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Institute of Theoretical Physics, University of Warsaw

Unification in the LHC era
Corfu Summer Institute, 5.09.2011



Higher-dimensional operators in the Standard Model

1 Introduction
Effective theories
Structure of the Standard Model

2 Reasoning scheme

3 Basis of invariant effective operators

4 Comparison with ”Effective lagrangian analysis of new interactions
and flavour conservation” by Buchmüller, Wyler (1986)



Effective theories

Example

Standard Model → Extension

But how does Extension correct Standard Model interactions in
low-energy processes?

Situation:
maximal momentum of particles k � Λ scale of masses of heavy fields
→ no explicit presence of heavy fields in the theory
→ Appelquist-Carazzone decoupling theorem
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Significance of effective theories

When the underlying theory is not yet known:

I experimental constraints on coefficients give bounds for the
couplings of broader theory

I clues for construction of the broader theory

When the underlying theory is known (e.g. it is SM) - effective theories
give us calculational tools, that i.a. extend the validity of perturbation
theory.
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Classifications of effective operators
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What are the operators O(5)
i and O(6)

i ?

Constraints:

I Gauge and Lorentz symmetry

I Dependencies through EOM (H. D. Politzer, 1980)

Classifications:

I C. N. Leung, S. T. Love and S. Rao (1986) - 106 operators, no
reduction using EOM

I W. Buchmüller and D. Wyler (1986) applied EOM, getting 80
operators.

→ but in fact only 59 operators are independent.
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SM - gauge group representations structure

Field
representation (dimension) hypercharge

SU(3) SU(2) U(1)

Gµ 8 1 0

Wµ 1 3 0

Bµ 1 1 0

q 3 2 1
6

u 3 1 2
3

d 3 1 −1
3

l 1 2 −1
2

e 1 1 −1

ϕ 1 2 1
2



Mass-dimension of fundamental objects in units ~ = c = 1

Type vector Vµ tensor Xµν spinor Ψ skalar ϕ

Dimension (GeV )1 (GeV )2 (GeV )
3
2 (GeV )1

Object Dµ Wµν ,Gµν ,Bµν q, l , u, d , e ϕ

I for SU(3)

GA
µν = ∂µG

B
ν − ∂νGC

µ − gs f
ABCGB

µ GC
ν

I for SU(2)

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν

I for U(1)
Bµν = ∂µBν − ∂νBµ



Reasoning scheme

1. Description in terms of matter fields (ϕ, ψ), field strength tensors
Xµν and covariant derivatives Dµ. Dimensional analysis.

2. Gauge and Lorentz symmetry.

3. Reduction of the set of operators using algebraic properties and
SM EOM:
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3. Reduction of the set of operators using algebraic properties and
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We have (omitting full div) the following operators:

(ψ̄LσµνψR)(DµDνϕ) (1)
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Reasoning scheme

1. Description in terms of matter fields (ϕ, ψ), field strength tensors
Xµν and covariant derivatives Dµ. Dimensional analysis.

2. Gauge and Lorentz symmetry.

3. Reduction of the set of operators using algebraic properties and
SM EOM:
Using EOM for ϕ:

−(DµD
µϕ) + m2ϕ− λϕ(ϕ†ϕ)− Γ†e l ē + Γuεq̄u − Γ†dqd̄ = 0

we get

(ψ̄LψR)(DµD
µϕ) = ψψϕ + ψψϕϕϕ + ψψψψ



Reduction scheme



Bosonic invariant operators



Bosonic invariant operators



Invariant operators with 2 fermions

(ϕ2 singlet)(SM Yukawa couplings of ϕ)



Invariant operators with 2 fermions



Fermionic operators

General structure:

(ψ̄1γµψ1)(ψ̄2γ
µψ2) (ψ̄1γµT

αψ1)(ψ̄2γ
µTαψ2)



Fermionic operators



Redundant operators

1
2∂µ(ϕ†ϕ)∂µ(ϕ†ϕ)

(ψ̄RDµψL)(Dµϕ)

[(Dµψ̄R)ψL](Dµϕ)

(ψ̄γµDνψ)Xµν

(̄lp1γµT
I lp2)(̄lp3γ

µT I lp4)

T I
ijT

I
kl = 1

2δilδkj −
1

2N δijδkl

The absent one: (q̄e)ε(̄lu)T
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Independence of listed operators

How do we know that these operators are finally independent?

Main arguments:

I field content

I EOM contain at least one/two derivatives

Why (q̄e)ε(̄lu)T must be on the list?

I completeness of classification

I field content



Independence of listed operators

How do we know that these operators are finally independent?

Main arguments:

I field content

I EOM contain at least one/two derivatives

Why (q̄e)ε(̄lu)T must be on the list?

I completeness of classification

I field content



Lepton/baryon nr violating invariant operators

(lT ϕ̃∗)(ϕ̃†l)

list already given by L.F. Abbott and M. B. Wise (1980), which
simplified those given by S. Weinberg (1976) and F. Wilczek and A.
Zee (1979)



The importance of classification

How to discover new physics?

Recent papers with redundant operators:

I J. A. Aguilar-Saavedra, ”Single top quark production at LHC with
anomalous Wtb couplings”, Nucl. Phys. B804 (2008) 160;

I K. Agashe, R. Contino, ”Composite Higgs-mediated
flavor-changing neutral current”, Phys. Rev. D 80, 075016 (2009);

I S. Kanemura, K. Tsumura, ”Effects of the anomalous Higgs
couplings on the Higgs boson production at the Large Hadron
Collider ”, Eur. Phys. J. C63 (2009) 11;



The importance of classification

How to discover new physics?
Recent papers with redundant operators:

I J. A. Aguilar-Saavedra, ”Single top quark production at LHC with
anomalous Wtb couplings”, Nucl. Phys. B804 (2008) 160;

I K. Agashe, R. Contino, ”Composite Higgs-mediated
flavor-changing neutral current”, Phys. Rev. D 80, 075016 (2009);

I S. Kanemura, K. Tsumura, ”Effects of the anomalous Higgs
couplings on the Higgs boson production at the Large Hadron
Collider ”, Eur. Phys. J. C63 (2009) 11;



The published results

I Bohdan Grzadkowski, Miko laj Misiak, Janusz Rosiek, MI
”Dimension-Six Terms in the Standard Model Lagrangian”
JHEP 1010:085,2010

I J. A. Aguilar-Saavedra
”Effective four-fermion operators in top physics: a roadmap”
Nucl.Phys.B843:638-672,2011



Questions



Example: reduction of (ψ̄Dµψ)(Dµϕ)

(ψ̄Dµψ)(Dµϕ) = (ψ̄Dνη
νµψ)(Dµϕ) = (ψ̄Dν

1
2{γ

ν , γµ}ψ)(Dµϕ)

= 1
2 (ψ̄Dνγ

νγµψ)(Dµϕ) + 1
2 (ψ̄γµ 6Dψ)(Dµϕ)

= ψψϕϕD + 1
2Dν [(ψ̄γνγµψ)(Dµϕ)]− 1

2 (ψ̄
←
6Dγµψ)(Dµϕ)+

− 1
2 (ψ̄γνγµψ)(DνDµϕ)

but

(ψ̄γνγµψ)(DνDµϕ) = (ψ̄(−i)σνµψ)(
∑
k

X k
νµϕ) + (ψ̄ψ)(DµDµϕ)

so

(ψ̄LDµψR)(Dµϕ) = ψψϕϕD + ψψXϕ + ψψϕ + ψψϕϕϕ + ψψψψ
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