Extra dimensions and string phenomenology in the LHC era

I. Antoniadis

Summer School and Workshop on the Standard Model and Beyond Corfu, 3-14 September 2014

- LHC: where do we stand? where do we go?
- Supersymmetry: is it alive?
- String phenomenology: what for? main issues
- Itigh string scale heterotic string
- S High string scale type IIA/B and intersecting/magnetized branes
- Low string scale and large extra dimensions
- Experimental predictions
- Warped spaces and holography

Bibliography

- Topics on String Phenomenology I. Antoniadis e-Print: arXiv:0710.4267 [hep-th]
- An Introduction to perturbative and nonperturbative string theory Ignatios Antoniadis, Guillaume Ovarlez e-Print: hep-th/9906108
- String theory in a nutshell
 E. Kiritsis
 Princeton University Press, 2007
- String theory and particle physics: An introduction to string phenomenology
 Luis E. Ibanez, Angel M. Uranga
 Published in Cambridge, UK: Univ. Pr. (2012) 673 p

The value of Higgs mass $\sim 125~{\rm GeV}$

- consistent with expectation from precision tests of the SM
- favors perturbative physics quartic coupling $\lambda = m_H^2/v^2 \simeq 1/8$
- 1st elementary scalar in nature signaling perhaps more to come
- triumph of QFT and renormalized perturbation theory!
 Standard Theory has been tested with radiative corrections

Window to new physics ?

- very important to measure precisely its properties and couplings
- several new and old questions wait for answers
 Dark matter, neutrino masses, baryon asymmetry, flavor physics, axions, electroweak scale hierarchy, early cosmology, ...

Beyond the Standard Theory of Particle Physics: driven by the mass hierarchy problem

Standard picture: low energy supersymmetry

Natural framework: Heterotic string (or high-scale M/F) theory

Advantages:

- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:

- too many parameters: soft breaking terms
- MSSM : already a % ‰ fine-tuning 'little' hierarchy problem

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

Inclusive searches	$ \begin{array}{l} \text{MSUGRA/CMSSM: 0} \text{ log } + [s + E_{rank}\\ \text{MSUGRA/CMSSM: 1} \text{ log } + [s + E_{rank}\\ \text{Phenor model: 0} \text{ log } + [s + E_{rank}\\ \text{Phenor model: 0} \text{ log } + [s + E_{rank}\\ \text{Orbition model: 0} \text{ log } + [s + E_{rank}\\ \text{Gluin model: 0} \text{ log } + [s + E_{rank}\\ \text{GMSB: (1, NSP): 2} \text{ log } 0 \text{ log } + [s + E_{rank}\\ \text{GMSB: (1, NSP): 1} \text{ log } 0 \text{ log } + [s + E_{rank}\\ \text{GGM (higo NLSP): 1} + [s + E_{rank}\\ \text{GGM (higo NLSP): 1} + [s + E_{rank}\\ \text{GGM (higo NLSP): 2} \text{ log } 0 \text{ log } + E_{rank}\\ \text{GGM (higo NLSP): 2} \text{ log } 0 \text{ log } + E_{rank}\\ \text{GGM (higo NLSP): 2} \text{ log } 0 \text{ log } + E_{rank}\\ \text{GGM (higo NLSP): 2} \text{ log } 0 \text{ log } + E_{rank}\\ \text{Gravity on LSP: monolet } + E_{rank}\\ \end{array} $	CHARM - THY HATA & COM - 21 (1997) CHARM - THY HATA & COM - 21 (1	******** \$\overline{3}\$ \$\overline{3}\$ ************************************	$\int t_{12_{1}}^{5} = T_{12_{1}}^{5}$ $\int Ldt = (4.4 - 20.7) \text{ fb}^{-1}$ $f = 7, 8 \text{ TeV}$
3rd gen. gluino mediated	$ \begin{array}{l} \widetilde{\mathbf{g}} \rightarrow \mathbf{b} \widetilde{\mathbf{y}}^{\prime}: 0 \ \mathbf{lep} + 3 \ \mathbf{b} - \mathbf{j} \mathbf{s} + \mathbf{E}_{\tau, \text{max}} \\ \widetilde{\mathbf{g}} \rightarrow \mathbf{t} \widetilde{\mathbf{x}}^{\prime}_{0}: 2 \ \mathbf{S}^{\prime} - \mathbf{lep} + (0 - 3\mathbf{b} - \mathbf{j})^{\prime} \mathbf{s} + \mathbf{E}_{\tau, \text{max}} \\ \widetilde{\mathbf{g}} \rightarrow \mathbf{t} \widetilde{\mathbf{x}}^{\prime}_{0}: 0 \ \mathbf{lep} + \text{multi} - \mathbf{j}^{\prime} \mathbf{s} + \mathbf{E}_{\tau, \text{max}} \\ \widetilde{\mathbf{g}} \rightarrow \mathbf{t} \widetilde{\mathbf{x}}^{\prime}_{0}: 0 \ \mathbf{lep} + 3 \ \mathbf{b} - \mathbf{j}^{\prime} \mathbf{s} + \mathbf{E}_{\tau, \text{max}} \end{array} $	L=12.8 ft, 8 TeV [ATLAS-CONF-2012-145] L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007] L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-163] L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	1.24 TeV ğ mass (mg ² ₁) < 200 GeV 000 GeV ğ mass (my m(² ₁)) 1.00 TeV ğ mass (m(² ₁) < 300 GeV) 1.15 TeV ğ mass (m(² ₁) < 200 GeV)	8 TeV, all 2012 data 8 TeV, partial 2012 data
3rd gen. squarks direct production	$\begin{array}{c} b, b, -b^{*}_{2}(\cdot) \mbox{ (lep + 2-b)ets } + E_{rms} \\ b, b, -b^{*}_{1}(\cdot) \mbox{ (ssher)} + E_{rms} \\ \overline{tt} \mbox{ (lep h)} \mbox{ (lep + 2-b)ets } + E_{rms} \\ \overline{tt} \mbox{ (lep h)} \mbox{ (lep h)} \mbox{ (lep + 2-b)ets } + E_{rms} \\ \overline{tt} \mbox{ (mound)} \mbox{ (lep h)} \\ \overline{tt} \mbox{ (mound)} \mbox{ (lep h)} (lep h$	Letter 11: The particulations and the participation of the partipation of the participation of the partipation of the participatio	Team Drass (m ² ₄) > ± m ² ₄ >(m ² ₄) > ± m ² ₄ (m ² ₄) > ± m ² ₄ (m ² ₄) + ± 0 < m ² ₄ (m ² ₄) + 50 < m ² ₄ (m ² ₄) + 50 < m ² ₄ (m ² ₄) = ± 0 < m ² ₄ (m ² ₄) = 0 < m ² ₄ (m ² ₄) = 10 < m ² ₄ (m ² ₄) = 10 < m ² ₄ 200 < m ² ₄ (m ² ₄) = 0 < m ² ₄ (m ² ₄) = 0 < m ² ₄ (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 < m ² ₄ (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 200 (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0 (m ² ₄) = 0	7 TeV, all 2011 data
EW direct	$\begin{array}{c} \left(\left(1, -b_{1}^{2}\right)^{\circ}: 2 \text{ lep } + E_{T,miss} \\ \tilde{\chi}_{1}^{\circ}\tilde{\chi}_{2}^{\circ}, \tilde{\chi}_{1}^{\circ} \rightarrow h(0): 2 \text{ lep } + E_{T,miss} \\ \tilde{\chi}_{2}^{\circ}\tilde{\chi}_{2}^{\circ}, \tilde{\chi}_{2}^{\circ} \rightarrow \tilde{\tau}v(\tau v): 2 \tau + E_{T,miss} \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{2}^{\circ} \rightarrow \tilde{\zeta}v(1 (\bar{v}v): \delta ep + E_{T,miss} \\ \tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{2}^{\circ} \rightarrow \tilde{\zeta}v(1 (\bar{v}v), b_{1}^{\circ}(1 v): 3 ep + E_{T,miss} \\ \tilde{\chi}_{1}^{\circ}\tilde{\chi}_{2}^{\circ} \rightarrow W^{i}\tilde{\chi}_{2}^{\circ}\tilde{\chi}^{i}\tilde{\chi}_{2}^{\circ} \rightarrow W^{i}\tilde{\chi}_{2}^{\circ}\tilde{\chi}_{2}^{\circ}\tilde{\chi}_{2}^{\circ} \end{array} \right)$	L=4.7 fb ⁺ , 7 TeV (1208.2884) 85-195 GeV Î MBSS L=4.7 fb ⁺ , 7 TeV (1208.2884) 110-340 GeV L=20.7 fb ⁺ , 8 TeV (ATLAS-CONF-2015.428) 180-380 GeV L=20.7 fb ⁺ , 8 TeV (ATLAS-CONF-2015.428) 180-380 GeV L=20.7 fb ⁺ , 8 TeV (ATLAS-CONF-2015.428) 315 GeV	$ \begin{array}{c} (m_{Q_{1}}^{2}) = 0 \\ \widetilde{\chi}_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) < 10 \ {\rm GeV}, m_{1}^{2}(\widetilde{x}) = \frac{1}{2}(m_{Q_{1}}^{2}) + m_{Q_{1}}^{2}))) \\ \widetilde{\chi}_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) < 10 \ {\rm GeV}, m_{1}^{2}(\widetilde{x}) = \frac{1}{2}(m_{Q_{1}}^{2}) + m_{Q_{1}}^{2}))) \\ \frac{660 \ {\rm GeV}}{2} \ \widetilde{\chi}_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) = m_{Q_{1}}^{2}), m_{Q_{1}}^{2}) = 0, m_{1}^{2}(\widetilde{x}), m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{Q_{1}}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{2}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{2}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = m_{1}^{2}), m_{2}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2} \mbox{ mass } (m_{1}^{2}) = 0. \\ m_{1}^{2}$	s above)
Long-lived particles	Direct $\tilde{\chi}_{1}^{\alpha}$ pair prod. (AMSB) : long-lived $\tilde{\chi}_{1}^{\alpha}$ Stable \tilde{g}_{i} , R-hadrons : low β_{i} $\beta\gamma$ GMSB, $\tilde{\chi}_{-}^{\alpha} \rightarrow q\tilde{g}$: non-pointing photons $\tilde{\chi}_{-}^{\alpha} \rightarrow qq\mu$ (RPV) : μ + heavy displaced vertex		asš (t «τ(ζ,') < t0 m.s)	
RPV	$\begin{array}{c} LFV: pp-\bar{v}^{\dagger}+\bar{x},\bar{v},\rightarrow o+\mu\ resonance\\ LFV: pp-\bar{v}^{\dagger}+\bar{x},\bar{v},\rightarrow o+(\mu)+\tau\ resonance\\ Bilinear\ RPV\ CMSSM: 11\ lep+7\ j+E_{j}\\ \bar{x}_{j}^{\dagger},\bar{x}_{j}^{\dagger},\rightarrow W_{j}^{0},\bar{x}_{j}^{\dagger},\rightarrow e+\mu,e\ iv\ i+1\ lep+2\\ \bar{x}_{j}^{\dagger},\bar{x}_{j}^{\dagger},\rightarrow W_{j}^{0},\bar{x}_{j}^{\dagger},\rightarrow e+\mu,e\ iv\ i+1\ e+E_{j}\\ \bar{x}_{j}^{\dagger},\bar{x}_{j},\bar{x}_{j}^{\dagger},\rightarrow W_{j}^{0},\bar{x}_{j}^{\dagger},\bar{x}_{j}^{\dagger},\rightarrow e+\mu,e\ i+1\ e+E_{j}\\ \bar{y},\bar{y},\bar{y},\bar{y},\bar{y},\bar{y},\bar{y},\bar{y},$	2-44 6 ° 1, 7 m (1921.1923) (-44 ° ° 1, 7 m (1921.1923) (-47 ° ° 1, 7 m (1971.48-004-5051.46) (-492 ° ° 1, 8 m (1471.48-004-591.464) (-492 ° ° 1, 8 m (1471.48-004-591.464) (-493 ° ° 1, 7 m (1970.461) (-493 ° ° 1, 7 m (1970.461) (-493 ° ° 1, 7 m (1970.461) (-493 ° ° 1, 7 m (1970.461)	1.51 TeV V, mass (J ₁ , model) 1.11 TeV V, mass (J ₁ , model) (J ₁ , model) 1.21 TeV Q = 0 mass (H ₁) > 0.0 GeV, J ₁ , prod 1.21 TeV Q = 0 mass (model) × 0.0 GeV, J ₁ , prod 1.21 TeV Q = 0 mass (model) × 0.0 GeV, J ₁ , prod 1.21 TeV Q = 0 mass (model) × 0.0 GeV, J ₁ , prod 2.21 mass (model) × 0.0 GeV, J ₁ , prod (model) × 0.0 GeV, J ₁ , prod 2.21 mass (model) × 0.0 GeV, J ₁ , prod (model) × 0.0 GeV, J ₁ , prod	λ ₁₃₂ =0.05) 05)
WIM	Scalar gluon : 2-jet resonance päir P interaction (D5, Dirac χ) : 'monojet' + E _{T,miss}	L=46.6°. ⁷ .7 TeV (1210.4826) 100-287 GeV L=10.5 fb ⁻⁷ .8 TeV (1210.4826) 100-287 GeV	SQLuon mass (incl. limit from 110.2603) 708 GeV M* spcale (m _x < 80 GeV, limit of < 587 GeV 1	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty. Mass scale [TeV]

I. Antoniadis (Corfu Summer School 2014)

Extra dimensions

What is next?

What is next?

Physics is an experimental science

- Exploit the full potential of LHC
- Go on and explore the multi TeV energy range

The LHC timeline

LS1 Machine Consolidation

LS2 Machine upgrades for high Luminosity

- Collimation
- Cryogenics
- · Injector upgrade for high intensity (lower emittance)
- · Phase I for ATLAS : Pixel upgrade, FTK, and new small wheel

LS3 Machine upgrades for high Luminosity

- Upgrade interaction region
- · Crab cavities?
- Phase II: full replacement of tracker, new trigger scheme (add L0), readout electronics.

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

Start of LHC 2009 Run 1, 7+8 TeV, ~25 fh⁻¹ int lumi 2013/14 Prepare LHC for LS1 design E & lumi Collect ~30 fb⁻¹ per year at 13/14 TeV 2018 Phase-1 upgrade 152 ultimate lumi Twice nominal lumi at 14 TeV, ~100 fb⁻¹ per year ~2022 Phase-2 upgrade LS3 to HL-LHC ~300 fb⁻¹ per year, run up to > 3 ab^{-1} collected ~2030

IHC timeline

Explore the multi TeV energy range

Linear Colliders - ILC project

also CLIC at CERN

Circular Colliders

possible long-term strategy

possible long-term strategy

possible long-term strategy

possible long-term strategy TLEP (e^+e^- up to ~350 GeV c.m.) HE-LHC PSB PS (0.6 km) n) SPS (6.9 km) (pp, 33 TeV c.m.) LHC (26.7 km) **VHE-LHC** (pp, up to 100 TeV c.m.) same detectors! also: e[±] (120 GeV) - p (7 & 50 TeV) collisions

\geq 50 years of e^+e^- , pp, ep/A physics at highest energies

VHE-LHC: location and size

- 100 TeV p-p collider
- CDR and cost review to be ready for next European Strategy Update
- The tunnel could also house a e⁺- e⁻ Higgs factory (TLEP)

	TLEP	
circumference	80 km	
Beam energy up to	370 GeV c.m.	
max no. of IPs	4	
Luminosity/IP at 350 GeV c.m.	1.3x10 ³⁴ cm ⁻² s ⁻¹	
Luminosity/IP at 240 GeV c.m.	4.8x10 ³⁴ cm ⁻² s ⁻¹	
Luminosity/IP at 160 GeV c.m.	1.6x10 ³⁵ cm ⁻² s ⁻¹	
Luminosity/IP at 90 GeV c.m.	5.6 10 ³⁵ cm ⁻² s ⁻¹	

A circumference of 100 km is being considered for cost-benefit reasons 20T magnet in 80 km / 16T magnet in 100 km \rightarrow 100 TeV

Future Circular Collider Study - FCC

Mandate

Context

A conceptual design study of options for a future high-energy frontier circular collider at CERN for the post-LHC era shall be carried out, implementing the request in the 2013 update of the European Strategy for Particle Physics (CERN-Council-S/106), which states, inter alia, that:

"..., Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available." and that "CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines, These design studies should be coupled to a vigorous accelerator R&D programme, including highfield magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide." (http://cds.cern.ch/record/1567258/files/esc-e-106.pdf)

This design study shall be organised on a world-wide international collaboration basis under the auspices of the European Committee for Future Accelerators (ECFA) and shall be available in time for the next update of the European Strategy for Particle Physics, foreseen by 2018.

125 GeV Higgs compatible with supersymmetry

Upper bound on the lightest scalar mass:

$$m_h^2 \lesssim m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right] \lesssim (130 \, GeV)^2$$

 $m_h\simeq 126~{
m GeV} \Rightarrow m_{ ilde{t}}\simeq 3~{
m TeV}$ or $A_t\simeq 3m_{ ilde{t}}\simeq 1.5~{
m TeV}$

 \Rightarrow % to a few ‰ fine-tuning

minimum of the potential:
$$m_Z^2 = 2 rac{m_1^1 - m_2^2 \tan_eta^2}{ an^2 eta - 1} \sim -2m_2^2 + \cdots$$

RG evolution: $m_2^2 = m_2^2(M_{\text{GUT}}) - \frac{3\lambda_t^2}{4\pi^2}m_{\tilde{t}}^2\ln\frac{M_{\text{GUT}}}{m_{\tilde{t}}} + \cdots$ [21] $\sim m_2^2(M_{\text{GUT}}) - \mathcal{O}(1)m_{\tilde{t}}^2 + \cdots$

Can the SM be valid at high energies?

Degrassi-Di Vita-Elias Miró-Espinosa-Giudice-Isidori-Strumia '12

Instability of the SM Higgs potential \Rightarrow metastability of the EW vacuum

If the weak scale is tuned \Rightarrow split supersymmetry is a possibility Arkani Hamed-Dimopoulos '04, Giudice-Romaninio '04

- natural splitting: gauginos, higgsinos carry R-symmetry, scalars do not
- main good properties of SUSY are maintained gauge coupling unification and dark matter candidate
- also no dangerous FCNC, CP violation, ...
- experimentally allowed Higgs mass \Rightarrow 'mini' split

 $m_S \sim$ few - thousands TeV

gauginos: a loop factor lighter than scalars ($\sim m_{3/2}$)

• natural string framework: intersecting (or magnetized) branes

IA-Dimopoulos '04

D-brane stacks are supersymmetric with massless gauginos intersections have chiral fermions with broken SUSY & massive scalars

Giudice-Strumia '11

Predicted range for the Higgs mass

Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

 $M_s \sim 1 \text{ TeV} \Rightarrow$ volume $R_{\perp}^n = 10^{32} l_s^n \ (R_{\perp} \sim .1 - 10^{-13} \text{ mm for } n = 2 - 6)$

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs [17]

 $\Lambda \sim$ a few TeV and $m_{H}^{2} =$ a loop factor $imes \Lambda^{2}$

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

Standard Model of electroweak + strong Interactions :

- Quantum Field Theory: Quantum Mechanics + Special Relativity
- Principle: gauge invariance $U(1) \times SU(2) \times SU(3)$

String theory : • Quantum Mechanics + General Relativity

point particle \rightarrow extended objects

Framework for unification of all interactions

Mass scale: String tension $M_{\rm s} \leftrightarrow$ string size: $I_{\rm s}$

Consistent theory \Rightarrow 9 spatial dimensions !

six new dimensions of space

matter and gauge interactions may be localized

in less than 9 dimensions \Rightarrow

our universe on a membrane ? [27]

p-plane: extended in p spatial dimensions

p = 0: particle, p = 1: string,...

Extra Dimensions

how they escape observation?

finite size R

energy cost to send a signal: $E > R^{-1} \leftarrow$ compactification scale

experimental limits on their size

light signal $\Rightarrow E \gtrsim 1 \text{ TeV}$ $R \lesssim 10^{-16} \text{ cm}$

how to detect their existence?

motion in the internal space \Rightarrow mass spectrum in 3d

Kaluza and Klein 1920

Dimensions D=??

example: - one internal circular dimension

- light signal

plane waves e^{ipy} periodic under $y \rightarrow y + 2\pi R$

 \Rightarrow quantization of internal momenta: $p = \frac{n}{R}$; n = 0, 1, 2, ...

 \Rightarrow 3d: tower of Kaluza Klein particles with masses $M_n = n/R$

$$p_0^2 - \vec{p}^2 - p_5^2 = 0 \implies p^2 = p_5^2 = \frac{n^2}{R^2}$$

 $E >> R^{-1}$: emission of many massive photons \Leftrightarrow propagation in the internal space [23]

Our universe on a membrane

Two types of new dimensions:

- longitudinal: along the membrane
- transverse: "hidden" dimensions

only gravitational signal $\Rightarrow R_{\perp} \lesssim 1 \text{ mm}$!

Adelberger et al. '06

 ${\it R}_{\perp} \lesssim$ 45 $\mu{
m m}$ at 95% CL

• dark-energy length scale pprox 85 μ m

Connect string theory to the real world

- Is it a tool for strong coupling dynamics or a theory of fundamental forces?
- Can string theory describe both particle physics and cosmology?
- What can we hope to learn from LHC and cosmological observations on string phenomenology?

At what energies strings may be observed?

Very different answers depending mainly on the value of the string scale M_s

Before 1994: $M_s \simeq M_{\rm Planck} \sim 10^{18}~{\rm GeV}$ $I_s \simeq 10^{-32}~{\rm cm}$ After 1994:

- arbitrary parameter : Planck mass $M_P \longrightarrow \text{TeV}$
- physical motivations \Rightarrow favored energy regions:

• High :
$$\left\{ \begin{array}{ll} M_P^* \simeq 10^{18} \ {\rm GeV} & {\rm Heterotic \ scale} \\ \\ M_{\rm GUT} \simeq 10^{16} \ {\rm GeV} & {\rm Unification \ scale} \end{array} \right.$$

• Intermediate : around 10¹¹ GeV $(M_s^2/M_P \sim {
m TeV})$

SUSY breaking, strong CP axion, see-saw scale

• Low : TeV (hierarchy problem)

perturbative heterotic string : the most natural for SUSY and unification gravity and gauge interactions have same origin massless excitations of the closed string

But mismatch between string and GUT scales:

 $M_s = g_H \, M_P \simeq 50 \, M_{
m GUT} \qquad g_H^2 \simeq lpha_{
m GUT} \simeq 1/25$ [46]

in GUTs only one prediction from 3 gauge couplings unification: $\sin^2 \theta_W$ introduce large threshold corrections or strong coupling $\rightarrow M_s \simeq M_{\rm GUT}$ but loose predictivity

gravity + gauge kinetic terms [47]

$$\int [d^{10}x] \frac{1}{g_H^2} M_H^8 \mathcal{R}^{(10)} + \int [d^{10}x] \frac{1}{g_H^2} M_H^6 \mathcal{F}_{MN}^2 \quad \text{simplified units: } 2 = \pi = 1$$

Compactification in 4 dims on a 6-dim manifold of volume $V_6 \Rightarrow$

$$\int [d^{4}x] \frac{V_{6}}{g_{H}^{2}} M_{H}^{8} \mathcal{R}^{(4)} + \int [d^{4}x] \frac{V_{6}}{g_{H}^{2}} M_{H}^{6} \mathcal{F}_{\mu\nu}^{2}$$

$$\| \qquad \qquad \| \\ M_{P}^{2} \qquad \qquad 1/g^{2} \qquad \Rightarrow$$

$$M_{P}^{2} = \frac{1}{g^{2}} M_{H}^{2} \quad \frac{1}{g^{2}} = \frac{1}{g_{H}^{2}} V_{6} M_{H}^{6} \qquad \Rightarrow \qquad M_{H} = g M_{P} \quad g_{H} = g \sqrt{V_{6}} M_{H}^{3}$$

$$g_{H} \lesssim 1 \Rightarrow V_{6} \sim \text{ string size}$$

GUT prediction of QCD coupling

Heterotic string: Spectrum

Gauge group $G \leftrightarrow$ affine current algebra in the R-movers (bosonic) CFT $\left[J_{n}^{a}, J_{m}^{b}\right] = f^{abc}J_{n+m}^{c} + k_{G}\,\delta^{ab}\delta_{n+m} \quad k_{G}: \text{ integer level of central extension}$ $\cdot g_C^2 = g_H^2/k_G$ dims of allowed matter reps constrained by $k_G \left. \right> k_G = 1$:

- ٠
 - simplest constructions (CY's, orbifolds, lattices, free fermions)
 - maximum rank: 22
 - guarantee gauge coupling unification at M_H
 - allowed reps: fundamentals & 2-index antisym of unitary groups, spinors of orthogonal groups

However: - no adjoints to break GUT groups

- in SM sin² $\theta_W = 3/8 \Rightarrow$ fractional electric charges

Schellekens '90

All color singlet states have integer charges

fractional electric charged states: nice prediction or problematic? lightest is stable \Rightarrow problematic?

ways out: - superheavy + inflate away

- be confined to integrally charged by extra gauge group

live without adjoints \Rightarrow non conventional 'semi'-GUTs

e.g. break fictitious SO(10) by discrete Wilson lines or projection to

flipped $SU(5) \times U(1)$, Pati-Salam type $SU(4) \times SU(2)_L \times SU(2)_R$, or direct SM

Heterotic models revived: Orbifold GUTs

groups in Munich, Bonn, Hamburg, Ohio, U Penn

- Higgs from untwisted sector \Rightarrow gauge-Higgs unification $\lambda_{\text{top}} = g_{\text{GUT}} \Rightarrow m_{\text{top}} \sim \text{IR fixed point} \simeq 170 \text{ GeV}$
- Yukawa couplings: hierarchies à le Froggatt-Nielsen discrete symmetries ⇒ couplings allowed with powers of a singlet field λ_n ~ Φⁿ (Φ) ~ 0.1 M_s → hierarchies A single anomalous U(1) ⇒ (Φ) ≠ 0 to cancel the FI D-term D-term is shifted to D + TrQ/102π²g_H² [65]
- R-neutrinos: natural framework for see-saw mechanism $\langle h \rangle \nu_L \nu_R + M \nu_R \nu_R \qquad \langle h \rangle = v << M \Rightarrow m_R \sim M; \ m_L \sim v^2/M$
- proton decay: problematic dim-5 operators
 - in general need suppression higher than M_s or small couplings
- SU/SY in a hidden sector from the other $E_8 \rightarrow$ gravity mediation
Open strings and D-branes

string propagation in space-time \Rightarrow 2-dim world-sheet $(\tau, \sigma) = X^{\mu}(\tau, \sigma)$ τ : time, $\sigma \in [0, \pi]$: spatial extension of the string closed strings $\Rightarrow \sigma$: periodic $X^{\mu}(\tau, 0) = X^{\mu}(\tau, \pi)$ open string \Rightarrow endpoints: $\sigma = 0, \pi$ world-sheet boundaries they also carry gauge charges D-branes = hypersurfaces where open strings can end D*p*-brane: parallel dimensions: X^1, \ldots, X^p (also time X^0) $\partial_{\sigma} X^{\mu} = 0$ at $\sigma = 0$ normal derivative vanishes Newmann boundary conditions \Rightarrow free propagation along the boundary transverse dimensions: X^{p+1}, \ldots, X^9 $X^{\mu} = X^{\mu}_{0}$ at $\sigma = 0$ $(\partial_{\tau} X^{\mu} = 0$ at $\sigma = 0)$

Dirichlet conditions: endpoint fixed at the boundary

D-brane spectrum

Generic spectrum: N coincident branes $\Rightarrow U(N)$

a-stack

```
endpoint transformation: N_a or \overline{N}_a U(1)_a charge: +1 or -1

\Rightarrow "baryon" number
```

- open strings from the same stack \Rightarrow adjoint gauge multiplets of $U(N_a)$
- stretched between two stacks \Rightarrow bifundamentals of $U(N_a) \times U(N_b)$

a-stack

non-oriented strings \Rightarrow also:

- orthogonal and symplectic groups SO(N), Sp(N)
- matter in antisymmetric + symmetric reps

Non oriented strings \Rightarrow orientifold planes

where closed strings change orientation

 \Rightarrow mirror branes identified with branes under orientifold action

• strings stretched between two mirror stacks

General analysis using 3 brane stacks

$$\Rightarrow U(3) \times U(2) \times U(1)$$

antiquarks u^c, d^c ($\bar{3}, 1$) :

antisymmetric of U(3) or bifundamental $U(3) \leftrightarrow U(1)$

 \Rightarrow 3 models: antisymmetric is u^c , d^c or none

 N_i stack of D-branes: $U(N_i) = SU(N_i) \times U(1)_i$

gauge couplings:
$$lpha_{N_i} = rac{g_{N_i}^2}{4\pi}$$
 and $lpha_i$

normalization:
$$\operatorname{Tr} T^{a} T^{b} = \frac{1}{2} \delta^{ab} \Rightarrow \alpha_{i} = \frac{\alpha_{N_{i}}}{2N_{i}}$$

$$Y = c_1 Q_1 + c_2 Q_2 + c_3 Q_3 \Rightarrow \frac{1}{g_Y^2} = \frac{2c_1^2}{g_1^2} + \frac{4c_2^2}{g_2^2} + \frac{6c_3^2}{g_3^2}$$

$$\sin^2 \theta_W = \frac{g_Y^2}{g_2^2 + g_Y^2} = \frac{1}{g_2^2/g_Y^2 + 1} = \frac{1}{1 + 4c_2^2 + 2c_1^2 g_2^2/g_1^2 + 6c_3^2 g_2^2/g_3^2}$$

Model B

- $\begin{array}{lll} Q & (\mathbf{3},\mathbf{2};1,1,0)_{1/6} \\ u^c & (\bar{\mathbf{3}},\mathbf{1};2,0,0)_{-2/3} \\ d^c & (\bar{\mathbf{3}},\mathbf{1};-1,0,\varepsilon_d)_{1/3} \\ L & (\mathbf{1},\mathbf{2};0,-1,\varepsilon_L)_{-1/2} \\ l^c & (\mathbf{1},\mathbf{1};0,2,0)_1 \\ \nu^c & (\mathbf{1},\mathbf{1};0,0,2\varepsilon_{\nu})_0 \end{array}$
- $\begin{aligned} &(\mathbf{3},\mathbf{2};1,\varepsilon_Q,0)_{1/6}\\ &(\mathbf{\bar{3}},\mathbf{1};-1,0,1)_{-2/3}\\ &(\mathbf{\bar{3}},\mathbf{1};2,0,0)_{1/3}\\ &(\mathbf{1},\mathbf{2};0,\varepsilon_L,1)_{-1/2}\\ &(\mathbf{1},\mathbf{1};0,0,-2)_1\\ &(\mathbf{1},\mathbf{1};0,2\varepsilon_\nu,0)_0\end{aligned}$
- $\begin{aligned} &(\mathbf{3},\mathbf{2};1,\varepsilon_Q,0)_{1/6}\\ &(\bar{\mathbf{3}},\mathbf{1};-1,0,1)_{-2/3}\\ &(\bar{\mathbf{3}},\mathbf{1};-1,0,-1)_{1/3}\\ &(\mathbf{1},\mathbf{2};0,\varepsilon_L,1)_{-1/2}\\ &(\mathbf{1},\mathbf{1};0,0,-2)_1\\ &(\mathbf{1},\mathbf{1};0,2\varepsilon_\nu,0)_0 \end{aligned}$

Model A

Model B

Model C

$$Y_{A} = -\frac{1}{3}Q_{3} + \frac{1}{2}Q_{2} \qquad Y_{B,C} = -\frac{1}{6}Q_{3} - \frac{1}{2}Q_{1}$$
$$\sin^{2}\theta_{W} = \frac{1}{2 + 2\alpha_{2}/3\alpha_{3}}\Big|_{\alpha_{2} = \alpha_{3}} = \frac{3}{8} \qquad \frac{1}{1 + \alpha_{2}/2\alpha_{1} + \alpha_{2}/6\alpha_{3}}\Big|_{\alpha_{2} = \alpha_{3}} = \frac{6}{7 + 3\alpha_{2}/\alpha_{1}}$$

Intersecting branes: 'perfect' for SM embedding

- product of unitary gauge groups (brane stacks) and bi-fundamental reps but no unification: no prediction for M_s , independent gauge couplings however GUTs: problematic:
 - no perturbative SO(10) spinors
 - no top-quark Yukawa coupling in SU(5): 10105_H
 SU(5) is part of U(5) ⇒ U(1) charges : 10 charge 2 ; 5_H charge ±1
 ⇒ cannot balance charges with SU(5) singlets
 can be generated by D-brane instantons but ...
- \rightarrow Non-perturbative M/F-theory models:

combine good properties of heterotic and intersecting branes but lack exact description for systematic studies

Type I string theory ⇒ D-brane world I.A.-Arkani-Hamed-Dimopoulos-Dyali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: *n* transverse 6 - n parallel [48] calculability $\Rightarrow R_{\parallel} \simeq I_{\text{string}}$; R_{\perp} arbitrary

$$\begin{split} M_p^2 \simeq \underbrace{\frac{1}{g_s^2}}_{s} M_s^{2+n} R_{\perp}^n & g_s = \alpha : \text{ weak string coupling } \text{ [31]} \\ & \swarrow \\ & \swarrow \\ & \text{Planck mass in } 4+n \text{ dims: } M_*^{2+n} \end{split}$$

small $M_s/M_P \Rightarrow$ extra-large R_\perp

 $R_{\perp} \sim .1 - 10^{-13}$ mm for n = 2 - 6

distances $< R_{\perp}$: gravity (4+*n*)-dim \rightarrow strong at 10⁻¹⁶ cm

 $M_{\rm s} \sim 1 {
m TeV} \Rightarrow R_{\perp}^n = 10^{32} I_{\rm s}^n$ [70]

Type I/II strings: gravity and gauge interactions have different origin gravity + gauge kinetic terms $\int [d^{10}x] \frac{1}{g_s^2} M_s^8 \mathcal{R}^{(10)} + \int [d^{p+1}x] \frac{1}{g_s} M_s^{p-3} \mathcal{F}_{MN}^2 [32]$

Compactification in 4 dims \Rightarrow

Braneworld

2 types of compact extra dimensions:

• parallel (d_{\parallel}) : $\lesssim 10^{-16}$ cm (TeV) [46] • transverse (\perp): $\lesssim 0.1$ mm (meV)

Standard Model on D-branes I.A.-Kiritsis-Rizos-Tomaras '02

R-neutrinos: in the bulk

Arkani Hamed-Dimopoulos-Dvali-March Russell '98 Dienes-Dudas-Gherghetta '98 Dvali-Smirnov '98

R-neutrino: $\nu_R(x, y)$ y: bulk coordinates

$$S_{int} = g_s \int d^4 x H(x) L(x) \nu_R(x, y = 0)$$

$$\langle H \rangle = v \implies \text{mass-term:} \frac{g_s v}{R_\perp^{n/2}} \nu_L \nu_R^0 \leftarrow \text{4d zero-mode}$$

Dirac neutrino masses: $m_{\nu} \simeq \frac{g_s v}{R_{\perp}^{n/2}} \simeq v \frac{M_*}{M_p}$

 $\simeq 10^{-3} - 10^{-2} \ {
m eV}$ for $M_* \simeq 1 - 10 \ {
m TeV}$

 $m_{
u} << 1/R_{\perp}$ \Rightarrow KK modes unaffected

Accelerator signatures: 4 different scales

- Gravitational radiation in the bulk \Rightarrow missing energy [53] present LHC bounds: $M_* \gtrsim 3-5$ TeV
- Massive string vibrations \Rightarrow e.g. resonances in dijet distribution [55]

 $M_j^2 = M_0^2 + M_s^2 j$; maximal spin : j + 1

higher spin excitations of quarks and gluons with strong interactions present LHC limits: $M_s\gtrsim 5~{
m TeV}$

• Large TeV dimensions \Rightarrow KK resonances of SM gauge bosons I.A. '90

$$M_k^2 = M_0^2 + k^2/R^2$$
; $k = \pm 1, \pm 2, \dots$

experimental limits: $R^{-1} \gtrsim 0.5 - 4$ TeV (UED - localized fermions) [59]

• extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from M_s [64]

I. Antoniadis (Corfu Summer School 2014)

Extra dimensions

Gravitational radiation in the bulk \Rightarrow missing energy

Angular distribution \Rightarrow spin of the graviton

	Collider bounds on R_{\perp} in mm				
		<i>n</i> = 2	<i>n</i> = 4	<i>n</i> = 6	
	LEP 2	$4.8 imes10^{-1}$	$1.9 imes10^{-8}$	$6.8 imes10^{-11}$	
	Tevatron	$5.5 imes10^{-1}$	$1.4 imes10^{-8}$	4.1×10^{-11}	
	LHC	$4.5 imes10^{-3}$	5.6×10^{-10}	2.7×10^{-12}	

$present \ LHC \ bounds:$

 $M_* \gtrsim 3-5$ TeV

String-size black hole energy threshold : $M_{
m BH}\simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

- string size black hole: $r_H \sim l_s = M_s^{-1}$
- black hole mass: $M_{\rm BH} \sim r_H^{d-3}/G_N$ $G_N \sim I_s^{d-2}g_s^2$

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , M_* $g_s \sim 0.1$ (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_n = M_s \sqrt{n} \Rightarrow$

production of $n\sim 1/g_s^4\sim 10^4$ string states before reach $M_{
m BH}$ [51]

Tree level superstring amplitudes involving at most 2 fermions and gluons: model independent for any compactification, # of susy's, even none no intermediate exchange of KK, windings or graviton emmission Universal sum over infinite exchange of string (Regge) excitations

Cross sections

$$\begin{array}{ccc} |\mathcal{M}(gg \to gg)|^2 &, & |\mathcal{M}(gg \to q\bar{q})|^2 \\ \\ |\mathcal{M}(q\bar{q} \to gg)|^2 &, & |\mathcal{M}(qg \to qg)|^2 \end{array} \end{array} \right\} \begin{array}{c} \text{model independent} \\ \text{for any compactification} \end{array}$$

$$\begin{aligned} |\mathcal{M}(gg \to gg)|^2 &= g_{YM}^4 \left(\frac{1}{s^2} + \frac{1}{t^2} + \frac{1}{u^2}\right) \\ &\times \left[\frac{9}{4} \left(s^2 V_s^2 + t^2 V_t^2 + u^2 V_u^2\right) - \frac{1}{3} \left(sV_s + tV_t + uV_u\right)^2\right] \end{aligned}$$

$$|\mathcal{M}(gg \to q\bar{q})|^2 = g_{YM}^4 \frac{t^2 + u^2}{s^2} \left[\frac{1}{6} \frac{1}{tu} (tV_t + uV_u)^2 - \frac{3}{8} V_t V_u \right] M_s = 1$$

$$V_s = -\frac{tu}{s} B(t, u) = 1 - \frac{2}{3}\pi^2 tu + \dots$$
 $V_t : s \leftrightarrow t$ $V_u : s \leftrightarrow u$

YM limits agree with e.g. book "Collider Physics" by Barger, Phillips

String Resonances production at Hadron Colliders I.A.-Anchordoqui-Dai-Feng-Goldberg-Huang-Lüst-Stojkovic-Taylor '14

String Resonances production at Hadron Colliders I.A.-Anchordoqui-Dai-Feng-Goldberg-Huang-Lüst-Stojkovic-Taylor '14

[51]

Localized fermions (on 3-brane intersections)

 \Rightarrow single production of KK modes

I.A.-Benakli '94

- strong bounds indirect effects: $R^{-1} \gtrsim 3 \,\mathrm{TeV}$
- new resonances but at most n = 1

Otherwise KK momentum conservation [61]

 \Rightarrow pair production of KK modes (universal dims)

- weak bounds $R^{-1} \gtrsim 500 \text{ GeV}$
- no resonances
- $\bullet \text{ lightest KK stable} \Rightarrow \mathsf{dark matter candidate}$

Servant-Tait '02

Universal extra dimensions (UED) : Mass spectrum

Radiative corrections \Rightarrow mass shifts that lift degeneracy at lowest KK level divergent sum over KK modes in the loop \Rightarrow cutoff scale $\Lambda \simeq 10/R$

UED hadron collider phenomenology

- large rates for KK-quark and KK-gluon production
- cascade decays via KK-W bosons and KK-leptons
 determine particle properties from different distributions
- missing energy from LKP: weakly interacting escaping detection
- phenomenology similar to supersymmetry

spin determination important for distinguishing SUSY and UED [51]

gluino	1/2	KK-gluon	1
squark	0	KK-quark	1/2
chargino	1/2	KK- <i>W</i> boson	1
slepton	0	KK-lepton	1/2
neutralino	1/2	KK-Z boson	1

SUSY vs UED signals at LHC

Example: jet dilepton final state

SUSY

UED

Extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

Two kinds of massive U(1)'s: I.A.-Kiritsis-Rizos '02

- 4d anomalous U(1)'s: $M_A \simeq g_A M_s$
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies)

 $M_{NA} \simeq g_A M_s V_2 \leftarrow (6d \rightarrow 4d)$ internal space $\Rightarrow M_{NA} \ge M_A$

or massless in the absence of such anomalies

Green-Schwarz anomaly cancellation

string theory: θ = Poincaré dual of a 2-form $d\theta = *dB_2$

Heterotic: single universal axion [36]

D-brane models: $U(1)_A$ gauge boson acquires a mass

but global symmetry remains in perturbation theory

Standard Model on D-branes : SM⁺⁺

TeV string scale Anchordogui-IA-Goldberg-Huang-Lüst-Taylor '11

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
 - Baryon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

- Lepton number \Rightarrow process _ no Lepton number $\Rightarrow \frac{1}{M_s}LLHH \rightarrow$ Majorana mass: $\frac{\langle H \rangle^2}{M_s}LL$ $\swarrow \sim \text{GeV}$

• $B, L \Rightarrow$ extra Z's

with possible leptophobic couplings leading to CDF-type Wij events $Z' \simeq B$ lighter than 4d anomaly free $Z'' \simeq B - L$

microgravity experiments

- change of Newton's law at short distances detectable only in the case of two large extra dimensions
- new short range forces light scalars and gauge fields if SUSY in the bulk or broken by the compactification on the brane I.A.-Dimopoulos-Dvali '98, I.A.-Benakli-Maillard-Laugier '02 such as radion and lepton number volume suppressed mass: $(\text{TeV})^2/M_P \sim 10^{-4} \text{ eV} \rightarrow \text{mm}$ range can be experimentally tested for any number of extra dimensions
 - Light U(1) gauge bosons: no derivative couplings
 - \Rightarrow for the same mass much stronger than gravity: $\gtrsim~10^{6}$

Experimental limits on short distance forces

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32} \text{ particle species }!$

- 2 ways to realize it lowering the string scale
 - Large extra dimensions SM on D-branes [46]

 $N = R_{\perp}^{n} I_{s}^{n}$: number of KK modes up to energies of order $M_{*} \simeq M_{s}$

Effective number of string modes contributing to the BH bound

 $N = \frac{1}{g_s^2}$ with $g_s \simeq 10^{-16}$ SM on NS5-branes

I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage Pixel of size L containing N species storing information:

localization energy $E\gtrsim N/L \rightarrow$ Schwarzschild radius $R_s=N/(LM_p^2)$

no collapse to a black hole : $L \gtrsim R_s \Rightarrow L \gtrsim \sqrt{N}/M_p = 1/M_*$

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32}$ particle species !

Gauge/Gravity duality \Rightarrow toy 5d bulk model

Gravity background : near horizon geometry (holography) Maldacena '98

Analogy from D3-branes : AdS_5

NS-5 branes : $(\mathcal{M}_6 \otimes \mathbb{R}_+)$ inear dilaton background in 5d flat string-frame metric $\Phi = -\alpha |y|$ Aharony-Berkooz-Kutasov-Seiberg '98

"cut" the space of the extra dimension \Rightarrow gravity on the brane

$$S_{bulk} = \int d^4x \int_0^{r_c} dy \sqrt{-g} e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4x \sqrt{-g} \left(e^{-\Phi} \right) \left(L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions: $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$
Constant dilaton and AdS metric : Randal Sundrum model

spacetime = slice of AdS₅ : $ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$ $k^2 \sim \Lambda/M_5^3$

• exponential hierarchy: $M_W = M_P e^{-2kr_c}$ $M_P^2 \sim M_5^3/k$ $M_5 \sim M_{GUT}$

• 4d gravity localized on the UV-brane, but KK gravitons on the IR $m_n = c_n \, k \, e^{-2kr_c} \sim \text{TeV}$ $c_n \simeq (n + 1/4)$ for large n \Rightarrow spin-2 TeV resonances in di-lepton or di-jet channels

Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

dilaton $\Phi = -\alpha |y|$ and flat metric \Rightarrow

$$g_s^2 = e^{-lpha|y|}$$
 ; $ds^2 = e^{rac{2}{3}lpha|y|} \left(\eta_{\mu
u} dx^\mu dx^
u + dy^2
ight) \leftarrow$ Einstein frame

 $z \sim e^{\alpha y/3} \Rightarrow$ polynomial warp factor + log varying dilaton

• exponential hierarchy: $g_s^2 = e^{-\alpha|y|}$ $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$ $\alpha \equiv k_{RS}$

4d graviton flat, KK gravitons localized near SM

LST KK graviton phenomenology

• KK spectrum :
$$m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$$
; $n = 1, 2, ...$

 \Rightarrow mass gap + dense KK modes $\alpha \sim 1$ TeV $r_c^{-1} \sim 30$ GeV

• couplings :
$$\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$$

 \Rightarrow extra suppression by a factor $(\alpha r_c) \simeq 30$

• width :
$$1/(\alpha r_c)^2$$
 suppression ~ 1 GeV

 \Rightarrow narrow resonant peaks in di-lepton or di-jet channels

• extrapolates between RS and flat extra dims (n = 1)

 \Rightarrow distinct experimental signals

Conclusions

- Discovery of a Higgs scalar at the LHC: important milestone of the LHC research program
- Precise measurement of its couplings is of primary importance
- Hint on the origin of mass hierarchy and of BSM physics
 - natural or unnatural SUSY?
 - Iow string scale in some realization?
 - something new and unexpected?
 - all options are still open
- LHC enters a new era with possible new discoveries
- Future plans to explore the 10-100 TeV energy frontier