One-loop Adjoint Masses for Non-Supersymmetric Intersecting Branes
 Pascal Anastasopoulos

Based on: 1105.0591 [hep-th] with I. Antoniadis, K. Benakli, M. Goodsell, A. Vichi

Corfu - 12/09/2011

Plan of the talk

Plan of the talk

* Motivation

Plan of the talk

* Motivation
* D-Brane Setup

Plan of the talk

* Motivation
* D-Brane Setup
* Radiative masses for adjoint scalars at:

Plan of the talk

* Motivation
* D-Brane Setup
* Radiative masses for adjoint scalars at:
- Non-parallel directions by the standard amplitude method

Plan of the talk

* Motivation
* D-Brane Setup
* Radiative masses for adjoint scalars at:
- Non-parallel directions by the standard amplitude method
- Parallel directions by brane displacement method.

Plan of the talk

* Motivation
* D-Brane Setup
* Radiative masses for adjoint scalars at:
- Non-parallel directions by the standard amplitude method
- Parallel directions by brane displacement method.
* Conclusions

Introduction and motivation

Motivation

Motivation

* D-branes appear to be a powerful tool for engineering gauge theories upon their embedding in higher dimensional spaces.

Motivation

* D-branes appear to be a powerful tool for engineering gauge theories upon their embedding in higher dimensional spaces.
* Of greatest importance for relating to the real world are configurations with softly broken supersymmetry at low energies.

Motivation

* D-branes appear to be a powerful tool for engineering gauge theories upon their embedding in higher dimensional spaces.
* Of greatest importance for relating to the real world are configurations with softly broken supersymmetry at low energies.
* A simple way to achieve such a breaking is to introduce a magnetic field which, due to the different couplings with the spins, induces a mass splitting between fermions with different chiralities and with bosons.

Motivation

* D-branes appear to be a powerful tool for engineering gauge theories upon their embedding in higher dimensional spaces.
* Of greatest importance for relating to the real world are configurations with softly broken supersymmetry at low energies.
* A simple way to achieve such a breaking is to introduce a magnetic field which, due to the different couplings with the spins, induces a mass splitting between fermions with different chiralities and with bosons.

Bachas,
Angelantonj Antoniadis Dudas Sagnotti,

* The same splitting can be mapped upon T-duality into branes intersecting at angles.

Motivation

* D-branes appear to be a powerful tool for engineering gauge theories upon their embedding in higher dimensional spaces.
* Of greatest importance for relating to the real world are configurations with softly broken supersymmetry at low energies.
* A simple way to achieve such a breaking is to introduce a magnetic field which, due to the different couplings with the spins, induces a mass splitting between fermions with different chiralities and with bosons.

Bachas,
Angelantonj Antoniadis Dudas Sagnotti,

* The same splitting can be mapped upon T-duality into branes intersecting at angles.

Berkooz Douglas Leigh,
Blumenhagen Goerlich Kors Lust

* A supersymmetric vacuum can be obtained through a specific choice of intersection angles between D-branes.

Motivation

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Antoniadis Benakli Delgado Quiros Tuckmantel

* Strings stretched between the branes render masses at tree-level.

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Antoniadis Benakli Delgado Quiros Tuckmantel

* Strings stretched between the branes render masses at tree-level.
* Through radiative corrections, the breaking is communicated to the other states living on the brane world-volume.

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Antoniadis Benakli Delgado Quiros Tuckmantel

* Strings stretched between the branes render masses at tree-level.
* Through radiative corrections, the breaking is communicated to the other states living on the brane world-volume.
*We will focus in the induced masses for the adjoint representations of the gauge group.

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Antoniadis Benakli Delgado Quiros Tuckmantel

* Strings stretched between the branes render masses at tree-level.
* Through radiative corrections, the breaking is communicated to the other states living on the brane world-volume.
* We will focus in the induced masses for the adjoint representations of the gauge group.
* It is known that this mechanism generates one-loop Dirac gaugino masses.

Motivation

* Then, a breaking of supersymmetry with a size parametrically smaller than the string scale can be obtained by choosing the angles slightly away from their supersymmetric values.

Antoniadis Benakli Delgado Quiros Tuckmantel

* Strings stretched between the branes render masses at tree-level.
* Through radiative corrections, the breaking is communicated to the other states living on the brane world-volume.
* We will focus in the induced masses for the adjoint representations of the gauge group.
* It is known that this mechanism generates one-loop Dirac gaugino masses.
* However, some adjoint scalars become tachyonic in the effective field theory.

Motivation

Motivation

* Understanding the moduli-dependance of the adjoint masses we will be able to build using this technique interesting viable models of supersymmetry breaking.

Motivation

* Understanding the moduli-dependance of the adjoint masses we will be able to build using this technique interesting viable models of supersymmetry breaking.
* Our aim is to built models with:
- Observable branes i.e. a supersymmetric version of the SM.

Motivation

* Understanding the moduli-dependance of the adjoint masses we will be able to build using this technique interesting viable models of supersymmetry breaking.

* Our aim is to built models with:
- Observable branes i.e. a supersymmetric version of the SM.
- Secluded branes: that intersect with the observable sector.

Motivation

* Understanding the moduli-dependance of the adjoint masses we will be able to build using this technique interesting viable models of supersymmetry breaking.

* Our aim is to built models with:
- Observable branes i.e. a supersymmetric version of the SM.
- Secluded branes: that intersect with the observable sector.
* Supersymmetry breaking will be communicated to OS via messengers aka strings at the intersections.

Motivation

Motivation

* We will perform the string computation in the case of toroidal compactifications as the world-sheet description by free fields allows the straightforward use of conformal field theory techniques.

Motivation

* We will perform the string computation in the case of toroidal compactifications as the world-sheet description by free fields allows the straightforward use of conformal field theory techniques.
* The results depend on the number of supersymmetries that are originally preserved by the brane intersections before having the small shift in angles that induces supersymmetry breaking.

Motivation

* We will perform the string computation in the case of toroidal compactifications as the world-sheet description by free fields allows the straightforward use of conformal field theory techniques.
* The results depend on the number of supersymmetries that are originally preserved by the brane intersections before having the small shift in angles that induces supersymmetry breaking.
* The mass corrections vanish for an $\mathcal{N} \approx 1$ sector. This is due to the absence of couplings between the messengers and scalars in adjoint representations at the one-loop level.

Motivation

* We will perform the string computation in the case of toroidal compactifications as the world-sheet description by free fields allows the straightforward use of conformal field theory techniques.
* The results depend on the number of supersymmetries that are originally preserved by the brane intersections before having the small shift in angles that induces supersymmetry breaking.
* The mass corrections vanish for an $\mathcal{N} \approx 1$ sector. This is due to the absence of couplings between the messengers and scalars in adjoint representations at the one-loop level.
* For the $\mathcal{N} \approx 2$ and $\mathcal{N} \approx 4$ cases, one can derive the one-loop effective potential and read from there the masses of the adjoint representations.

D-brane setup

Brane configuration

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{I}_{3}^{2}$.

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:

$$
\quad \mathcal{N}=1
$$

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:

$$
\mathcal{N}=1
$$

$$
\mathcal{N}=2
$$

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:
- $\mathcal{N}=1$.
, $\mathcal{N}=2$.
, $\mathcal{N}=4$.

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:
, $\mathcal{N}=1$.
, $\mathcal{N}=2$.
- $\mathcal{N}=4$.

* We assume non-SUSY configuration where: $\theta_{a b}^{1}+\theta_{a b}^{2}+\theta_{a b}^{3}=\epsilon \approx 0$

Brane configuration

* Consider two D_{6}-branes a, b in: $\mathcal{M}_{4} \times \mathcal{T}_{1}^{2} \times \mathcal{T}_{3}^{2} \times \mathcal{T}_{3}^{2}$.
* Different brane configurations preserve different amount of SUSY:
- $\mathcal{N} \approx 1$.
, $\mathcal{N} \approx 2$.
, $\mathcal{N} \approx 4$.

* We assume non-SUSY configuration where: $\theta_{a b}^{1}+\theta_{a b}^{2}+\theta_{a b}^{3}=\epsilon \approx 0$

Brane configuration

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

* There are two different kinds of strings:

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

* There are two different kinds of strings:
- Bi-fundamentals: charged under the magnetic field that shifts the brane.

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

* There are two different kinds of strings:
- Bi-fundamentals: charged under the magnetic field that shifts the brane.
. Adjoint fields uncharged under the magnetic field.

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

* There are two different kinds of strings:
- Bi-fundamentals: charged under the magnetic field that shifts the brane.
. Adjoint fields uncharged under the magnetic field.
* The first will "feel" ϵ and will obtain tree-level masses.

Brane configuration

* Consider for example the $\mathcal{N} \approx 2$ configuration:

* There are two different kinds of strings:
- Bi-fundamentals: charged under the magnetic field that shifts the brane.
- Adjoint fields uncharged under the magnetic field.
* The first will "feel" ϵ and will obtain tree-level masses.
* The later will obtain masses at 1-loop due to couplings with the bi-fundamentals.

Amplitudes

1-loop masses

1-loop masses

* We are interested in evaluating the 1-loop masses of the adjoint fields.

1-loop masses

* We are interested in evaluating the 1-loop masses of the adjoint fields.
* The associated diagrams are:

Field theory diagram:

1-loop masses

* We are interested in evaluating the 1-loop masses of the adjoint fields.

Poppitz, Bain Berg

* The associated diagrams are:

Field theory diagram:

String theory diagram:

Antoniadis Benakli Delgado Quiros Tuckmantel

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

- Adjoint scalars in non-parallel directions.

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

- Adjoint scalars in non-parallel directions.
- Adjoint scalars in parallel directions.

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

- Adjoint scalars in non-parallel directions.
- Adjoint scalars in parallel directions.
* We will evaluate their masses by using two different methods:

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

- Adjoint scalars in non-parallel directions.
- Adjoint scalars in parallel directions.
* We will evaluate their masses by using two different methods:
- Computing the 2-point function by inserting vertex operators etc etc...

The computational techniques

* In the above configurations, we have ($\mathcal{N} \approx 2$ for example):

- Adjoint scalars in non-parallel directions.
- Adjoint scalars in parallel directions.
* We will evaluate their masses by using two different methods:
- Computing the 2-point function by inserting vertex operators etc etc...
- Computing the partition function in the presence of brane-displacements etc...

Adjoint masses for non-parallel dimensions

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
V_{\Sigma_{i}}(k, z) & =\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
\bar{V}_{\bar{\Sigma}_{i}}(k, z) & =\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{\prime}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2}
\end{aligned}
$$

* The vertex operators for the adjoint scalars are:

$$
\begin{aligned}
& V_{\Sigma_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \xi_{i}\left(\partial Z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)} \\
& \bar{V}_{\bar{\Sigma}_{i}}(k, z)=\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

The amplitude method

* The corresponding diagrams are:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \Sigma_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} d z_{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) V\left(k ; z_{2}\right) e^{L_{0}}\right] \\
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=i g^{2} \int_{0}^{\infty} d t \int_{0}^{i t / 2} d z_{1} \int_{0}^{i t / 2} \stackrel{\delta}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[V\left(k ; z_{1}\right) \bar{V}\left(k ; z_{2}\right) e^{L_{0}}\right]
\end{aligned}
$$

* The vertex operators for the adjoint scalàss are:

$$
\begin{aligned}
V_{\Sigma_{i}}(k, z) & =\sqrt{\frac{2}{\alpha^{\prime}} \xi_{i}\left(\partial z^{i}-i \alpha^{\prime}(k \cdot \psi) \Psi^{i}\right) e^{i k \cdot X(z)}} \\
\bar{V}_{\bar{\Sigma}_{i}}(k, z) & =\sqrt{\frac{2}{\alpha^{\prime}}} \bar{\xi}_{i}\left(\partial \bar{Z}^{i}+i \alpha^{\prime}(k \cdot \psi) \bar{\Psi}^{i}\right) e^{-i k \cdot X(z)}
\end{aligned}
$$

* The traces run over all word-sheet fields living on the annulus a, b branes.

Computations...

Computations...

* Naively, the masses are expect at the limit $k^{2} \rightarrow 0$.

Computations...

* Naively, the masses are expect at the limit $k^{2} \rightarrow 0$.
* However, if we impose:

- momentum conservation
- mass-shell condition
the amplitude vanishes...

Computations...

* Naively, the masses are expect at the limit $k^{2} \rightarrow 0$.
* However, if we impose:

- momentum conservation
- mass-shell condition
the amplitude vanishes...
* Thus, we relax momentum conservation $k^{2} \approx 0$ during our calculations.

Connoutations...

* Naively, the masses are expect at the limit $k^{2} \rightarrow 0$.
* However, if we impose:

- momentum conservation
- mass-shell condition
the amplitude vanishes...
*Thus, we relax momentum conservation $k^{2} \approx 0$ during our calculations.
*We will take the limit $k^{2} \rightarrow 0$ after the integrations over z_{1} and t.

Connoutations...

* Naively, the masses are expect at the limit $k^{2} \rightarrow 0$.
* However, if we impose:

- momentum conservation
- mass-shell condition
the amplitude vanishes...
* Thus, we relax momentum conservation $k^{2} \approx 0$ during our calculations.
*We will take the limit $k^{2} \rightarrow 0$ after the integrations over z_{1} and t.
* After several steps we get an expression only of well known $\vartheta_{1}(z, i t / 2)$'s.

Last Step: the Integrals...

Last Step: the Integrals...

* Last step remains: the integrals. The expressions are still very complicated...

Last Step: the Integrals...

* Last step remains: the integrals. The expressions are still very complicated...
* $\operatorname{An} \mathcal{N} \approx 1$ example:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}} \approx-\frac{2 i g^{2} k^{2}}{16 \pi^{4}} I_{a b} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\vartheta_{1}^{\prime}(0)^{2}}{\eta^{6}} \frac{\vartheta_{1}\left(\left(\theta_{2}-\epsilon\right) i t / 2\right) \vartheta_{1}\left(\left(\theta_{3}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(\theta_{1} i t / 2\right) \vartheta_{1}\left(\theta_{2} i t / 2\right) \vartheta_{1}\left(\theta_{3} i t / 2\right)} \\
& \times \int_{0}^{i t / 2} d z_{1} e^{i k^{2}\left\langle X\left(z_{1}\right) X(0)\right\rangle} e^{2 \pi i z_{1} \theta_{1}} \frac{\vartheta_{1}\left(z_{1}+\epsilon i t / 2\right) \vartheta_{1}\left(z_{1}+\left(\theta_{1}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(z_{1}\right)^{2}}
\end{aligned}
$$

Last Step: the Integrals...

* Last step remains: the integrals. The expressions are still very complicated...
* $\operatorname{An} \mathcal{N} \approx 1$ example:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}} \approx-\frac{2 i g^{2} k^{2}}{16 \pi^{4}} I_{a b} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\vartheta_{1}^{\prime}(0)^{2}}{\eta^{6}} \frac{\vartheta_{1}\left(\left(\theta_{2}-\epsilon\right) i t / 2\right) \vartheta_{1}\left(\left(\theta_{3}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(\theta_{1} i t / 2\right) \vartheta_{1}\left(\theta_{2} i t / 2\right) \vartheta_{1}\left(\theta_{3} i t / 2\right)} \\
& \times \int_{0}^{i t / 2} d z_{1} e^{i k^{2}\left\langle X\left(z_{1}\right) X(0)\right\rangle} e^{2 \pi i z_{1} \theta_{1}} \frac{\vartheta_{1}\left(z_{1}+\epsilon i t / 2\right) \vartheta_{1}\left(z_{1}+\left(\theta_{1}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(z_{1}\right)^{2}}
\end{aligned}
$$

* However, what we want is the momentum independent part: $k^{2} \rightarrow 0$.

Last Step: the Integrals...

* Last step remains: the integrals. The expressions are still very complicated...
* $\operatorname{An} \mathcal{N} \approx 1$ example:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}} \approx-\frac{2 i g^{2} k^{2}}{16 \pi^{4}} I_{a b} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\vartheta_{1}^{\prime}(0)^{2}}{\eta^{6}} \frac{\vartheta_{1}\left(\left(\theta_{2}-\epsilon\right) i t / 2\right) \vartheta_{1}\left(\left(\theta_{3}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(\theta_{1} i t / 2\right) \vartheta_{1}\left(\theta_{2} i t / 2\right) \vartheta_{1}\left(\theta_{3} i t / 2\right)} \\
& \times \int_{0}^{i t / 2} d z_{1} e^{i k^{2}\left\langle X\left(z_{1}\right) X(0)\right\rangle} e^{2 \pi i z_{1} \theta_{1}} \frac{\vartheta_{1}\left(z_{1}+\epsilon i t / 2\right) \vartheta_{1}\left(z_{1}+\left(\theta_{1}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(z_{1}\right)^{2}}
\end{aligned}
$$

* However, what we want is the momentum independent part: $k^{2} \rightarrow 0$.
* Locate the momentum k^{2} in the above integral.

Last Step: the Integrals...

* Last step remains: the integrals. The expressions are still very complicated...
* $\operatorname{An} \mathcal{N} \approx 1$ example:

$$
\begin{aligned}
& \mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}} \approx-\frac{2 i g^{2} k^{2}}{16 \pi^{4}} I_{a b} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\vartheta_{1}^{\prime}(0)^{2}}{\eta^{6}} \frac{\vartheta_{1}\left(\left(\theta_{2}-\epsilon\right) i t / 2\right) \vartheta_{1}\left(\left(\theta_{3}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(\theta_{1} i t / 2\right) \vartheta_{1}\left(\theta_{2} i t / 2\right) \vartheta_{1}\left(\theta_{3} i t / 2\right)} \\
& \times \int_{0}^{i t / 2} d z_{1} e^{i k^{2}\left\langle X\left(z_{1}\right) X(0)\right\rangle} e^{2 \pi i z_{1} \theta_{1}} \frac{\vartheta_{1}\left(z_{1}+\epsilon i t / 2\right) \vartheta_{1}\left(z_{1}+\left(\theta_{1}-\epsilon\right) i t / 2\right)}{\vartheta_{1}\left(z_{1}\right)^{2}}
\end{aligned}
$$

* However, what we want is the momentum independent part: $k^{2} \rightarrow 0$.
* Locate the momentum k^{2} in the above integral.
*There are k^{2} terms in the exponential and will "come down" after integrations.

Bypassing difficulties

Bypassing difficulties

* String amplitudes generate mass terms due to:
- World-sheet poles (integral on $z_{12} \rightarrow 0$):

$$
z_{12} \rightarrow 0
$$

Bypassing difficulties

* String amplitudes generate mass terms due to:
- World-sheet poles (integral on $z_{12} \rightarrow 0$):

$$
\mathcal{A} \sim k^{2} \int d z_{1}\left(\frac{\vartheta_{1}\left(z_{1}\right)}{\vartheta_{1}^{\prime}(0)}\right)^{-1-2 \alpha^{\prime} k^{2}} \sim k^{2} \int d z_{1}\left(z_{1}\right)^{-1-2 \alpha^{\prime} k^{2}} \rightarrow \frac{1}{2 \alpha^{\prime}}
$$

Bypassing difficulties

* String amplitudes generate mass terms due to:
- World-sheet poles (integral on $z_{12} \rightarrow 0$):

$$
\mathcal{A} \sim k^{2} \int d z_{1}\left(\frac{\vartheta_{1}\left(z_{1}\right)}{\vartheta_{1}^{\prime}(0)}\right)^{-1-2 \alpha^{\prime} k^{2}} \sim k^{2} \int d z_{1}\left(z_{1}\right)^{-1-2 \alpha^{\prime} k^{2}} \rightarrow \frac{1}{2 \alpha^{\prime}}
$$

- At the closed string UV (long strip limit $t \rightarrow \infty$):

Uncommon but might appear due to massless open string in the loop

Bypassing difficulties

* String amplitudes generate mass terms due to:
- World-sheet poles (integral on $z_{12} \rightarrow 0$):

$$
\mathcal{A} \sim k^{2} \int d z_{1}\left(\frac{\vartheta_{1}\left(z_{1}\right)}{\vartheta_{1}^{\prime}(0)}\right)^{-1-2 \alpha^{\prime} k^{2}} \sim k^{2} \int d z_{1}\left(z_{1}\right)^{-1-2 \alpha^{\prime} k^{2}} \rightarrow \frac{1}{2 \alpha^{\prime}}
$$

- At the closed string UV (long strip limit $t \rightarrow \infty$):

Uncommon but might appear due to massless open string in the loop

- At the closed string IR (long tube limit $t \rightarrow 0$):

Bypassing diffliculties

* String amplitudes generate mass terms due to:
- World-sheet poles (integral on $z_{12} \rightarrow 0$):

$$
\mathcal{A} \sim k^{2} \int d z_{1}\left(\frac{\vartheta_{1}\left(z_{1}\right)}{\vartheta_{1}^{\prime}(0)}\right)^{-1-2 \alpha^{\prime} k^{2}} \sim k^{2} \int d z_{1}\left(z_{1}\right)^{-1-2 \alpha^{\prime} k^{2}} \rightarrow \frac{1}{2 \alpha^{\prime}}
$$

- At the closed string UV (long strip limit $t \rightarrow \infty$):

Uncommon but might appear due to massless open string in the loop

- At the closed string IR (long tube limit $t \rightarrow 0$):

$$
\mathcal{A} \sim k^{2} \int d l e^{-k^{2}\langle X X\rangle\left(z_{1}\right)}\left\{\begin{array}{l}
k^{2} \int_{a}^{\infty} d l e^{-\pi \alpha^{\prime} k^{2} l} \xrightarrow{\text { opposite boundary }} \begin{array}{l}
\text { Antoniadis Kiritsis Rizos, Anastasopoulos } \\
\text { same boundary } \\
k^{2} \int_{a}^{\infty} d l(2 \sin \pi x)^{-2 \alpha^{\prime} k^{2}} \longrightarrow \text { tadpole }
\end{array} \xrightarrow{l \rightarrow \infty} \xrightarrow{\longrightarrow}
\end{array}\right.
$$

Adjoint scalar masses

Adjoint scalar masses

* In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

Adjoint scalar masses

- In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

* The long tube contributions cancel in all consistent models.

Adjoint scalar masses

- In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

* The long tube contributions cancel in all consistent models.

Adjoint scalar masses

- In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

* The long tube contributions cancel in all consistent models.

Adjoint scalar masses

* In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

* The long tube contributions cancel in all consistent models.

Poppitz, Bain Berg

Adjoint scalar masses

* In our case,
- There are no world-sheet poles. They cancel since our amplitude is even.
- There is no long strip contribution (open string IR).
- There is long tube contribution (open string UV).

$$
\mathcal{A}_{\Sigma_{3} \bar{\Sigma}_{3}}=-\frac{i g^{2}}{16 \pi^{3} \alpha^{\prime}}\left(\frac{\mathcal{V}_{a}^{1} \mathcal{V}_{b}^{1}}{T_{2}^{1}} \frac{\mathcal{V}_{a}^{2} \mathcal{V}_{b}^{2}}{T_{2}^{2}} \frac{\mathcal{V}_{a}^{3} \mathcal{V}_{b}^{3}}{T_{2}^{3}}\right)\left(-1+\cos ^{2}\left[\pi \theta_{1}\right]+\cos ^{2}\left[\pi \theta_{2}\right]-\cos ^{2}\left[\pi \theta_{3}\right]\right)
$$

* The long tube contributions cancel in all consistent models.

Poppitz, Bain Berg
*We have checked that for the $Z_{2} \times Z_{2}$ orientifold.

Adjoint masses for parallel dimensions

Effective potential

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

*We evaluate the partition function by displacing the branes by Σ_{1}, Σ_{2}.

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

*We evaluate the partition function by displacing the branes by Σ_{1}, Σ_{2}.
* Schematically, it is the same annulus diagram without the VO's.

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

*We evaluate the partition function by displacing the branes by Σ_{1}, Σ_{2}.
* Schematically, it is the same annulus diagram without the VO's.

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

*We evaluate the partition function by displacing the branes by Σ_{1}, Σ_{2}.
* Schematically, it is the same annulus diagram without the VO's.
* The second derivatives will give the masses of windings and Wilson lines.

Effective potential

* We want evaluate the masses of the adjoint scalars in parallel directions.

*We evaluate the partition function by displacing the branes by Σ_{1}, Σ_{2}.
* Schematically, it is the same annulus diagram without the VO's.
* The second derivatives will give the masses of windings and Wilson lines.
* That method is much simpler, but can only be performed for the $\mathcal{N} \approx 2,4$.
$\mathcal{N} \approx 2$ case
$\mathcal{N} \approx 2$ case
*The potential for the $\mathcal{N} \approx 2$ case is:

$$
V\left(\Sigma_{1}, \Sigma_{2}\right)=-64 \pi^{2} \varepsilon^{2} \sum_{m, n} \int \frac{d t}{t} e^{-2 \pi t\left(\left(\Sigma_{1}+m R_{1,1}\right)^{2}+\left(\Sigma_{2}+l+n R_{2,1}\right)^{2}\right)}
$$

$\mathcal{N} \approx 2$ case

* The potential for the $\mathcal{N} \approx 2$ case is:

$$
V\left(\Sigma_{1}, \Sigma_{2}\right)=-64 \pi^{2} \varepsilon^{2} \sum_{m, n} \int \frac{d t}{t} e^{-2 \pi t\left(\left(\Sigma_{1}+m R_{1,1}\right)^{2}+\left(\Sigma_{2}+l+n R_{2,1}\right)^{2}\right)}
$$

from where we can compute the tadpoles:

$$
\begin{aligned}
& V^{(0,1)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{l+n R_{2,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \neq 0 \\
& V^{(1,0)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{m R_{1,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \rightarrow 0
\end{aligned}
$$

$\mathcal{N} \approx 2$ case

* The potential for the $\mathcal{N} \approx 2$ case is:

$$
V\left(\Sigma_{1}, \Sigma_{2}\right)=-64 \pi^{2} \varepsilon^{2} \sum_{m, n} \int \frac{d t}{t} e^{-2 \pi t\left(\left(\Sigma_{1}+m R_{1,1}\right)^{2}+\left(\Sigma_{2}+l+n R_{2,1}\right)^{2}\right)}
$$

from where we can compute the tadpoles:

$$
\begin{aligned}
V^{(0,1)} & \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{l+n R_{2,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \neq 0 \\
V^{(1,0)} & \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{m R_{1,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \rightarrow 0
\end{aligned}
$$

and the masses for the adjoint fields:

$$
\begin{aligned}
& V^{(2,0)} \sim 32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}}{\left[\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}\right]^{2}} \leq 0 \\
& V^{(0,2)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{\left(m R_{1,1}\right)^{2}-\left(l+n R_{2,1}\right)^{2}}{\left[\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}\right]^{2}} \geq 0 \\
& V^{(1,1)} \sim 64 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{\left(m R_{1,1}\right)\left(l+n R_{2,1}\right)}{\left[\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}\right]^{2}} \rightarrow 0
\end{aligned}
$$

$\mathcal{N} \approx 2$ case

* The potential for the $\mathcal{N} \approx 2$ case is:

$$
V\left(\Sigma_{1}, \Sigma_{2}\right)=-64 \pi^{2} \varepsilon^{2} \sum_{m, n} \int \frac{d t}{t} e^{-2 \pi t\left(\left(\Sigma_{1}+m R_{1,1}\right)^{2}+\left(\Sigma_{2}+l+n R_{2,1}\right)^{2}\right)}
$$

from where we can compute the tadpoles:

$$
\begin{aligned}
& V^{(0,1)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{l+n R_{2,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \neq 0 \\
& V^{(1,0)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{m R_{1,1}}{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}} \rightarrow 0
\end{aligned}
$$

and the masses for the adjoint fields:

$$
\left.\begin{array}{rl}
V^{(2,0)} & \sim 32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}}{\left[\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}\right]^{2}} \leq 0 \\
V^{(0,2)} \sim-32 \pi^{2} \varepsilon^{2} \sum_{m, n} \frac{\left(m R_{1,1}\right)^{2}-\left(l+n R_{2,1}\right)^{2}}{\left[\left(m R_{1,1}\right)^{2}+\left(l+n R_{2,1}\right)^{2}\right]^{2}} \geq 0
\end{array}\right\} \text { tachyon }
$$

$\mathcal{N} \approx 4$ case
$\mathcal{N} \approx 4$ case
*The potential for the $\mathcal{N} \approx 4$ case is:

$$
V\left(\Sigma_{1, i}, \Sigma_{2, i}\right) \sim-4 \pi^{2} \varepsilon^{3}\left(\sum_{i=1,2}\left(\left(\Sigma_{1, i}+\tilde{n}_{i} R_{1, i}\right)^{2}+\left(\Sigma_{2, i}+l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{-1}
$$

$\mathcal{N} \approx 4$ case

*The potential for the $\mathcal{N} \approx 4$ case is:

$$
V\left(\Sigma_{1, i}, \Sigma_{2, i}\right) \sim-4 \pi^{2} \varepsilon^{3}\left(\sum_{i=1,2}\left(\left(\Sigma_{1, i}+\tilde{n}_{i} R_{1, i}\right)^{2}+\left(\Sigma_{2, i}+l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{-1}
$$

- The tadpoles in this case:

$$
\begin{aligned}
& V^{(1,0,0,0)} \sim 8 \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{\tilde{n}_{1} R_{1,1}}{\left(\sum_{i}\left(\left(\tilde{n}_{i} R_{1, i}\right)^{2}+\left(l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{2}} \rightarrow 0 \\
& V^{(0,1,0,0)} \sim 8 \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{l_{1}+n_{2} R_{2,1}}{\left(\sum_{i}\left(\left(\tilde{n}_{i} R_{1, i}\right)^{2}+\left(l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{2}} \neq 0 \\
& V^{(0,0,1,0)} \sim 8 \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{\tilde{n}_{2} R_{1,2}}{\left(\sum_{i}\left(\left(\tilde{n}_{i} R_{1, i}\right)^{2}+\left(l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{2}} \rightarrow 0 \\
& V^{(0,0,0,1)} \sim 8 \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{l_{1}+n_{2} R_{2,2}}{\left(\sum_{i}\left(\left(\tilde{n}_{i} R_{1, i}\right)^{2}+\left(l_{i}+n_{i} R_{2, i}\right)^{2}\right)\right)^{2}} \neq 0
\end{aligned}
$$

which can be cancelled by properly choosing image branes.
$\mathcal{N} \approx 4$ case

$\mathcal{N} \approx 4$ case

* The adjoints masses:

$$
\begin{aligned}
\left.V^{(2,0,0,0)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{-4\left(\tilde{n}_{1} R_{1,1}\right)^{2}+S[\tilde{n}, n]}{S[\tilde{n}, n]^{3}} & \neq 0 \\
V^{(1,1,0,0)}{ }_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(\tilde{n}_{1} R_{1,1}\right)\left(l_{1}+n_{1} R_{2,1}\right)}{S[\tilde{n}, n]^{3}} & \rightarrow 0 \\
\left.V^{(1,0,1,0)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(\tilde{n}_{1} R_{1,1}\right)\left(\tilde{n}_{2} R_{1,2}\right)}{S[\tilde{n}, n]^{3}} & \rightarrow 0 \\
\left.V^{(1,0,0,1)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(\tilde{n}_{1} R_{1,1}\right)\left(l_{2}+n_{2} R_{2,2}\right)}{S[\tilde{n}, n]^{3}} & \rightarrow 0 \\
\left.V^{(0,2,0,0)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{-4\left(l_{1}+n_{1} R_{2,1}\right)^{2}+S[\tilde{n}, n]}{S[\tilde{n}, n]^{3}} & \neq 0 \\
\left.V^{(0,1,1,0)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(l_{1}+n_{1} R_{2,1}\right)\left(\tilde{n}_{2} R_{1,2}\right)}{S[\tilde{n}, n]^{3}} & \rightarrow 0 \\
\left.V^{(0,1,0,1)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(l_{1}+\tilde{n}_{1} R_{1,1,(}\left(l_{2}+n_{2} R_{2,2}\right)\right.}{S[\tilde{n}, n]^{3}} & \neq 0 \\
\left.V^{(0,0,2,0)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{-4\left(n_{2} R_{1,2}^{2}+S[\tilde{n}, n]\right.}{S[\tilde{n}, n]^{3}} & \neq 0 \\
\left.V^{(0,0,1,1)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{4\left(\tilde{n}_{2} R_{1,2}\right)\left(l_{2}+n_{2} R_{2,2}\right)}{S[\tilde{n}, n]^{3}} & \rightarrow 0 \\
\left.V^{(0,0,0,2)}\right|_{a_{i, j} \rightarrow 0} & \sim & 16 i \pi^{2} \varepsilon^{3} \sum_{\tilde{n}, n} \frac{-4\left(l_{2}+n_{2} R_{2,2}\right)^{2}+S[\tilde{n}, n]}{S[\tilde{n}, n]^{3}} & \neq 0
\end{aligned}
$$

where: $S[\tilde{n}, n]=\left(\tilde{n}_{1} R_{1,1}\right)^{2}+\left(l_{1}+n_{1} R_{2,1}\right)^{2}+\left(\tilde{n}_{2} R_{1,2}\right)^{2}+\left(l_{2}+n_{2} R_{2,2}\right)^{2}$.
$\mathcal{N} \approx 4$ case

$\mathcal{N} \approx 4$ case

* Schematically, the mass-matrix for the adjoints is:
$\mathcal{M}_{N \approx 4}^{2} \sim \frac{|\epsilon|^{3} g^{2}\left|I_{a b}\right|}{32 \pi^{2} \alpha^{\prime}}\left(\begin{array}{cccc}A_{1,2}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & 0 & 0 \\ -3 A_{1,1}^{2} & & \\ 0 & A_{1,1}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & -A_{1,2} A_{2,2} \\ 0 & -3 A_{1,2}^{2} & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,2}^{2} & 0 \\ 0 & 0 & -3 A_{2,1}^{2} & \\ 0 & -A_{1,2} A_{2,2} & 0 & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,1}^{2} \\ 0 & & -3 A_{2,2}^{2}\end{array}\right)$
$\mathcal{N} \approx 4$ case
* Schematically, the mass-matrix for the adjoints is:
$\mathcal{M}_{N \approx 4}^{2} \sim \frac{|\epsilon|^{3} g^{2}\left|I_{a b}\right|}{32 \pi^{2} \alpha^{\prime}}\left(\begin{array}{cccc}A_{1,2}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & 0 & 0 \\ -3 A_{1,1}^{2} & A_{1,1}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & -A_{1,2} A_{2,2} \\ 0 & -3 A_{1,2}^{2} & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,2}^{2} & 0 \\ 0 & 0 & -3 A_{2,1}^{2} & \\ 0 & -A_{1,2} A_{2,2} & 0 & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,1}^{2} \\ 0 & & & -3 A_{2,2}^{2}\end{array}\right)$
* The above matrix is traceless...
$\mathcal{N} \approx 4$ case
* Schematically, the mass-matrix for the adjoints is:

$$
\mathcal{M}_{N \approx 4}^{2} \sim \frac{|\epsilon|^{3} g^{2}\left|I_{a b}\right|}{32 \pi^{2} \alpha^{\prime}}\left(\begin{array}{cccc}
A_{1,2}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & 0 & 0 \\
-3 A_{1,1}^{2} & A_{1,1}^{2}+A_{2,1}^{2}+A_{2,2}^{2} & 0 & -A_{1,2} A_{2,2} \\
0 & -3 A_{1,2}^{2} & & \\
0 & 0 & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,2}^{2} & 0 \\
0 & -A_{1,2} A_{2,2} & -3 A_{2,1}^{2} & A_{1,1}^{2}+A_{1,2}^{2}+A_{2,1}^{2} \\
0 & & 0 & -3 A_{2,2}^{2}
\end{array}\right)
$$

* The above matrix is traceless...
* Therefore, there is at least one tachyonic state.

Conclusions

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.
* We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes.

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.
* We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes.
* In the open string channel, the string two-point function receives contributions only from the infrared $(\mathcal{N} \approx 2,4)$ and the ultraviolet limits $(\mathcal{N} \approx 1)$.

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.
* We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes.
* In the open string channel, the string two-point function receives contributions only from the infrared $(\mathcal{N} \approx 2,4)$ and the ultraviolet limits $(\mathcal{N} \approx 1)$.
* The latter is due to tree-level closed string uncanceled tadpoles.

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.
* We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes.
* In the open string channel, the string two-point function receives contributions only from the infrared $(\mathcal{N} \approx 2,4)$ and the ultraviolet limits $(\mathcal{N} \approx 1)$.
* The latter is due to tree-level closed string uncanceled tadpoles.
* On the other hand, the infrared region $(\mathcal{N} \approx 2,4)$ reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations.

Conclusions

* We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values.
* We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes.
* In the open string channel, the string two-point function receives contributions only from the infrared $(\mathcal{N} \approx 2,4)$ and the ultraviolet limits $(\mathcal{N} \approx 1)$.
* The latter is due to tree-level closed string uncanceled tadpoles.
* On the other hand, the infrared region $(\mathcal{N} \approx 2,4)$ reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations.
* Tachyons might be cancelled in models with Scherk-Schwarz deformations...

