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Effective theories

Example

Standard Model — Extension
But how does Extension correct Standard Model interactions in
low-energy processes?

Situation:

maximal momentum of particles k < A scale of masses of heavy fields
— no explicit presence of heavy fields in the theory

— Appelquist-Carazzone decoupling theorem

L=+ 5 Y00 + 4 Y 90 + o)
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Significance of effective theories

When the underlying theory is not yet known:

» experimental constraints on coefficients give bounds for the
couplings of broader theory

» clues for construction of the broader theory

When the underlying theory is known (e.g. it is SM) - effective theories
give us calculational tools, that i.a. extend the validity of perturbation
theory.
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Classifications of effective operators

L=+ £ Y00 + 4 Y 90 + o)

What are the operators 055) and (’),(6)?
Constraints:

» Gauge and Lorentz symmetry
» Dependencies through EOM (H. D. Politzer, 1980)
Classifications:

» C. N. Leung, S. T. Love and S. Rao (1986) - 106 operators, no
reduction using EOM

» W. Buchmiiller and D. Wyler (1986) applied EOM, getting 80
operators.

— but in fact only 59 operators are independent.



SM - gauge group representations structure

Field representation (dimension) | hypercharge
SU(3) SU(2) uQ)
G, 8 1 0
W, 1 3 )
B, 1 1 0
q 3 2 1
u 3 1 %
d 3 1 _%
/ 1 ) _%
€ 1 1 1
P 1 2 %




Mass-dimension of fundamental objects in units A =c =1

Type vector V, tensor X, spinor W | skalar ¢
3
Dimension || (GeV)? (GeV)? (GeV)2 | (GeV)!
Object D, Wy, Gy By | q,1,u,d, e ®
» for SU(3)
Gh, = 0,GP — 0,GF — gsf"P Gl GS
» for SU(2)
W, = 0,W, — 9,W, — ge” W/ w
» for U(1)

B, =0,B,—0,B,




Reasoning scheme

1. Description in terms of matter fields (¢, v), field strength tensors
X, and covariant derivatives D,,. Dimensional analysis.



Reasoning scheme

1. Description in terms of matter fields (¢, 1), field strength tensors
X, and covariant derivatives D,,. Dimensional analysis.
e.g. dim-6 expressions containing both fermionic and bosonic

fields: Yy XD, X, Yoo, hibppD, ipeDD, ¢ DDD
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2. Gauge and Lorentz symmetry.

many possible choices of v - the only singlet in QSU(Q) ® ﬁsu(z)
hypercharge conservation

(q'ee*)u, (q'e)d, (ITp)e, +h.c.

Lorentz structure contains 2 singlets:

(0,3)®(0,3)®(3,3) ®(3,3) = (0,0)&(0,0) & (1,0) & (2,0)
®(L1)®(0,1)®(1,1) @ (2,1)



Reasoning scheme

2. Gauge and Lorentz symmetry.

many possible choices of ¢ - the only singlet in qu(z) ® QSU(2)
hypercharge conservation

(qtep™)u, (q'p)d, (I')e, + h.c.

2 independent Lorentz invariants (for each):

Y1YreD, D" 1o, hreDH DY



Reasoning scheme

3. Reduction of the set of operators using algebraic properties and
SM EOM:
We have (omitting full div) the following operators:

(Y10 R)(D D" p) (1)
(10 D* DV 1pR)p (2)
(410, D*R) (D" p) (3)
(YLD, D" PR)¢ (4)
(¥ DubR)(D ) (5)
(11R)(D,D ) (6)



Reasoning scheme

3. Reduction of the set of operators using algebraic properties and
SM EOM:
Using EOM for ¢:

—(DuD*p) + m*p — Ap(lp) — TLie + T equ — Thqd =0

we get

(PL¥r)(DuD" ) =i+ | vppp |+ | by |




Reduction scheme




Bosonic invariant operators

X3 0% and p'D?
Qo | fAPCGIGIGo | Q, (1p)?
o | FAECGalG | Qu | (Plo)dee)
Quw | EwWlwlew kel Qup | (¢'D"o)" (¢'Dyp)

N LIKTi IvvisJpin K i
Qw | WH 1% Wp




Bosonic invariant operators

X2902
Quc ol Gy, G

Q. plo Gt G
Qow Qo Wi, Wi

Qv | #leW,wi
Qch SOTSO BMVBMV
Q.5 v'o B, B"

QchB QOTTIQO WI BHv
Q@WB gp T ng] B*




Invariant operators with 2 fermions

V2p?
Qey (') (lpery)
Que (") (@purP)
Qay (#"0) (@)

(? singlet)(SM Yukawa couplings of ()



Invariant operators with 2 fermions

VX V*e?D
_ <>
Qawv | (Lore)r'ow], | QY | (#liD, o) (@,
i

7 ot B (3) hii Lou

Qen (Lo €)p B Q. | (D) o)l ;)
<>

Quc (%UWTAUT)‘P Gﬁu Qee (ol D, p)(ee)
<>

Quw | (@™ u) T WL, | QU | (pliDue)(@"a,)

P11 5B (3) TBI = L~

Que | (30" u,)P By, cq | (1D, ) (@7 ")
<>

Quc (qPUWTAdr>99 Gﬁu Qpu (@TiDu @)(ﬂiﬁﬂur)
<> _

Qaw (%derﬁlﬁp W;fu Qyd (¢l D, p)(dy"d,)

Qan ((ij'lwdr)(p B, Qzud i(‘;QVTDu‘P)(ﬂp'Yﬂdr)




Fermionic operators

General structure:

(V17u001) (V2" ¥2) (17, TU1) (v T42)

(LL)(LL) (RR)(RR) DGR
Qu (L) Ly ) Qce (Epvuer) (@t er) Qe (Lyule) (€ er)
Q((z? ((Ipm(Ir)( ‘1) Quu () (s #w) Qu (ZIF/»LIT)(?;A’*‘ZH)
QW | (@) ~ﬂ71(1/) Qua (dyypudd, ) (diy™dy) Qu (L) (drvd)
A | Gul)@ra) | Qe (m,,e,)m ) | Qe | @) Enre)
QW | U@ ) || Qe (@vuer)(dy"dp) ol (G )

Q') (et ) (dy"dy) O | (@ T a) (@ T*ur)
QP | (i, T u,) Ay TAd,) lel) )

QS | @ TA4,) (A" TAdy)




Fermionic operators

(ZR)(RL) and (ER) (l_;R)
Qiedq (l_%er) (qug>
Q) (@ur)ejn(q5de)

Q((]i)qd (ggTAur)53k< YTdy)
ur)

1
Ql(e;u ( Er
qeo uy)

Qiegs | Bowe

€j]{;

e jn(ds
)ein(d

5]!{:




Redundant operators

20u(e' )0 (¢1)
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Redundant operators

20,(0T9) 0" (1)

(WrDubL) (D )
[(Dutbr)L](D* )

(b Dop) XM
(7/31 m T Ip, )(7/33’7“ T! Ip4)

I 1 1
Tii Tia = 3010k — 55 0ij0ki



Redundant operators

20,(0T9) 0" (1)

(WrDubL) (D )
[(Dutbr)L](D* )

(¥, D) X
(7/31 T T! I )(7/33’7“ T Iby)
Ti T = 3016k — 200k

The absent one: (ge)e(Tu)™
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How do we know that these operators are finally independent?

Main arguments:
> field content

» EOM contain at least one/two derivatives



Independence of listed operators

How do we know that these operators are finally independent?

Main arguments:
> field content

» EOM contain at least one/two derivatives
Why (ge)e(/u)T must be on the list?

» completeness of classification

» field content



Lepton/baryon nr violating invariant operators

(ITg")(g")

B-violating
Quug e Mgy, [(dy) " Cul] [(a27)" ClY]
Qqqu e e [(gp7) " Ca*] [(u))" O]
Q((Z}Z)q 5(y°875jk5mn [( (MJ)TCq’}kJ [(q'ym)TClzl}
Qf(fqzz gaﬂfy(TIg)jk(Tjg)mn [( )Toqﬁk} [(QZm)TCl?]
Qunn e® [(dy)" Cul] [(u))" Cel]

list already given by L.F. Abbott and M. B. Wise (1980), which
simplified those given by S. Weinberg (1976) and F. Wilczek and A.
Zee (1979)
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The importance of classification

How to discover new physics?
Recent papers with redundant operators:

» J. A. Aguilar-Saavedra, " Single top quark production at LHC with
anomalous Wtb couplings”, Nucl. Phys. B804 (2008) 160;

» K. Agashe, R. Contino, " Composite Higgs-mediated
flavor-changing neutral current”, Phys. Rev. D 80, 075016 (2009);

» S. Kanemura, K. Tsumura, " Effects of the anomalous Higgs
couplings on the Higgs boson production at the Large Hadron
Collider ", Eur. Phys. J. C63 (2009) 11,



The published results

» Bohdan Grzadkowski, Mikotaj Misiak, Janusz Rosiek, Ml
"Dimension-Six Terms in the Standard Model Lagrangian”
JHEP 1010:085,2010

» J. A. Aguilar-Saavedra
" Effective four-fermion operators in top physics: a roadmap”
Nucl.Phys.B843:638-672,2011
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Example: reduction of (¢)D,1)(D" )

but

(V") (Dy D) = )oHep) (Z ) + (¥¢)(D" D)

(PLDuR)(D*0) = ppD HH Yo X [H e [H oo HH vy |
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