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✤ A simple way to achieve such a breaking is to introduce a magnetic field which, due to 
the different couplings with the spins, induces a mass splitting between fermions with 
different chiralities and with bosons. 

✤ The same splitting can be mapped upon T-duality into branes intersecting at angles. 

✤ A supersymmetric vacuum can be obtained through a specific choice of intersection 
angles between D-branes.
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scale can be obtained by choosing the angles slightly away from their supersymmetric 
values.

✤ Strings stretched between the branes render masses at tree-level.  

✤ Through radiative corrections, the breaking is communicated to the other states living 
on the brane world-volume. 

✤ We will focus in the induced masses for the adjoint representations of the gauge group. 

✤ It is known that this mechanism generates one-loop Dirac gaugino masses.

✤ However, some adjoint scalars become tachyonic in the effective field theory. 

Antoniadis Benakli Delgado Quiros Tuckmantel
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✤ Our aim is to built models with:

‣ Observable branes i.e. a supersymmetric version of the SM. 

‣ Secluded branes: that intersect with the observable sector. 

✤ Supersymmetry breaking will be communicated to OS via messengers aka strings at the 
intersections.

Motivation

Observable branes

Secluded branes



Motivation



✤ We will perform the string computation in the case of toroidal compactifications as the 
world-sheet description by free fields allows the straightforward use of conformal field 
theory techniques. 

Motivation



✤ We will perform the string computation in the case of toroidal compactifications as the 
world-sheet description by free fields allows the straightforward use of conformal field 
theory techniques. 

✤ The results depend on the number of supersymmetries that are originally preserved by 
the brane intersections before having the small shift in angles that induces 
supersymmetry breaking.

Motivation



✤ We will perform the string computation in the case of toroidal compactifications as the 
world-sheet description by free fields allows the straightforward use of conformal field 
theory techniques. 

✤ The results depend on the number of supersymmetries that are originally preserved by 
the brane intersections before having the small shift in angles that induces 
supersymmetry breaking.

✤ The mass corrections vanish for an             sector. This is due to the absence of couplings 
between the messengers and scalars in adjoint representations at the one-loop level. 

Motivation

N ≈ 1



✤ We will perform the string computation in the case of toroidal compactifications as the 
world-sheet description by free fields allows the straightforward use of conformal field 
theory techniques. 

✤ The results depend on the number of supersymmetries that are originally preserved by 
the brane intersections before having the small shift in angles that induces 
supersymmetry breaking.

✤ The mass corrections vanish for an             sector. This is due to the absence of couplings 
between the messengers and scalars in adjoint representations at the one-loop level. 

✤ For the             and             cases, one can derive the one-loop effective potential and read 
from there the masses of the adjoint representations.
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✤ Consider for example the             configuration: 

✤ There are two different kinds of strings:

‣ Bi-fundamentals: charged under the magnetic field that shifts the brane.

‣ Adjoint fields uncharged under the magnetic field.

✤ The first will “feel”    and will obtain tree-level masses.

✤ The later will obtain masses at 1-loop due to couplings with the bi-fundamentals.
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✤ The associated diagrams are:
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Σi Σ̄i

Σi Σ̄i

messenger strings

a

b
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✤ In the above configurations, we have (             for example): 

‣ Adjoint scalars in non-parallel directions.

‣ Adjoint scalars in parallel directions.

✤ We will evaluate their masses by using two different methods: 

‣ Computing the 2-point function by inserting vertex operators etc etc...

‣ Computing the partition function in the presence of brane-displacements etc...
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‣ momentum conservation

‣ mass-shell condition

     the amplitude vanishes...
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✤ After several steps we get an expression only of well known                   ‘s.
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✤ There are      terms in the exponential and will ”come down” after integrations.
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✤ In our case,

‣ There are no world-sheet poles. They cancel since our amplitude is even.

‣ There is no long strip contribution (open string IR).

‣ There is long tube contribution (open string UV).

✤ The long tube contributions cancel in all consistent models.

✤ We have checked that for the               orientifold. 
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✤ We want evaluate the masses of the adjoint scalars in parallel directions.

✤ We evaluate the partition function by displacing the branes by      ,     .

✤ Schematically, it is the same annulus diagram without the VO’s.

✤ The second derivatives will give the masses of windings and Wilson lines.

✤ That method is much simpler, but can only be performed for the             ,   .
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✤ Schematically, the mass-matrix for the adjoints is:

✤ The above matrix is traceless...

✤ Therefore, there is at least one tachyonic state.

            caseN ≈ 4

M2
N≈4 ∼ |�|3g2|Iab|

32π2α�





A2
1,2 + A2

2,1 + A2
2,2 0 0 0

−3A2
1,1

0 A2
1,1 + A2

2,1 + A2
2,2 0 −A1,2A2,2

−3A2
1,2

0 0 A2
1,1 + A2

1,2 + A2
2,2 0

−3A2
2,1

0 −A1,2A2,2 0 A2
1,1 + A2

1,2 + A2
2,1

−3A2
2,2







Conclusions



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 

✤ We compute the masses generated by radiative corrections for the adjoint scalars on the 
brane world-volumes. 



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 

✤ We compute the masses generated by radiative corrections for the adjoint scalars on the 
brane world-volumes. 

✤ In the open string channel, the string two-point function receives contributions only 
from the infrared (            ,  ) and the ultraviolet limits (           ).N ≈ 1N ≈ 2 4



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 

✤ We compute the masses generated by radiative corrections for the adjoint scalars on the 
brane world-volumes. 

✤ In the open string channel, the string two-point function receives contributions only 
from the infrared (            ,  ) and the ultraviolet limits (           ).

✤ The latter is due to tree-level closed string uncanceled tadpoles.

N ≈ 1N ≈ 2 4



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 

✤ We compute the masses generated by radiative corrections for the adjoint scalars on the 
brane world-volumes. 

✤ In the open string channel, the string two-point function receives contributions only 
from the infrared (            ,  ) and the ultraviolet limits (           ).

✤ The latter is due to tree-level closed string uncanceled tadpoles.

✤ On the other hand, the infrared region (            ,  ) reproduces the one-loop mediation of 
supersymmetry breaking in the effective gauge theory, via messengers and their 
Kaluza-Klein excitations. 

N ≈ 1N ≈ 2 4

N ≈ 2 4



Conclusions

✤ We consider breaking of supersymmetry in intersecting D-brane configurations by 
slight deviation of the angles from their supersymmetric values. 

✤ We compute the masses generated by radiative corrections for the adjoint scalars on the 
brane world-volumes. 

✤ In the open string channel, the string two-point function receives contributions only 
from the infrared (            ,  ) and the ultraviolet limits (           ).

✤ The latter is due to tree-level closed string uncanceled tadpoles.

✤ On the other hand, the infrared region (            ,  ) reproduces the one-loop mediation of 
supersymmetry breaking in the effective gauge theory, via messengers and their 
Kaluza-Klein excitations. 

✤ Tachyons might be cancelled in models with Scherk-Schwarz deformations...

N ≈ 1N ≈ 2 4

N ≈ 2 4

work in progress...


