Renormalization of the Yang-Mills spectral action

Walter D. van Suijlekom

September 8, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral action in noncommutative geometry

Geometrical description of several theories in high-energy physics ...

such as:

- Yang–Mills theory and the Standard Model of elementary particle physics, including Higgs.
- Supersymmetric Yang-Mills (Thijs van den Broek)

Technique: asymptotically expand the spectral action $Tr(f(D/\Lambda))$ to obtain (physical, but Euclidean) Lagrangians at lowest order in the fields.

... at the classical level

One can then perturbatively quantize the physical Lagrangians, arriving at physical predictions (167GeV $\lesssim m_H \lesssim$ 176GeV, with big desert).

One can then perturbatively quantize the physical Lagrangians, arriving at physical predictions (167GeV $\lesssim m_H \lesssim$ 176GeV, with big desert).

Of course, such a quantization is not really satisfactory, one wants a **more intrinsically defined quantization**.

One can then perturbatively quantize the physical Lagrangians, arriving at physical predictions (167GeV $\lesssim m_H \lesssim$ 176GeV, with big desert).

Of course, such a quantization is not really satisfactory, one wants a **more intrinsically defined quantization**.

This is a first such attempt, studying the perturbative quantization of the full asymptotic expansion of the spectral action, in which Λ will act as a natural cutoff regulator.

One can then perturbatively quantize the physical Lagrangians, arriving at physical predictions (167GeV $\lesssim m_H \lesssim$ 176GeV, with big desert).

Of course, such a quantization is not really satisfactory, one wants a **more intrinsically defined quantization**.

This is a first such attempt, studying the perturbative quantization of the full asymptotic expansion of the spectral action, in which Λ will act as a natural cutoff regulator.

This turns out to be surprisingly successful:

- In the case of the Yang–Mills system, the spectral action, regularized by Λ defines a higher-derivative gauge theory which is superrenormalizable. [vS, arXiv:1101.4804,1104.5199]
- More generally, for AC manifolds M × F one can define conditions on the finite space F such that the corresponding spectral action (with Λ) is superrenormalizable (though not multiplicatively). [vS, in preparation]

The spectral action for Yang-Mills fields

• Starting point is the Dirac operator $\partial = i\gamma^{\mu}\partial_{\mu}$ on a flat (4-dimensional) Riemannian spin manifold M, coupled to a gauge field $A_{\mu}(x) \in \mathfrak{su}(N)$:

$$\partial \rightsquigarrow \partial_A := i\gamma^\mu (\partial_\mu + A_\mu)$$

The spectral action for Yang-Mills fields

• Starting point is the Dirac operator $\partial = i\gamma^{\mu}\partial_{\mu}$ on a flat (4-dimensional) Riemannian spin manifold M, coupled to a gauge field $A_{\mu}(x) \in \mathfrak{su}(N)$:

$$\partial \rightsquigarrow \partial_A := i\gamma^\mu (\partial_\mu + A_\mu)$$

Gauge transformations are given by

$$A_{\mu} \mapsto u A_{\mu} u^* + u \partial_{\mu} u^*; \qquad (u(x) \in SU(N)).$$

In other words, $\partial _{A}\mapsto u\partial _{A}u^{*}.$

The spectral action for Yang-Mills fields

• Starting point is the Dirac operator $\partial = i\gamma^{\mu}\partial_{\mu}$ on a flat (4-dimensional) Riemannian spin manifold M, coupled to a gauge field $A_{\mu}(x) \in \mathfrak{su}(N)$:

$$\partial \rightsquigarrow \partial_A := i \gamma^\mu (\partial_\mu + A_\mu)$$

Gauge transformations are given by

$$A_{\mu} \mapsto u A_{\mu} u^* + u \partial_{\mu} u^*; \qquad (u(x) \in SU(N)).$$

In other words, $\partial_A \mapsto u \partial_A u^*$.

• A natural gauge invariant functional is given by the spectral action [CC]

$$S_{\Lambda}[A] = \operatorname{Tr} f(\partial_A/\Lambda) - \operatorname{Tr} f(\partial/\Lambda).$$

where $f : \mathbb{R} \to \mathbb{R}_+$ is an arbitrary even function that we assume to be a Laplace transform

$$f(x) = \int_{t>0} e^{-tx^2}g(t)dt.$$

Yang-Mills action at lowest order

Theorem (Chamseddine-Connes 1996)

The spectral action for the above Yang–Mills system is given, asymptotically as $\Lambda\to\infty,$ by

$$S_{\Lambda}[A] \sim -rac{f(0)}{24\pi^2} \int_M \operatorname{Tr}_N F_{\mu
u} F^{\mu
u} + \mathcal{O}(\Lambda^{-1})$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}].$

Yang–Mills action at lowest order

Theorem (Chamseddine–Connes 1996)

The spectral action for the above Yang–Mills system is given, asymptotically as $\Lambda\to\infty,$ by

$$S_{\Lambda}[A] \sim -rac{f(0)}{24\pi^2} \int_M \operatorname{Tr}_N F_{\mu
u} F^{\mu
u} + \mathcal{O}(\Lambda^{-1})$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}].$

The appearance of the Yang–Mills action at lowest order is the main motivation to study this model: we will soon incorporate the terms $\propto \Lambda^{-1}$.

Crashcourse: renormalization of the Yang-Mills action

$$S_{\rm YM}[A] = -\frac{1}{4} \operatorname{Tr}_{N} F_{\mu\nu} F^{\mu\nu}$$
$$= -\frac{1}{2} \operatorname{Tr}_{N} \partial_{\mu} A_{\nu} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) - \frac{1}{2} \partial_{\nu} A_{\mu}[A^{\mu}, A^{\nu}] - \frac{1}{4} [A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}]$$

Crashcourse: renormalization of the Yang-Mills action

$$S_{\rm YM}[A] = -\frac{1}{4} \operatorname{Tr}_{N} F_{\mu\nu} F^{\mu\nu}$$
$$= -\frac{1}{2} \operatorname{Tr}_{N} \partial_{\mu} A_{\nu} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) - \frac{1}{2} \partial_{\nu} A_{\mu} [A^{\mu}, A^{\nu}] - \frac{1}{4} [A_{\mu}, A_{\nu}] [A^{\mu}, A^{\nu}]$$

• Inverting the quadratic form (after gauge fixing) this gives rise to the free propagator

$$\sim |p|^{-2}$$
 (as $p \to \infty$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

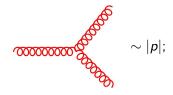
Crashcourse: renormalization of the Yang-Mills action

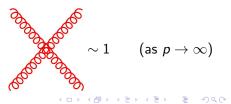
$$S_{\rm YM}[A] = -\frac{1}{4} \operatorname{Tr}_{N} F_{\mu\nu} F^{\mu\nu}$$
$$= -\frac{1}{2} \operatorname{Tr}_{N} \partial_{\mu} A_{\nu} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) - \frac{1}{2} \partial_{\nu} A_{\mu}[A^{\mu}, A^{\nu}] - \frac{1}{4} [A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}]$$

• Inverting the quadratic form (after gauge fixing) this gives rise to the free propagator

 $\sim |p|^{-2}$ (as $p
ightarrow \infty$)

• The interaction terms of order 3 and 4 gives rise to vertices





These edges and vertices connect to form Feynman graphs, such as

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

These integrals are divergent \rightsquigarrow renormalization.

These edges and vertices connect to form Feynman graphs, such as

These integrals are divergent \rightsquigarrow renormalization.

More generally, for a Feynman graph Γ at loop order *L*, with *I* (*E*) internal (external) edges and V_3 , V_4 vertices, the number of momenta in numerator and denominator is superficial degree of divergence

$$\omega = 4L - 2I + V_3 = 4 - E$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

If $\omega > 0$ then the amplitude is (potentially) divergent; if $\omega < 0$ then the amplitude is convergent.

These edges and vertices connect to form Feynman graphs, such as

These integrals are divergent \rightsquigarrow renormalization.

More generally, for a Feynman graph Γ at loop order *L*, with *I* (*E*) internal (external) edges and V_3 , V_4 vertices, the number of momenta in numerator and denominator is superficial degree of divergence

$$\omega = 4L - 2I + V_3 = 4 - E$$

If $\omega > 0$ then the amplitude is (potentially) divergent; if $\omega < 0$ then the amplitude is convergent.

Conclusion: For Yang–Mills theory the divergent Feynman graphs have $E \le 4$ (any *L*): renormalizable field theory.

Counterterm is $\propto A, A^2, A^3, A^4$; gauge invariance $\implies \text{Tr}_N F_{\mu\nu} F^{\mu\nu}$

Full asymptotic expansion and higher-derivatives Proposition (CC)

There is an asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \equiv \operatorname{Tr} f(\partial_A/\Lambda) - f(\partial/\Lambda) \sim \sum_{m>0} \Lambda^{4-m} f_{4-m} \int_M a_m(x, \partial_A^2).$$

where a_m are the heat kernel invariants of the Laplace-type operator ∂_A^2 .

Full asymptotic expansion and higher-derivatives Proposition (CC)

There is an asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \equiv \operatorname{Tr} f(\partial_A/\Lambda) - f(\partial/\Lambda) \sim \sum_{m>0} \Lambda^{4-m} f_{4-m} \int_M a_m(x, \partial_A^2).$$

where a_m are the heat kernel invariants of the Laplace-type operator ∂_A^2 .

• The $a_m(x, \partial_A^2)$ are Lorentz and gauge invariant polynomials of degree m in the covariant derivative $\partial_\mu + A_\mu$.

Full asymptotic expansion and higher-derivatives Proposition (CC)

There is an asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \equiv \operatorname{Tr} f(\partial_A/\Lambda) - f(\partial/\Lambda) \sim \sum_{m>0} \Lambda^{4-m} f_{4-m} \int_M a_m(x, \partial_A^2).$$

where a_m are the heat kernel invariants of the Laplace-type operator ∂_A^2 .

- The $a_m(x, \partial_A^2)$ are Lorentz and gauge invariant polynomials of degree m in the covariant derivative $\partial_\mu + A_\mu$.
- For example,

$$a_{4}(x, \partial_{A}^{2}) = \frac{1}{8\pi^{2}} \left(-\frac{1}{3} \operatorname{Tr}_{N} F_{\mu\nu} F^{\mu\nu} \right),$$

$$a_{6}(x, \partial_{A}^{2}) = \frac{1}{8\pi^{2}} \left(\frac{2}{15} \operatorname{Tr}_{N} F^{\mu\nu}{}_{;\rho} + \frac{23}{45} \operatorname{Tr}_{N} F_{\mu}{}^{\nu} F_{\nu}{}^{\rho} F_{\rho}{}^{\mu} \right).$$

The free part

Proposition (vS)

The spectral action admits the following asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \sim -\int_{\mathcal{M}} \operatorname{Tr}_{N} F_{\mu
u} \varphi_{\Lambda}(\Delta)(F^{\mu
u}) + \mathcal{O}(A^{3})$$

where $\varphi_{\Lambda}(\Delta) = \sum_{k \ge 0} (-1)^k \Lambda^{-2k} f_{-2k} c_k \Delta^k$; $c_k = \frac{1}{8\pi^2} \frac{(k+1)!}{(2k+3)(2k+1)!}$.

The free part

Proposition (vS)

The spectral action admits the following asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \sim -\int_{M} \operatorname{Tr}_{N} F_{\mu
u} \varphi_{\Lambda}(\Delta)(F^{\mu
u}) + \mathcal{O}(A^{3})$$

where
$$\varphi_{\Lambda}(\Delta) = \sum_{k \geq 0} (-1)^k \Lambda^{-2k} f_{-2k} c_k \Delta^k; \qquad c_k = \frac{1}{8\pi^2} \frac{(k+1)!}{(2k+3)(2k+1)!}.$$

• Quadratic part vanishes for pure gauge fields $A_{\mu} = \partial_{\mu} \chi$; gauge fixing:

$$\mathcal{S}_{
m gf}[\mathcal{A}] \sim -rac{1}{2\xi}\int {
m Tr}_{\mathcal{N}}\,\partial_{\mu}\mathcal{A}^{\mu}arphi_{\Lambda}(\Delta)\,(\partial_{
u}\mathcal{A}^{
u})$$

The free part

Proposition (vS)

The spectral action admits the following asymptotic expansion (as $\Lambda \to \infty$):

$$S_{\Lambda}[A] \sim -\int_{M} \operatorname{Tr}_{N} F_{\mu
u} \varphi_{\Lambda}(\Delta)(F^{\mu
u}) + \mathcal{O}(A^{3})$$

where
$$\varphi_{\Lambda}(\Delta) = \sum_{k \geq 0} (-1)^k \Lambda^{-2k} f_{-2k} c_k \Delta^k; \qquad c_k = \frac{1}{8\pi^2} \frac{(k+1)!}{(2k+3)(2k+1)!}.$$

• Quadratic part vanishes for pure gauge fields $A_{\mu} = \partial_{\mu} \chi$; gauge fixing:

$$\mathcal{S}_{
m gf}[A] \sim -rac{1}{2\xi}\int {
m Tr}_N\,\partial_\mu A^\mu arphi_\Lambda(\Delta)\,(\partial_
u A^
u)$$

• This yields a gauge propagator of the form:

$$D^{ab}_{\mu\nu}(p;\Lambda) = \left[g_{\mu\nu} - (1-\xi)\frac{p_{\mu}p_{\nu}}{p^2}\right]\frac{\delta^{ab}}{p^2\varphi_{\Lambda}(p^2)}$$

э

Faddeev–Popov ghosts and Jacobian

• As usual, the above gauge fixing requires a Jacobian

$$S_{\mathsf{gh}}[A, C, \overline{C}] \sim -\int \mathsf{Tr}_N \, \partial_\mu \overline{C} \varphi_\Lambda(\Delta) \left(\partial^\mu C + [A^\mu, C] \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here C, \overline{C} are the Faddeev–Popov ghost fields

Faddeev–Popov ghosts and Jacobian

• As usual, the above gauge fixing requires a Jacobian

$$S_{\mathsf{gh}}[A, C, \overline{C}] \sim -\int \mathsf{Tr}_N \, \partial_\mu \overline{C} \varphi_\Lambda(\Delta) \left(\partial^\mu C + [A^\mu, C] \right)$$

Here C, \overline{C} are the Faddeev–Popov ghost fields

The ghost propagator is

$$\widetilde{D}^{ab}(p;\Lambda) = rac{\delta^{ab}}{p^2 \varphi_{\Lambda}(p^2)}.$$

Faddeev–Popov ghosts and Jacobian

• As usual, the above gauge fixing requires a Jacobian

$$S_{\mathsf{gh}}[A, C, \overline{C}] \sim -\int \mathsf{Tr}_N \, \partial_\mu \overline{C} \varphi_\Lambda(\Delta) \left(\partial^\mu C + [A^\mu, C] \right)$$

Here C, \overline{C} are the Faddeev–Popov ghost fields

• The ghost propagator is

$$\widetilde{D}^{ab}(p;\Lambda) = rac{\delta^{ab}}{p^2 \varphi_{\Lambda}(p^2)}.$$

Proposition

The sum $S_{\Lambda}[A] + S_{gf}[A] + S_{gh}[A, C, \overline{C}]$ is invariant under the BRST-transformations:

$$sA_{\mu} = \partial_{\mu}C + [A_{\mu}, C];$$
 $sC = -\frac{1}{2}[C, C];$ $s\overline{C} = \xi^{-1}\partial_{\mu}A^{\mu}.$

The parameter Λ as a regulator

We treat $S_{\Lambda}[A] + S_{gf}[A] + S_{gh}[A, C, \overline{C}]$ as a higher-derivative gauge theory, with Λ acting as a regulator.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The parameter Λ as a regulator

We treat $S_{\Lambda}[A] + S_{gf}[A] + S_{gh}[A, C, \overline{C}]$ as a higher-derivative gauge theory, with Λ acting as a regulator.

• If we assume $f_{4-m} = 0$ for all m > n for some even integer n, then

$$arphi_{\Lambda}(p^2) = \sum_{k=0}^{n/2-2} \Lambda^{-2k} f_{-2k} c_k p^{2k} \sim p^{n-4} \quad (\mathrm{as} \ |p|
ightarrow \infty).$$

The parameter Λ as a regulator

We treat $S_{\Lambda}[A] + S_{gf}[A] + S_{gh}[A, C, \overline{C}]$ as a higher-derivative gauge theory, with Λ acting as a regulator.

• If we assume $f_{4-m} = 0$ for all m > n for some even integer n, then

$$arphi_{\Lambda}(p^2) = \sum_{k=0}^{n/2-2} \Lambda^{-2k} f_{-2k} c_k p^{2k} \sim p^{n-4} \quad (ext{as } |p|
ightarrow \infty).$$

• This implies for the gauge and ghost propagator:

$$D^{ab}_{\mu
u}(p;\Lambda), \quad \widetilde{D}^{ab}(p;\Lambda) \sim p^{-n+2} \quad (\mathrm{as} \ |p| \to \infty).$$

Feynman graph for the HD theory

• Graphically:

$$(\text{as } p \to \infty)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Feynman graph for the HD theory

• Graphically:

 The interaction terms of order *i* gives rise to vertices of valence *i*, for which one derives that the maximal number of derivatives is n - i.

$$\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}}} \sim |p|^{n-i} \qquad (\text{as } p \to \infty)$$

Feynman graph for the HD theory

• Graphically:

 The interaction terms of order *i* gives rise to vertices of valence *i*, for which one derives that the maximal number of derivatives is n - i.

$$\overbrace{}^{\bullet\bullet\bullet\bullet}_{i} \sim |p|^{n-i} \quad (\text{as } p \to \infty)$$

• This implies that for a Feynman graph at loop order *L* with *E* external edges, the superficial degree of divergence is

$$\omega = (4-n)(L-1) + 4 - E$$

• Thus, with $\omega = (4 - n)(L - 1) + 4 - E$ we conclude that if $n \ge 8$ then

- $\omega < 0$ if $L \ge 2$ (convergent)
- $\omega > 0$ if L = 1 and $E \le 4$ (finitely many divergent graphs, 1L)

• Thus, with $\omega = (4 - n)(L - 1) + 4 - E$ we conclude that if $n \ge 8$ then

- $\omega < 0$ if $L \ge 2$ (convergent)
- $\omega > 0$ if L = 1 and $E \le 4$ (finitely many divergent graphs, 1L)
- We conclude that $S_{\Lambda}[A] + S_{gf}[A] + S_{gh}[A, C, \overline{C}]$ with the cutoff Λ defines a theory that is **superrenormalizable**.

- Thus, with $\omega = (4 n)(L 1) + 4 E$ we conclude that if $n \ge 8$ then
 - $\omega < 0$ if $L \ge 2$ (convergent)
 - $\omega > 0$ if L = 1 and $E \le 4$ (finitely many divergent graphs, 1L)
- We conclude that S_Λ[A] + S_{gf}[A] + S_{gh}[A, C, C] with the cutoff Λ defines a theory that is superrenormalizable.
- The required counterterms all appear at one-loop, and have maximal degree = 4 in the fields and derivatives.

- Thus, with $\omega = (4 n)(L 1) + 4 E$ we conclude that if $n \ge 8$ then
 - $\omega < 0$ if $L \ge 2$ (convergent)
 - $\omega > 0$ if L = 1 and $E \le 4$ (finitely many divergent graphs, 1L)
- We conclude that S_Λ[A] + S_{gf}[A] + S_{gh}[A, C, C] with the cutoff Λ defines a theory that is superrenormalizable.
- The required counterterms all appear at one-loop, and have maximal degree = 4 in the fields and derivatives.
- BRST-invariance then implies that the counterterms are of the form

$$\delta Z \int_{M} \operatorname{Tr}_{N} F_{\mu\nu} F^{\mu\nu}.$$

which can be absorbed into the spectral action by translating

$$f(x) \mapsto f(x) + 24\pi^2 \delta Z$$

Conclusions (I)

Theorem (vS)

The Yang–Mills spectral action, considered as a higher-derivative gauge theory with regulator Λ is multiplicatively superrenormalizable.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusions (I)

Theorem (vS)

The Yang–Mills spectral action, considered as a higher-derivative gauge theory with regulator Λ is multiplicatively superrenormalizable.

• This opens intriguing possibilities in trying to quantize this theory.

Conclusions (I)

Theorem (vS)

The Yang–Mills spectral action, considered as a higher-derivative gauge theory with regulator Λ is multiplicatively superrenormalizable.

- This opens intriguing possibilities in trying to quantize this theory.
- First, we focus on the relation with noncommutative geometry and derive a general superrenormalizability result for certain almost commutative (AC) manifolds.

Noncommutative manifolds

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - ullet algebra ${\mathcal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.

Noncommutative manifolds

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - ullet algebra ${\mathcal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.
- Grading $\gamma: \mathcal{H} \to \mathcal{H}$ such that

$$\gamma^2 = \mathrm{id}, \qquad D\gamma + \gamma D = 0, \qquad \gamma a = a\gamma \quad (a \in A)$$

Noncommutative manifolds

- Basic device: a spectral triple $(\mathcal{A}, \mathcal{H}, D)$:
 - ullet algebra ${\mathcal A}$ of bounded operators on
 - a Hilbert space \mathcal{H} ,
 - a self-adjoint operator *D* with compact resolvent such that the commutator [*D*, *a*] is bounded for all *a* ∈ *A*.
- Grading $\gamma: \mathcal{H} \to \mathcal{H}$ such that

$$\gamma^2 = \mathrm{id}, \qquad D\gamma + \gamma D = 0, \qquad \gamma a = a\gamma \quad (a \in A)$$

• Real structure $J : \mathcal{H} \to \mathcal{H}$, anti-unitary operator such that

$$JD = \pm JD, \qquad J\gamma = \pm \gamma J.$$

defining an $\mathcal A\text{-bimodule structure}$ on $\mathcal H$ via

$$(a,b)\cdot\psi=aJb^*J^{-1}\psi\quad(\psi\in\mathcal{H})$$

and we require (first order):

 $[[D,a],JbJ^{-1}] = 0$

Example: Riemannian spin geometry

Let M be a compact m-dimensional Riemannian spin manifold.

- $\mathcal{A} = C^{\infty}(M)$
- $\mathcal{H} = L^2(S)$, square integrable spinors
- $D = \partial$, Dirac operator
- $\gamma = \gamma_{m+1}$ if *m* even (chirality)
- J = C (charge conjugation)
- Then *D* has compact resolvent because ∂ elliptic self-adjoint. Also [D, f] bounded for $f \in C^{\infty}(M)$ with $||[D, f]|| = ||f||_{Lip}$.

AC Manifolds

Let M be a compact m-dimensional Riemannian spin manifold, and

 $(A_F, H_F, D_F; \gamma_F, J_F)$ a spectral triple for which H_F is finite-dimensional.

- $\mathcal{A} = C^{\infty}(M, A_F)$
- $\mathcal{H} = L^2(S) \otimes H_F$, square integrable spinors
- $D = \partial \otimes 1 + \gamma_{m+1} \otimes D_F$, Dirac operator
- $\gamma = \gamma_{m+1} \otimes \gamma_F$; $J = C \otimes J_F$ (charge conjugation)

AC Manifolds

Let M be a compact m-dimensional Riemannian spin manifold, and

 $(A_F, H_F, D_F; \gamma_F, J_F)$ a spectral triple for which H_F is finite-dimensional.

- $\mathcal{A} = C^{\infty}(M, A_F)$
- $\mathcal{H} = L^2(S) \otimes H_F$, square integrable spinors
- $D = \partial \otimes 1 + \gamma_{m+1} \otimes D_F$, Dirac operator
- $\gamma = \gamma_{m+1} \otimes \gamma_F$; $J = C \otimes J_F$ (charge conjugation)

Two examples of interest:

• The algebra $M_n(\mathbb{C})$ of complex $n \times n$ matrices acting on itself

$$(A_F = M_n(\mathbb{C}), H_F = M_n(\mathbb{C}), D_F = 0; J_F = (\cdot)^*).$$

AC Manifolds

Let M be a compact m-dimensional Riemannian spin manifold, and

 $(A_F, H_F, D_F; \gamma_F, J_F)$ a spectral triple for which H_F is finite-dimensional.

- $\mathcal{A} = C^{\infty}(M, A_F)$
- $\mathcal{H} = L^2(S) \otimes H_F$, square integrable spinors
- $D = \partial \otimes 1 + \gamma_{m+1} \otimes D_F$, Dirac operator
- $\gamma = \gamma_{m+1} \otimes \gamma_F$; $J = C \otimes J_F$ (charge conjugation)

Two examples of interest:

• The algebra $M_n(\mathbb{C})$ of complex $n \times n$ matrices acting on itself

$$(A_F = M_n(\mathbb{C}), H_F = M_n(\mathbb{C}), D_F = 0; J_F = (\cdot)^*).$$

• The noncommutative description of the Standard Model is based on

$$A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}).$$

It is represented on $H_F = \mathbb{C}^{96}$, where 96 is 2 (particles and anti-particles) times 3 (families) times 4 leptons plus 4 quarks with 3 colors each. Finally, there are 96 × 96 matrices $D_{F,*}\gamma_{F,*}$ and $J_{F,*}$

Classification of AC manifolds

Since

$$A_{\mathcal{F}}\simeq igoplus_{i=1}^{\mathcal{N}} M_{k_i}(\mathbb{C}) \quad ext{(complex algebras)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

the Hilbert space H_F decomposes into irreducible left and right A_F -representations $\mathbb{C}^{k_i} \otimes \mathbb{C}^{k_j}$.

Classification of AC manifolds

Since

$$A_{\mathcal{F}}\simeq igoplus_{i=1}^{\mathcal{N}} M_{k_i}(\mathbb{C}) \quad ext{(complex algebras)}$$

0

0

 \cdots **k**_i \cdots **k**_i \cdots

0

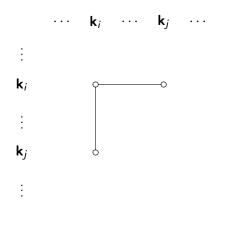
the Hilbert space H_F decomposes into irreducible left and right A_F -representations $\mathbb{C}^{k_i} \otimes \mathbb{C}^{k_j}$.

k_i

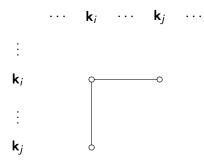
k_i

Graphically, presence of such an irrep in H_F can be depicted by a node:

- J_F is the reflection along the diagonal.
- The operator $D_F : H_F \to H_F$ is represented by lines between nodes;

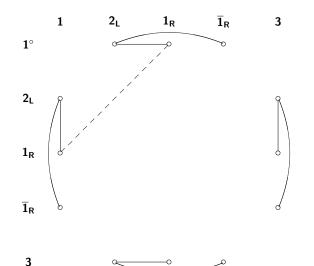


- J_F is the reflection along the diagonal.
- The operator $D_F : H_F \to H_F$ is represented by lines between nodes;



The conditions on a real spectral triple demand that the lines run horizontally or vertically and that the Krajewski diagram is symmetric with respect to the diagonal.

Krajewski diagram for the SM: $A_F = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C})$



▲ロ▶ ▲昼▶ ★屋▶ ★屋▶ 三国 - のへの

• Inner fluctuations (driven by Morita self-equivalences of \mathcal{A}) replace the operator D by $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega_D^1(\mathcal{A})$ the connection one-form (gauge potential) in $\nabla = d + A$, where

$$\Omega^1_D(\mathcal{A}) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in \mathcal{A} \right\}$$

• Inner fluctuations (driven by Morita self-equivalences of \mathcal{A}) replace the operator D by $D' = D_A \equiv D + A \pm JAJ^{-1}$ with $A^* = A \in \Omega^1_D(\mathcal{A})$ the connection one-form (gauge potential) in $\nabla = d + A$, where

$$\Omega^1_D(\mathcal{A}) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in \mathcal{A} \right\}$$

The (gauge) group U(A) of unitary elements in A acts on H in the adjoint, i.e. via the unitary U = uJuJ⁻¹ for u ∈ U(A).

Inner fluctuations (driven by Morita self-equivalences of A) replace the operator D by D' = D_A ≡ D + A ± JAJ⁻¹ with A* = A ∈ Ω¹_D(A) the connection one-form (gauge potential) in ∇ = d + A, where

$$\Omega^1_D(\mathcal{A}) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in \mathcal{A} \right\}$$

- The (gauge) group $\mathcal{U}(\mathcal{A})$ of unitary elements in \mathcal{A} acts on \mathcal{H} in the adjoint, i.e. via the unitary $U = uJuJ^{-1}$ for $u \in \mathcal{U}(\mathcal{A})$.
- This induces an action of U(A) on the connection one-form A, since D' → UD'U* implies

$$A\mapsto uAu^*+u[D,u^*]$$

Inner fluctuations (driven by Morita self-equivalences of A) replace the operator D by D' = D_A ≡ D + A ± JAJ⁻¹ with A* = A ∈ Ω¹_D(A) the connection one-form (gauge potential) in ∇ = d + A, where

$$\Omega^1_D(\mathcal{A}) := \left\{ \sum_k a_k[D, b_k] : a_k, b_k \in \mathcal{A} \right\}$$

- The (gauge) group $\mathcal{U}(\mathcal{A})$ of unitary elements in \mathcal{A} acts on \mathcal{H} in the adjoint, i.e. via the unitary $U = uJuJ^{-1}$ for $u \in \mathcal{U}(\mathcal{A})$.
- This induces an action of U(A) on the connection one-form A, since D' → UD'U* implies

$$A \mapsto uAu^* + u[D, u^*]$$

• In this generality, a gauge invariant functional of A is given by the spectral action

$$S_{\Lambda}[A] := \operatorname{Tr}(f(D_A/\Lambda) - f(D/\Lambda))$$

with f a function on \mathbb{R} (...) and $\Lambda \in \mathbb{R}$ a cutoff parameter.

• Inner fluctuations replace $\partial \rightsquigarrow \partial + iA + \gamma_5 \Phi$ where $A \in \Omega^1(M, \mathfrak{u}(A_F))$ and $\Phi^*(x) = \Phi(x) \in \Omega^1_{D_F}(A_F)$.

- Inner fluctuations replace $\partial \to \partial + iA + \gamma_5 \Phi$ where $A \in \Omega^1(M, \mathfrak{u}(A_F))$ and $\Phi^*(x) = \Phi(x) \in \Omega^1_{D_F}(A_F)$.
- The (gauge) group $\mathcal{U}(\mathcal{A}) \simeq C^{\infty}(M, \mathcal{U}(A_F))$ acts on A and Φ as:

$$A_{\mu} \mapsto u A_{\mu} u^* + u \partial_{\mu} u^*; \qquad \Phi \mapsto u \Phi u^*$$

- Inner fluctuations replace $\partial \rightsquigarrow \partial + iA + \gamma_5 \Phi$ where $A \in \Omega^1(M, \mathfrak{u}(A_F))$ and $\Phi^*(x) = \Phi(x) \in \Omega^1_{D_F}(A_F)$.
- The (gauge) group $\mathcal{U}(\mathcal{A}) \simeq C^{\infty}(M, \mathcal{U}(A_F))$ acts on A and Φ as:

$$A_{\mu} \mapsto u A_{\mu} u^* + u \partial_{\mu} u^*; \qquad \Phi \mapsto u \Phi u^*$$

• The spectral action becomes $S_{\Lambda}[A, \Phi] := \operatorname{Tr}\left(f\left(\frac{\partial + iA + \gamma_5 \Phi}{\Lambda}\right) - f\left(\frac{\partial}{\Lambda}\right)\right)$

- Inner fluctuations replace $\partial \rightsquigarrow \partial + iA + \gamma_5 \Phi$ where $A \in \Omega^1(M, \mathfrak{u}(A_F))$ and $\Phi^*(x) = \Phi(x) \in \Omega^1_{D_F}(A_F)$.
- The (gauge) group $\mathcal{U}(\mathcal{A}) \simeq C^{\infty}(M, \mathcal{U}(A_F))$ acts on A and Φ as:

$$A_{\mu} \mapsto u A_{\mu} u^* + u \partial_{\mu} u^*; \qquad \Phi \mapsto u \Phi u^*$$

• The spectral action becomes $S_{\Lambda}[A, \Phi] := \operatorname{Tr}\left(f\left(\frac{\partial + iA + \gamma_5 \Phi}{\Lambda}\right) - f\left(\frac{\partial}{\Lambda}\right)\right)$

Proposition (vS)

The spectral action for 4d AC manifolds admits an asympt. exp. $(\Lambda o \infty)$:

$$S_{\Lambda}[A,\Phi] \sim -\frac{f_2}{4\pi^2} \int_M \operatorname{Tr}_F \Phi^2 + \int_M \operatorname{Tr}_F(\partial_{\mu}\Phi) \vartheta_{\Lambda}(\Delta)(\partial^{\mu}\Phi) \\ -\int \operatorname{Tr}_F F_{\mu\nu} \varphi_{\Lambda}(\Delta)(F^{\mu\nu}) + \mathcal{O}(A^3,\Phi^3)$$

with $\varphi_{\Lambda}, \vartheta_{\Lambda}$ formal expansions in Λ .

• Allowing for spontaneous symmetry breaking, we expand Φ around its vacuum expectation value $v \equiv \langle \Phi \rangle_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Allowing for spontaneous symmetry breaking, we expand Φ around its vacuum expectation value $v \equiv \langle \Phi \rangle_0$.
- This gives cross-terms $\int (\partial_{\mu}\chi) \varpi_{\Lambda}(\Delta; v)([A^{\mu}, v])$ wrt $\Phi = v + \chi$; here ϖ_{Λ} is a formal expansion in Λ .

- Allowing for spontaneous symmetry breaking, we expand Φ around its vacuum expectation value v ≡ ⟨Φ⟩₀.
- This gives cross-terms $\int (\partial_{\mu}\chi) \varpi_{\Lambda}(\Delta; v)([A^{\mu}, v])$ wrt $\Phi = v + \chi$; here ϖ_{Λ} is a formal expansion in Λ .
- A clever choice (à la 't Hooft) of gauge fixing cancels this term:

$$S_{\rm gf}[A,\Phi] \sim \frac{1}{2\xi} \int {\rm Tr}_N \left(\partial_\mu A^{a\mu} - \xi \chi[T^a,v] \right) \varpi_\Lambda(\Delta;v) \left(\partial_\nu A^{a\nu} - \xi \chi[T^a,v] \right)$$

- Allowing for spontaneous symmetry breaking, we expand Φ around its vacuum expectation value v ≡ ⟨Φ⟩₀.
- This gives cross-terms $\int (\partial_{\mu}\chi) \varpi_{\Lambda}(\Delta; v)([A^{\mu}, v])$ wrt $\Phi = v + \chi$; here ϖ_{Λ} is a formal expansion in Λ .
- A clever choice (à la 't Hooft) of gauge fixing cancels this term:

$$S_{\rm gf}[A,\Phi] \sim \frac{1}{2\xi} \int {\rm Tr}_N \left(\partial_\mu A^{a\mu} - \xi \chi[T^a,v] \right) \varpi_\Lambda(\Delta;v) \left(\partial_\nu A^{a\nu} - \xi \chi[T^a,v] \right)$$

Similarly, a Faddeev–Popov ghost term, producing a BRST-invariant functional.

Superrenormalizability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Powercounting as before, yielding a superrenormalizable higher-derivative theory.

Superrenormalizability

- Powercounting as before, yielding a superrenormalizable higher-derivative theory.
- What about gauge invariance? The required (local) counterterms (at one-loop) are of maximal degree 4 in the fields and their derivatives, and should be invariants under the gauge group $C^{\infty}(M, \mathcal{U}(A_F))$.

Superrenormalizability

- Powercounting as before, yielding a superrenormalizable higher-derivative theory.
- What about gauge invariance? The required (local) counterterms (at one-loop) are of maximal degree 4 in the fields and their derivatives, and should be invariants under the gauge group C[∞](M, U(A_F)).

• On the other hand, in the spectral action only particular invariant functional will appear, such as $\text{Tr}_F \Phi^4$, $\text{Tr}_F \Phi^2$, $\text{Tr}_F (\nabla_\mu \Phi)^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let us analyze this with the help of Krajewski diagrams.

Let us analyze this with the help of Krajewski diagrams.

Let Γ be the projection of a Krajewski diagram Γ onto a horizontal (or vertical) axis.

・ロト・日本・モート モー うへぐ

Let us analyze this with the help of Krajewski diagrams.

- Let Γ be the projection of a Krajewski diagram Γ onto a horizontal (or vertical) axis.
- The gauge group U(A_F) acts on the (operators along the) lines in Γ, and any gauge invariant functional in the components of Φ corresponds to a cycle in Γ (with the degree of the former = the length of the latter).

Let us analyze this with the help of Krajewski diagrams.

- Let Γ be the projection of a Krajewski diagram Γ onto a horizontal (or vertical) axis.
- The gauge group U(A_F) acts on the (operators along the) lines in Γ, and any gauge invariant functional in the components of Φ corresponds to a cycle in Γ (with the degree of the former = the length of the latter).
- On the other hand, the functionals in the components of Φ that appear in the spectral action correspond to cycles in Γ (idem).

Let us analyze this with the help of Krajewski diagrams.

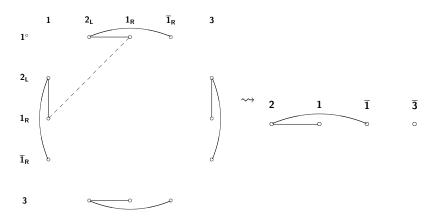
- Let Γ be the projection of a Krajewski diagram Γ onto a horizontal (or vertical) axis.
- The gauge group U(A_F) acts on the (operators along the) lines in Γ, and any gauge invariant functional in the components of Φ corresponds to a cycle in Γ (with the degree of the former = the length of the latter).
- On the other hand, the functionals in the components of Φ that appear in the spectral action correspond to cycles in Γ (idem).

Theorem (vS)

Consider an AC manifold given by a Krajewski diagram Γ . The corresponding spectral action, considered as a higher-derivative gauge theory with regulator Λ is superrenormalizable if:

every union of connected cycles in $\bar{\Gamma}$ of total length 4 can be lifted to a connected cycle in $\Gamma.$

Example: The Standard Model



Thus, the Krajewski diagram for the Standard Model satisfies this property, so that the corresponding spectral action is superrenormalizable as a higher-derivative gauge theory with regularizing parameter Λ .

Conclusions (II)

- We have established that under certain (graph theoretical) conditions, the spectral action (interpreted as HD-theory, Λ) on an AC manifold is superrenormalizable as a gauge theory.
- The spectral action becomes the Lagrangian of physical interest (eg. YM, SM), asymptotically as $\Lambda \to \infty$: this motivates the role of Λ as a regulator.
- This is in contrast with a recent preprint [ILV] where the full spectral action was considered, without such a regulator. In that case, the propagator has behaviour $\sim p^{-4}$.
- The renormalizability is not multiplicative, since typically (SM) the spectral action defines a theory at unification.
- The next step consists of combining the spectral action as HD regulator of the physical Lagrangian with eg. dim-reg to regularize the divergences at one loop and compute (and compare) the β-function in this scheme.