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Spectral action in noncommutative geometry

Geometrical description of several
theories in high-energy physics ...

such as:

Yang–Mills theory and the Standard Model of elementary particle
physics, including Higgs.

Supersymmetric Yang–Mills (Thijs van den Broek)

Technique: asymptotically expand the spectral action Tr(f (D/Λ)) to obtain
(physical, but Euclidean) Lagrangians at lowest order in the fields.

... at the classical level



Perturbative quantization
One can then perturbatively quantize the physical Lagrangians, arriving at
physical predictions (167GeV . mH . 176GeV, with big desert).

Of course, such a quantization is not really satisfactory, one wants a more
intrinsically defined quantization.

This is a first such attempt, studying the perturbative quantization of the
full asymptotic expansion of the spectral action, in which Λ will act as a
natural cutoff regulator.

This turns out to be surprisingly successful:

In the case of the Yang–Mills system, the spectral action, regularized by
Λ defines a higher-derivative gauge theory which is superrenormalizable.
[vS, arXiv:1101.4804,1104.5199]

More generally, for AC manifolds M × F one can define conditions on
the finite space F such that the corresponding spectral action (with Λ)
is superrenormalizable (though not multiplicatively). [vS,in preparation]
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The spectral action for Yang–Mills fields

Starting point is the Dirac operator ∂/ = iγµ∂µ on a flat (4-dimensional)
Riemannian spin manifold M, coupled to a gauge field Aµ(x) ∈ su(N):

∂/  ∂/ A := iγµ(∂µ + Aµ)

Gauge transformations are given by

Aµ 7→ uAµu
∗ + u∂µu

∗; (u(x) ∈ SU(N)).

In other words, ∂/ A 7→ u∂/ Au
∗.

A natural gauge invariant functional is given by the spectral action [CC]

SΛ[A] = Tr f (∂/ A/Λ)− Tr f (∂/ /Λ).

where f : R→ R+ is an arbitrary even function that we assume to be a
Laplace transform

f (x) =

∫
t>0

e−tx
2
g(t)dt.
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Yang–Mills action at lowest order

Theorem (Chamseddine–Connes 1996)

The spectral action for the above Yang–Mills system is given, asymptotically
as Λ→∞, by

SΛ[A] ∼ − f (0)

24π2

∫
M

TrN FµνF
µν +O(Λ−1)

where Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ].

The appearance of the Yang–Mills action at lowest order is the main
motivation to study this model: we will soon incorporate the terms ∝ Λ−1.
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Crashcourse: renormalization of the Yang–Mills action

SYM[A] = −1

4
TrN FµνF

µν

= −1

2
TrN ∂µAν(∂µAν − ∂νAµ)−1

2
∂νAµ[Aµ,Aν ]−1

4
[Aµ,Aν ][Aµ,Aν ]

Inverting the quadratic form (after gauge fixing) this gives rise to the
free propagator

∼ |p|−2 (as p →∞)

The interaction terms of order 3 and 4 gives rise to vertices

∼ |p|; ∼ 1 (as p →∞)
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These edges and vertices connect to form Feynman graphs, such as

∝
∫

d4p
pµpν

p2(q + p)2
,

∫
d4p

pµ
p2(q + p)2

,

∫
d4p

1

p2(q + p)2

These integrals are divergent  renormalization.

More generally, for a Feynman graph Γ at loop order L, with I (E ) internal
(external) edges and V3,V4 vertices, the number of momenta in numerator
and denominator is superficial degree of divergence

ω = 4L− 2I + V3 = 4− E

If ω > 0 then the amplitude is (potentially) divergent; if ω < 0 then the
amplitude is convergent.

Conclusion: For Yang–Mills theory the divergent Feynman graphs have
E ≤ 4 (any L): renormalizable field theory.

Counterterm is ∝ A,A2,A3,A4; gauge invariance =⇒ TrN FµνF
µν
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Full asymptotic expansion and higher-derivatives

Proposition (CC)

There is an asymptotic expansion (as Λ→∞):

SΛ[A] ≡ Tr f (∂/ A/Λ)− f (∂/ /Λ) ∼
∑
m>0

Λ4−mf4−m

∫
M
am(x , ∂/ 2

A).

where am are the heat kernel invariants of the Laplace-type operator ∂/ 2
A.

The am(x , ∂/ 2
A) are Lorentz and gauge invariant polynomials of degree m

in the covariant derivative ∂µ + Aµ.

For example,

a4(x , ∂/ 2
A) =

1

8π2

(
−1

3
TrN FµνF

µν

)
,

a6(x , ∂/ 2
A) =

1

8π2

(
2

15
TrN Fµν ;µF

ρν
;ρ +

23

45
TrN Fµ

νFν
ρFρ

µ

)
.
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The free part

Proposition (vS)

The spectral action admits the following asymptotic expansion (as Λ→∞):

SΛ[A] ∼ −
∫
M

TrN FµνϕΛ(∆)(Fµν) +O(A3)

where ϕΛ(∆) =
∑

k≥0(−1)kΛ−2k f−2kck∆k ; ck = 1
8π2

(k+1)!
(2k+3)(2k+1)! .

Quadratic part vanishes for pure gauge fields Aµ = ∂µχ; gauge fixing:

Sgf [A] ∼ − 1

2ξ

∫
TrN ∂µA

µϕΛ(∆) (∂νA
ν)

This yields a gauge propagator of the form:

Dab
µν(p; Λ) =

[
gµν − (1− ξ)

pµpν
p2

]
δab

p2ϕΛ(p2)
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Faddeev–Popov ghosts and Jacobian

As usual, the above gauge fixing requires a Jacobian

Sgh[A,C ,C ] ∼ −
∫

TrN ∂µCϕΛ(∆) (∂µC + [Aµ,C ])

Here C ,C are the Faddeev–Popov ghost fields

The ghost propagator is

D̃ab(p; Λ) = δab

p2ϕΛ(p2)
.

Proposition

The sum SΛ[A] + Sgf [A] + Sgh[A,C ,C ] is invariant under the
BRST-transformations:

sAµ = ∂µC + [Aµ,C ]; sC = −1
2 [C ,C ]; sC = ξ−1∂µA

µ.
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The parameter Λ as a regulator

We treat SΛ[A] + Sgf [A] + Sgh[A,C ,C ] as a higher-derivative gauge theory,
with Λ acting as a regulator.

If we assume f4−m = 0 for all m > n for some even integer n, then

ϕΛ(p2) =

n/2−2∑
k=0

Λ−2k f−2kckp
2k ∼ pn−4 (as |p| → ∞).

This implies for the gauge and ghost propagator:

Dab
µν(p; Λ), D̃ab(p; Λ) ∼ p−n+2 (as |p| → ∞).
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Feynman graph for the HD theory

Graphically:

∼ p−n+2 (as p →∞)

The interaction terms of order i gives rise to vertices of valence i , for
which one derives that the maximal number of derivatives is n − i .

∼ |p|n−i (as p →∞)

This implies that for a Feynman graph at loop order L with E external
edges, the superficial degree of divergence is

ω = (4− n)(L− 1) + 4− E
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Superrenormalizability

Thus, with ω = (4− n)(L− 1) + 4− E we conclude that if n ≥ 8 then

ω < 0 if L ≥ 2 (convergent)
ω > 0 if L = 1 and E ≤ 4 (finitely many divergent graphs, 1L)

We conclude that SΛ[A] + Sgf [A] + Sgh[A,C ,C ] with the cutoff Λ
defines a theory that is superrenormalizable.

The required counterterms all appear at one-loop, and have maximal
degree = 4 in the fields and derivatives.

BRST-invariance then implies that the counterterms are of the form

δZ

∫
M

TrN FµνF
µν .

which can be absorbed into the spectral action by translating

f (x) 7→ f (x) + 24π2δZ
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Conclusions (I)

Theorem (vS)

The Yang–Mills spectral action, considered as a higher-derivative gauge
theory with regulator Λ is multiplicatively superrenormalizable.

This opens intriguing possibilities in trying to quantize this theory.

First, we focus on the relation with noncommutative geometry and
derive a general superrenormalizability result for certain almost
commutative (AC) manifolds.
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Noncommutative manifolds
Basic device: a spectral triple (A,H,D):

algebra A of bounded operators on
a Hilbert space H,
a self-adjoint operator D with compact resolvent
such that the commutator [D, a] is bounded for all a ∈ A.

Grading γ : H → H such that

γ2 = id, Dγ + γD = 0, γa = aγ (a ∈ A)

Real structure J : H → H, anti-unitary operator such that

JD = ±JD, Jγ = ±γJ.

defining an A-bimodule structure on H via

(a, b) · ψ = aJb∗J−1ψ (ψ ∈ H)

and we require (first order):

[[D, a], JbJ−1] = 0
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such that the commutator [D, a] is bounded for all a ∈ A.

Grading γ : H → H such that

γ2 = id, Dγ + γD = 0, γa = aγ (a ∈ A)

Real structure J : H → H, anti-unitary operator such that

JD = ±JD, Jγ = ±γJ.

defining an A-bimodule structure on H via

(a, b) · ψ = aJb∗J−1ψ (ψ ∈ H)

and we require (first order):

[[D, a], JbJ−1] = 0



Example: Riemannian spin geometry

Let M be a compact m-dimensional Riemannian spin manifold.

A = C∞(M)

H = L2(S), square integrable spinors

D = ∂/ , Dirac operator

γ = γm+1 if m even (chirality)

J = C (charge conjugation)

Then D has compact resolvent because ∂/ elliptic self-adjoint.
Also [D, f ] bounded for f ∈ C∞(M) with ‖[D, f ]‖ = ‖f ‖Lip.



AC Manifolds
Let M be a compact m-dimensional Riemannian spin manifold, and
(AF ,HF ,DF ; γF , JF ) a spectral triple for which HF is finite-dimensional.

A = C∞(M,AF )

H = L2(S)⊗ HF , square integrable spinors

D = ∂/ ⊗ 1 + γm+1 ⊗ DF , Dirac operator

γ = γm+1 ⊗ γF ; J = C ⊗ JF (charge conjugation)

Two examples of interest:

The algebra Mn(C) of complex n × n matrices acting on itself

(AF = Mn(C),HF = Mn(C),DF = 0; JF = (·)∗).

The noncommutative description of the Standard Model is based on

AF = C⊕H⊕M3(C).

It is represented on HF = C96, where 96 is 2 (particles and
anti-particles) times 3 (families) times 4 leptons plus 4 quarks with 3
colors each. Finally, there are 96× 96 matrices DF , γF , and JF .
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Classification of AC manifolds

Since

AF '
N⊕
i=1

Mki (C) (complex algebras)

the Hilbert space HF decomposes into irreducible left and right
AF -representations Cki ⊗ Ckj .

Graphically, presence of
such an irrep in HF can
be depicted by a node:

· · · ki · · · kj · · ·
...

ki

...

kj

...
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JF is the reflection along the diagonal.

The operator DF : HF → HF is represented by lines between nodes;

· · · ki · · · kj · · ·
...

ki

...

kj

...
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��
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��

The conditions on a real spectral triple demand that the lines run
horizontally or vertically and that the Krajewski diagram is symmetric with
respect to the diagonal.
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Krajewski diagram for the SM: AF = C⊕H⊕M3(C)
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Inner fluctuations for (general) spectral triples

Inner fluctuations (driven by Morita self-equivalences of A) replace the
operator D by D ′ = DA ≡ D + A± JAJ−1 with A∗ = A ∈ Ω1

D(A) the
connection one-form (gauge potential) in ∇ = d + A, where

Ω1
D(A) :=

{∑
k

ak [D, bk ] : ak , bk ∈ A

}

The (gauge) group U(A) of unitary elements in A acts on H in the
adjoint, i.e. via the unitary U = uJuJ−1 for u ∈ U(A).

This induces an action of U(A) on the connection one-form A, since
D ′ 7→ UD ′U∗ implies

A 7→ uAu∗ + u[D, u∗]

In this generality, a gauge invariant functional of A is given by the
spectral action

SΛ[A] := Tr(f (DA/Λ)− f (D/Λ))

with f a function on R (...) and Λ ∈ R a cutoff parameter.
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Inner fluctuations for AC manifolds and the spectral action

Inner fluctuations replace ∂/  ∂/ + iA + γ5Φ where A ∈ Ω1(M, u(AF ))
and Φ∗(x) = Φ(x) ∈ Ω1

DF
(AF ).

The (gauge) group U(A) ' C∞(M,U(AF )) acts on A and Φ as:

Aµ 7→ uAµu
∗ + u∂µu

∗; Φ 7→ uΦu∗

The spectral action becomes SΛ[A,Φ] := Tr
(
f
(
∂/+iA+γ5Φ

Λ

)
− f

(
∂/
Λ

))

Proposition (vS)

The spectral action for 4d AC manifolds admits an asympt. exp. (Λ→∞):

SΛ[A,Φ] ∼ − f2
4π2

∫
M

TrF Φ2 +

∫
M

TrF (∂µΦ)ϑΛ(∆)(∂µΦ)

−
∫

TrF FµνϕΛ(∆)(Fµν) +O(A3,Φ3)

with ϕΛ, ϑΛ formal expansions in Λ.
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Rξ-gauge fixing

Allowing for spontaneous symmetry breaking, we expand Φ around its
vacuum expectation value v ≡ 〈Φ〉0.

This gives cross-terms
∫

(∂µχ)$Λ(∆; v)([Aµ, v ]) wrt Φ = v + χ; here
$Λ is a formal expansion in Λ.

A clever choice (à la ’t Hooft) of gauge fixing cancels this term:

Sgf [A,Φ] ∼ 1

2ξ

∫
TrN (∂µA

aµ − ξχ[T a, v ])$Λ(∆; v) (∂νA
aν − ξχ[T a, v ])

Similarly, a Faddeev–Popov ghost term, producing a BRST-invariant
functional.
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Superrenormalizability

Powercounting as before, yielding a superrenormalizable
higher-derivative theory.

What about gauge invariance? The required (local) counterterms (at
one-loop) are of maximal degree 4 in the fields and their derivatives,
and should be invariants under the gauge group C∞(M,U(AF )).

On the other hand, in the spectral action only particular invariant
functional will appear, such as TrF Φ4, TrF Φ2, TrF (∇µΦ)2.
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A criterion on Krajewski diagrams
Let us analyze this with the help of Krajewski diagrams.

Let Γ̃ be the projection of a Krajewski diagram Γ onto a horizontal (or
vertical) axis.

The gauge group U(AF ) acts on the (operators along the) lines in Γ̃,
and any gauge invariant functional in the components of Φ corresponds
to a cycle in Γ̃ (with the degree of the former = the length of the latter).

On the other hand, the functionals in the components of Φ that appear
in the spectral action correspond to cycles in Γ (idem).

Theorem (vS)

Consider an AC manifold given by a Krajewski diagram Γ. The corresponding
spectral action, considered as a higher-derivative gauge theory with regulator
Λ is superrenormalizable if:

every union of connected cycles in Γ̃ of total length 4 can be lifted to a
connected cycle in Γ.
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Example: The Standard Model
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Thus, the Krajewski diagram for the Standard Model satisfies this property,
so that the corresponding spectral action is superrenormalizable as a
higher-derivative gauge theory with regularizing parameter Λ.



Conclusions (II)

We have established that under certain (graph theoretical) conditions,
the spectral action (interpreted as HD-theory, Λ) on an AC manifold is
superrenormalizable as a gauge theory.

The spectral action becomes the Lagrangian of physical interest (eg.
YM, SM), asymptotically as Λ→∞: this motivates the role of Λ as a
regulator.

This is in contrast with a recent preprint [ILV] where the full spectral
action was considered, without such a regulator. In that case, the
propagator has behaviour ∼ p−4.

The renormalizability is not multiplicative, since typically (SM) the
spectral action defines a theory at unification.

The next step consists of combining the spectral action as HD regulator
of the physical Lagrangian with eg. dim-reg to regularize the divergences
at one loop and compute (and compare) the β-function in this scheme.


