right) \, \partial_{\mu} \mathcal{F}_{18(5)} \,, \\ \mathcal{P}_{18(6)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \left[\widetilde{\mathbf{V}}_{L}^{\mu}, \widetilde{\mathbf{V}}_{R}^{\nu} \right] \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{R} \, \widetilde{\mathbf{V}}_{\nu} \right) \, \partial_{\mu} \mathcal{F}_{18(6)} \,, \\ \mathcal{P}_{19(1)} &= \mathrm{Tr} \left(\widetilde{\mathbf{T}}_{L} \left[\mathcal{D}_{\mu} \, \widetilde{\mathbf{V}}_{L}^{\mu} \right) \, \mathrm{Tr} \left(\widetilde{\mathbf{T}_{R} \, \widetilde{\mathbf{V}}_{\nu}^{\nu} \right) \, \partial_{\nu} \mathcal{F}_{19(1)} \,, \end{array} \right. \end{split}$$

JY, arXiv:1507.03974

Low energy effects: Decoupling right handed fields

via EOM
$$\implies \mathbf{V}_{R}^{\mu} \equiv -\frac{t_{L}}{f_{R}} \mathbf{V}_{L}^{\mu}$$
 @ unitary gauge as
 $\mathcal{W}_{\mu,R}^{\pm} \Rightarrow -\frac{g_{L} f_{L}}{g_{R} f_{R}} \mathcal{W}_{\mu,L}^{\pm}$ & $\mathcal{W}_{\mu,R}^{3} \Rightarrow \frac{g'}{g_{R}} \left(1 + \frac{f_{L}}{f_{R}}\right) B_{\mu} - \frac{g_{L} f_{L}}{g_{R} f_{R}} \mathcal{W}_{\mu,L}^{3}$

^ĉ i,∟	$\mathcal{P}_{i,L}$	$\mathcal{P}_{i,R}$	$\mathcal{P}_{i(j),LR}$	i
^ĉ i,L	c _{i,L}	$c_{W,R} - 4c_{1,R} - 4c_{12,R} + \frac{f_L^2(c_{W,R} - 4c_{12,R})}{f_R^2} + \frac{f_L^{(2c_{W,R} - 4c_{1,R} - 8c_{12,R})}}{f_R}$	_	В
ĉ _{i,L}	c _{i,L}	$\frac{f_{L}^{2}}{f_{R}^{2}}c_{i,R}$	$-rac{f_L}{f_R}c_{i,LR}$	w
č _{i,L}	c _{i,L}	c _{i,R}	$\left\{-2\bar{c}_{C,LR},-2c_{T,LR}\right\}$	$\{C, T\}$
či,∟	ci,L	$\frac{f_L\left(-2c_{i,R}+c_{W,R}-4c_{12,R}\right)}{2f_R}+\frac{f_L^2\left(c_{W,R}-4c_{12,R}\right)}{2f_R^2}$	$\frac{f_L(4c_{12(1)}-c_{W,LR})}{4f_R} + \frac{1}{4} \left(4c_{12(1)}-c_{W,LR}\right)$	1
÷	:			-
č _{i,L}	c _{i,L}	$\frac{f_L^4}{f_R^4} c_{i,R}$	$\frac{f_L^2(c_{i(1)}+c_{i(2)})}{f_R^2} - \frac{f_L}{f_R} c_{i(3)} - \frac{f_L^3}{f_R^3} c_{i(4)}$	6, 26

 $\tilde{c}_{i,L}$ (1st column):

$$\begin{split} c_{i,L} \mbox{ from } \mathcal{P}_{i,L} \mbox{ (2nd col)} &+ \mbox{ contribution from } \mathcal{P}_{i,R} \mbox{ (3rd col)} &+ \mbox{ combination from } \mathcal{P}_{i(j),LR} \mbox{ (4th col)} \end{split}$$
For $f_L \ll f_R \Rightarrow \{\mathcal{P}_B, \ \mathcal{P}_{C,L}, \ \mathcal{P}_{T,L}, \ \mathcal{P}_{1,L}, \ \mathcal{P}_{2,L}, \ \mathcal{P}_{4,L}\}$ sensitive to the R or the LR mixing ops.

In progress...

Low energy effects: S and T parameters

$$\Delta S = 2 s_{2w} \bar{\alpha}_{WB} - 8 e^2 \tilde{c}_{1,L} \qquad \& \qquad \Delta T = 2 \tilde{c}_{T,L}$$

- Effects by decoupling the right handed gauge fields
- Combined effects: non-linear operators + decoupling (via c̃)

 $\Delta S = -8 e^2 \left(c_{1,L} - \frac{1}{4} c_{W,LR} + c_{12(1)} \right)$ $\Delta T = 2 \left(c_{T,L} + c_{T,R} - 2c_{T,LR} \right)$ S Т 0.004 0.004 0.002 0.002 T,LR W, LR 0.000 0.000 -0.002 -0.002-0.004-0.004-0.004 -0.002 0.000 0.002 0.004 -0.004 -0.002 0.000 0.002 0.004 $c_{T,L}$ c1.L $\{c_{T,L}, c_{T,R}, c_{T,LR}\} \sim 10^{-3}$ $\{c_{1,L}, c_{W,LR}, c_{12(1)}\} \sim 10^{-3}$

Low energy effects: TGC

$$\frac{\mathscr{L}_{\mathsf{TGV}}}{\mathscr{g}_{\mathsf{WWV}}} = i \left\{ g_1^V \left(W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu} \right) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu}^{-\rho} W_{\rho\nu}^+ + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu\nu}^{-\rho} W_{\mu\nu}^+ W_{\mu\nu}^- W^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} W^{\mu\nu} W^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W_{\mu\nu}^- W^{\mu\nu} W^{\mu\nu} W^{\mu\nu} W^{\mu\nu} + \frac{ig}{m_W^2} \lambda_V V^{\mu\nu} W^{\mu\nu} W$$

$$\left. - ig_5^V \epsilon^{\mu\nu\rho\sigma} \left(W_{\mu}^+ \partial_{\rho} W_{\nu}^- - W_{\nu}^- \partial_{\rho} W_{\mu}^+ \right) V_{\sigma} + g_6^V \left(\partial_{\mu} W^{+\mu} W^{-\nu} - \partial_{\mu} W^{-\mu} W^{+\nu} \right) V_{\nu} \right\}$$

TGC	SM	Decoupling	Decoupling + Operators
g_1^Z	1	$-rac{2s_w^4}{c_{2w}s_{2w}}arlpha_{WB}$	$\frac{1}{2c_{2w}}\left(\tilde{c}_{T,L}-4e^{2}\left(\tilde{c}_{12,L}-\frac{s_{w}^{2}\tilde{c}_{1,L}}{c_{w}^{2}}\right)\right)-\frac{4e^{2}\tilde{c}_{3,L}}{s_{2w}^{2}}$
κ_{γ}	1	$\frac{c_W}{s_W} \ \bar{\alpha}_{WB}$	$-\frac{\varepsilon^2}{s_{W}^2}\left(2\tilde{c}_{1,L}+2\tilde{c}_{2,L}+\tilde{c}_{3,L}+4\tilde{c}_{12,L}+2\tilde{c}_{13,L}\right)$
κz	1	$-rac{s_{2w}}{2c_{2w}}ar{lpha}_{WB}$	$\frac{1}{2} \left(2e^2 \left(-\frac{\left(\frac{1}{c_{2w}} + 3\right)\tilde{c}_{12,L} + \tilde{c}_{3,L} + 2\tilde{c}_{13,L}}{s_w^2} + \frac{2\tilde{c}_{1,L}}{c_{2w}^2} + \frac{2\tilde{c}_{2,L}}{c_w^2} \right) + \frac{\tilde{c}_{T,L}}{c_{2w}} \right)$
g_5^Z	_	-	$-rac{4e^2}{s_{2w}^2} \tilde{c}_{14,L}$
g_6^{γ}	_	-	$\frac{e^2}{s_w^2}$ $\tilde{c}_{9,L}$
g_6^Z	-	-	$\frac{\epsilon^2}{c_w^2 s_w^2} \left(\tilde{c}_{16,L} - \frac{2c_w s_w^3 \tilde{c}_{9,L}}{s_{2w}} \right)$

`

Low energy effects: QGC

$$\mathscr{L}_{\mathsf{QGV}} = g^2 \Big\{ g^{(1)}_{WWWW} W^{\dagger}_{\mu} W^{\mu\dagger} W^{\nu} W_{\nu} - g^{(2)}_{WWWW} \left(W^{\dagger}_{\mu} W^{\mu} \right)^2 + g_{ZZZZ} \left(Z^{\mu} Z_{\mu} \right)^2 + g_{ZZZZ} \left($$

$$- g^{(1)}_{VVWW} V^{\mu} V_{\mu} W^{\dagger}_{\nu} W^{\nu} + g^{(2)}_{VVWW} V^{\mu} V_{\nu} W^{\dagger}_{\mu} W^{\nu} - g^{(1)}_{\gamma WWZ} A^{\mu} Z_{\mu} W^{\dagger}_{\nu} W^{\nu} +$$

$$+ \left(g_{\gamma WWZ}^{(2)} A^{\mu} Z_{\nu} W^{\dagger}_{\mu} W^{\nu} + \text{h.c.}\right) + i g_{\gamma WWZ}^{(3)} {}^{\mu\nu\rho\sigma} W^{+}_{\mu} W^{-}_{\nu} A_{\rho} Z_{\sigma} \right\}$$

QGC	SM	Decoupling	Decoupling + Operators
$g_{WWWW}^{(1)}$	$\frac{1}{2}$	$-rac{c_W s_W^3}{c_{2W}} \bar{lpha}_{WB}$	$\frac{4e^{2}\left(4s_{w}^{4}\tilde{c}_{1,L}+c_{2w}\left((c_{2w}-8)\tilde{c}_{12,L}-2\tilde{c}_{3,L}+\tilde{c}_{11,L}-4\tilde{c}_{13,L}\right)-\tilde{c}_{12,L}\right)+s_{2w}^{2}\tilde{c}_{\mathcal{T},L}}{8c_{2w}s_{w}^{2}}$
g ⁽²⁾ g _{WWWW}	$\frac{1}{2}$	$-rac{c_W s_W^3}{c_{2_W}} \ \bar{lpha} WB$	$\frac{32e^2s_w^4\tilde{c}_{1,L} + (c_{4w}-1)\left(4e^2\tilde{c}_{12,L} - \tilde{c}_{\mathcal{T},L}\right) - 8e^2c_{2w}\left(2\tilde{c}_{3,L} + 2\tilde{c}_{6,L} + \tilde{c}_{11,L} + 8\tilde{c}_{12,L} + 4\tilde{c}_{13,L}\right)}{16c_{2w}s_w^2}$
gZZZZ	-	-	$\frac{e^2}{4c_w^4 s_w^{22}} \left(\tilde{c}_{6,L} + \tilde{c}_{11,L} + 2 \left(\tilde{c}_{23,L} + \tilde{c}_{24,L} + 2 \tilde{c}_{26,L} \right) \right)$
-	-		
g ⁽²⁾ g _γ WWZ	12 s2w	$-\frac{(c_{4w}+3)s_w^2}{4c_{2w}}\;\bar{\alpha}_{WB}$	$\begin{split} & \frac{1}{2c_{2w}} \left(e^2 \left(-\frac{4c_{2w}\tilde{c}_{3,L}}{s_{2w}} - \frac{c_w \left((c_{4w} + 3)\tilde{c}_{12,L} + 2\tilde{c}_{16,L} \right) }{s_w} + \frac{s_w \left((c_{4w} + 3)\tilde{c}_{1,L} + 2 \left(c_{2w}\tilde{c}_{9,L} + \tilde{c}_{16,L} \right) \right)}{c_w} \right) + 2c_w^3 s_w \tilde{c}_{\mathcal{T},L} \right) \end{split}$
$g^{(3)}_{\gamma WWZ}$	_	-	$-\frac{2e^2 \tilde{c}_{14,L}}{s_{2w}}$

1-loop effects from { $\mathcal{P}_{6,L}$, $\mathcal{P}_{11,L}$, $\mathcal{P}_{23,L}$, $\mathcal{P}_{24,L}$, $\mathcal{P}_{26,L}$ } to the EWPT parameters $\Rightarrow \tilde{c}_{i,L} \sim 10^{-3} - 10^{-1}$

Ongoing... 25 / 28

Low energy effects: Triple gauge-*h* couplings

$$\mathscr{L}_{hVV} = \frac{1}{v} \Big\{ g_{hhh}^{(2)} h \, \partial_{\mu} h \, \partial^{\mu} h + g_{\gamma\gamma h} F_{\mu\nu} F^{\mu\nu} h + g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu\nu} h + g_{\gamma hZ}^{(1)} F_{\mu\nu} Z^{\mu\nu} h + g_{hWW}^{(1)} W^{\mu\nu} h + g_{\mu\nu}^{(1)} W^{\mu\nu} h + g_{\mu\nu}^{(1)} F_{\mu\nu} F^{\mu\nu} h + g_{\mu\nu}^{(1)} F^{\mu\nu} h$$

$$+ g^{(2)}_{hZZ} Z_{\mu} Z^{\mu\nu} \partial_{\nu} h + g^{(2)}_{\gamma hZ} Z_{\mu} F^{\mu\nu} \partial_{\nu} h + \left(g^{(2)}_{hWW} W^{\mu} W^{\dagger}_{\mu\nu} \partial^{\nu} h + \mathrm{h.c.}\right) +$$

 $+ g^{(3)}_{hZZ} \ \partial^{\mu} Z_{\mu} \ Z^{\nu} \ \partial_{\nu} h + g^{(4)}_{hZZ} \ \partial^{\mu} Z_{\mu} \ \partial^{\nu} Z_{\nu} \ h + \left(g^{(3)}_{hWW} \ \partial^{\mu} W^{\dagger}_{\mu} \ W^{\nu} \ \partial_{\nu} h + {\rm h.c.}\right) \\ + g^{(4)}_{hWW} \ \partial^{\mu} W^{\dagger}_{\mu} \ \partial_{\nu} W^{\nu} \ h + {\rm h.c.} + g^{(4)}_{hWW} \ \partial^{\mu} W^{\dagger}_{\mu} \ \partial^{\mu} W^{\dagger}_{\mu} \ \partial^{\mu} W^{\dagger}_{\mu} \ \partial^{\mu} W^{\mu}_{\mu} \ \partial^{\mu} W^{\mu}_{\mu}$

$$\left. + g^{(5)}_{hWW} W^{\dagger}_{\mu} W^{\mu} h + g^{(6)}_{hWW} W^{\dagger}_{\mu} W^{\mu} \Box h + g^{(5)}_{hZZ} Z_{\mu} Z^{\mu} h + g^{(6)}_{hZZ} Z_{\mu} Z^{\mu} \Box h \right\}.$$

TGC-h	SM	Decoupling	Decoupling + Operators
$g^{(1)}_{\gamma \gamma h}$	_	_	$-\frac{1}{2}e^{2}\xi\left(a_{W,L}-4\left(a_{1,L}+a_{12,L}\right)+a_{B}\right)$
g _{hZZ} (1) :	-	- :	$-\frac{1}{2}e^2\left(\frac{c_w^2\left(a_W,L-4a_{12,L}\right)}{s_w^2}+4a_{1,L}+\frac{a_Bs_w^2}{c_w^2}\right)$
g _{hWW} (5)	$-\frac{4e^2c_w^2f_L^2(\bar{c}_{C,LR}-1)}{s_{2w}^2}$	$-\frac{4e^2c_w^2f_L^2}{s_{2w}^2}\bar{\alpha}_W$	$-\frac{2e^2c_W^2f_L^2}{s_W^2s_{2W}^2}\left(s_W^2\left(c_H-a_{C,L}\tilde{c}_{C,L}\right)+2e^2\tilde{c}_{W,L}\right)$
g _{hZZ} ⁽⁶⁾	_	-	$-\frac{4e^2}{s_{2w}^2} \left(\mathfrak{s}_{7,L} + 2\mathfrak{s}_{25,L} \right)$

Ongoing...

SUMMARY

- * EW-*h* interactions analyzed in a LR non-linear chiral approach
- Complete linearly independent basis of effective non-linear operators has been constructed for LR symmetric models.
- * Generic UV completion for the low energy non-linear treatments.
- * Low energy effects from the right handed gauge field sector: EWPT parameters, TGC, QGC and gauge boson pair-Higgs couplings.

PERSPECTIVES

- * 1-loop effects from $\{\mathcal{P}_{6,L}, \mathcal{P}_{11,L}, \mathcal{P}_{23,L}, \mathcal{P}_{24,L}, \mathcal{P}_{26,L}\} \text{ to}$ the EWPT parameters \Rightarrow $\tilde{c}_{i,L} \sim 10^{-3} - 10^{-1}$
- Bounds on *LP* non-linear operator coefficients, mainly from anomalous triple vertices, can be established (ongoing..)
- * Present and future potential of LHC to measure anomalous *CP* TGVs will be estimated, via the dependence on kinematic variables that traces the energy behaviour produced in the cross sections by the anomalous TGVs (ongoing...)

Thanks