Dimension Six Terms in the Standard Model Lagrangian

Mateusz Iskrzyński
Institute of Theoretical Physics, University of Warsaw

Unification in the LHC era
Corfu Summer Institute, 5.09.2011

1 Introduction

- Effective theories
- Structure of the Standard Model

2 Reasoning scheme

3 Basis of invariant effective operators

4 Comparison with "Effective lagrangian analysis of new interactions and flavour conservation" by Buchmüller, Wyler (1986)

Effective theories

Example

Standard Model \rightarrow Extension

Effective theories

Example

Standard Model \rightarrow Extension
But how does Extension correct Standard Model interactions in low-energy processes?

Effective theories

Example

Standard Model \rightarrow Extension
But how does Extension correct Standard Model interactions in low-energy processes?

Situation:
maximal momentum of particles $k \ll \Lambda$ scale of masses of heavy fields
\rightarrow no explicit presence of heavy fields in the theory

Effective theories

Example

Standard Model \rightarrow Extension
But how does Extension correct Standard Model interactions in low-energy processes?

Situation:
maximal momentum of particles $k \ll \Lambda$ scale of masses of heavy fields
\rightarrow no explicit presence of heavy fields in the theory
\rightarrow Appelquist-Carazzone decoupling theorem

$$
\mathcal{L}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+O\left(\frac{1}{\Lambda^{3}}\right)
$$

Significance of effective theories

When the underlying theory is not yet known:

- experimental constraints on coefficients give bounds for the couplings of broader theory

Significance of effective theories

When the underlying theory is not yet known:

- experimental constraints on coefficients give bounds for the couplings of broader theory
- clues for construction of the broader theory

Significance of effective theories

When the underlying theory is not yet known:

- experimental constraints on coefficients give bounds for the couplings of broader theory
- clues for construction of the broader theory

Significance of effective theories

When the underlying theory is not yet known:

- experimental constraints on coefficients give bounds for the couplings of broader theory
- clues for construction of the broader theory

When the underlying theory is known (e.g. it is SM) - effective theories give us calculational tools, that i.a. extend the validity of perturbation theory.

Classifications of effective operators

$$
\mathcal{L}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+O\left(\frac{1}{\Lambda^{3}}\right)
$$

What are the operators $\mathcal{O}_{i}^{(5)}$ and $\mathcal{O}_{i}^{(6)}$?

Classifications of effective operators

$$
\mathcal{L}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+O\left(\frac{1}{\Lambda^{3}}\right)
$$

What are the operators $\mathcal{O}_{i}^{(5)}$ and $\mathcal{O}_{i}^{(6)}$?
Constraints:

- Gauge and Lorentz symmetry
- Dependencies through EOM (H. D. Politzer, 1980)

Classifications of effective operators

$$
\mathcal{L}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+O\left(\frac{1}{\Lambda^{3}}\right)
$$

What are the operators $\mathcal{O}_{i}^{(5)}$ and $\mathcal{O}_{i}^{(6)}$?
Constraints:

- Gauge and Lorentz symmetry
- Dependencies through EOM (H. D. Politzer, 1980)

Classifications:

- C. N. Leung, S. T. Love and S. Rao (1986) - 106 operators, no reduction using EOM
- W. Buchmüller and D. Wyler (1986) applied EOM, getting 80 operators.

Classifications of effective operators

$$
\mathcal{L}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} \mathcal{O}_{i}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)}+O\left(\frac{1}{\Lambda^{3}}\right)
$$

What are the operators $\mathcal{O}_{i}^{(5)}$ and $\mathcal{O}_{i}^{(6)}$?
Constraints:

- Gauge and Lorentz symmetry
- Dependencies through EOM (H. D. Politzer, 1980) Classifications:
- C. N. Leung, S. T. Love and S. Rao (1986) - 106 operators, no reduction using EOM
- W. Buchmüller and D. Wyler (1986) applied EOM, getting 80 operators.
\rightarrow but in fact only 59 operators are independent.

SM - gauge group representations structure

Field	representation (dimension)		
	$\mathrm{SU}(2)$	hypercharge $\mathrm{U}(1)$	
G_{μ}	8	1	0
W_{μ}	1	3	0
B_{μ}	1	1	0
q	3	2	$\frac{1}{6}$
u	3	1	$\frac{2}{3}$
d	3	1	$-\frac{1}{3}$
I	1	2	$-\frac{1}{2}$
e	1	1	-1
φ	1	2	$\frac{1}{2}$

Type	vector V_{μ}	tensor $X_{\mu \nu}$	spinor ψ	skalar φ
Dimension	$(G e V)^{1}$	$(G e V)^{2}$	$(G e V)^{\frac{3}{2}}$	$(G e V)^{1}$
Object	D_{μ}	$W_{\mu \nu}, G_{\mu \nu}, B_{\mu \nu}$	q, I, u, d, e	φ

- for $\operatorname{SU}(3)$

$$
G_{\mu \nu}^{A}=\partial_{\mu} G_{\nu}^{B}-\partial_{\nu} G_{\mu}^{C}-g_{s} f^{A B C} G_{\mu}^{B} G_{\nu}^{C}
$$

- for $\operatorname{SU}(2)$

$$
W_{\mu \nu}^{\prime}=\partial_{\mu} W_{\nu}^{\prime}-\partial_{\nu} W_{\mu}^{\prime}-g \varepsilon^{I J K} W_{\mu}^{J} W_{\nu}^{K}
$$

- for $\mathrm{U}(1)$

$$
B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
$$

1. Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \nu}$ and covariant derivatives D_{μ}. Dimensional analysis.

Reasoning scheme

1. Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \nu}$ and covariant derivatives D_{μ}. Dimensional analysis. e.g. dim-6 expressions containing both fermionic and bosonic fields: $\psi \psi X D, \psi \psi X \varphi, \psi \psi \varphi \varphi \varphi, \psi \psi \varphi \varphi D, \psi \psi \varphi D D, \psi \psi D D D$
2. Gauge and Lorentz symmetry.
3. Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \nu}$ and covariant derivatives D_{μ}. Dimensional analysis.
4. Gauge and Lorentz symmetry.

Reasoning scheme

1. Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu, 1}$ and covariant derivatives $D_{\mu \prime}$. Dimensional analysis.
2. Gauge and Lorentz symmetry.
e.g. $\psi \psi \varphi D D$:
many possible choices of ψ - the only singlet in $\hat{2}_{S U(2)} \otimes \hat{2}_{S U(2)}$ hypercharge conservation

$$
\left(q^{\dagger} \varepsilon \varphi^{*}\right) u, \quad\left(q^{\dagger} \varphi\right) d, \quad\left(I^{\dagger} \varphi\right) e, \quad+\text { h.c. }
$$

3. Reduction of the set of operators using algebraic properties and SM EOM:

Reasoning scheme

Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \nu}$ and covariant derivatives D_{μ}. Dimensional analysis.
2. Gauge and Lorentz symmetry.
e.g. $\psi \psi \varphi D D$:
many possible choices of ψ - the only singlet in $\hat{2}_{S U(2)} \otimes \hat{2}_{S U(2)}$ hypercharge conservation

$$
\left(q^{\dagger} \varepsilon \varphi^{*}\right) u, \quad\left(q^{\dagger} \varphi\right) d, \quad\left(I^{\dagger} \varphi\right) e, \quad+\text { h.c. }
$$

Lorentz structure contains 2 singlets:

$$
\begin{aligned}
\left(0, \frac{1}{2}\right) \otimes\left(0, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(\frac{1}{2}, \frac{1}{2}\right)= & (0,0) \oplus(0,0) \oplus(1,0) \oplus(2,0) \\
& \oplus(1,1) \oplus(0,1) \oplus(1,1) \oplus(2,1)
\end{aligned}
$$

Reduction of the set of operators using algebraic properties and SM EOM:

Reasoning scheme

Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \nu}$ and covariant derivatives D_{μ}. Dimensional analysis.
2. Gauge and Lorentz symmetry.
e.g. $\psi \psi \varphi D D$:
many possible choices of ψ - the only singlet in $\hat{2}_{S U(2)} \otimes \hat{2}_{S U(2)}$ hypercharge conservation

$$
\left(q^{\dagger} \varepsilon \varphi^{*}\right) u, \quad\left(q^{\dagger} \varphi\right) d, \quad\left(I^{\dagger} \varphi\right) e, \quad+\text { h.c. }
$$

2 independent Lorentz invariants (for each):

$$
\bar{\psi}_{L} \psi_{R} \varphi D_{\mu} D^{\mu} \quad \bar{\psi}_{L} \sigma_{\mu \nu} \psi_{R} \varphi D^{\mu} D^{\nu}
$$

3. Reduction of the set of operators using algebraic properties and SM EOM:

Reasoning scheme

1. Description in terms of matter fields (φ, ψ), field strength tensors $X_{I I,}$ and covariant derivatives $D_{\mu L}$. Dimensional analysis.
2. Gauge and Lorentz symmetry.
3. Reduction of the set of operators using algebraic properties and SM EOM:
We have (omitting full div) the following operators:

$$
\begin{gather*}
\left(\bar{\psi}_{L} \sigma_{\mu \nu} \psi_{R}\right)\left(D^{\mu} D^{\nu} \varphi\right) \tag{1}\\
\left(\bar{\psi}_{L} \sigma_{\mu \nu} D^{\mu} D^{\nu} \psi_{R}\right) \varphi \tag{2}\\
\left(\bar{\psi}_{L} \sigma_{\mu \nu} D^{\mu} \psi_{R}\right)\left(D^{\nu} \varphi\right) \tag{3}\\
\left(\bar{\psi}_{L} D_{\mu} D^{\mu} \psi_{R}\right) \varphi \tag{4}\\
\left(\bar{\psi}_{L} D_{\mu} \psi_{R}\right)\left(D^{\mu} \varphi\right) \tag{5}\\
\left(\bar{\psi}_{L} \psi_{R}\right)\left(D_{\mu} D^{\mu} \varphi\right) \tag{6}
\end{gather*}
$$

Reasoning scheme

1. Description in terms of matter fields (φ, ψ), field strength tensors $X_{\mu \prime \prime}$ and covariant derivatives $D_{\mu \prime}$. Dimensional analysis.
2. Gauge and Lorentz symmetry.
3. Reduction of the set of operators using algebraic properties and SM EOM:
Using EOM for φ :

$$
-\left(D_{\mu} D^{\mu} \varphi\right)+m^{2} \varphi-\lambda \varphi\left(\varphi^{\dagger} \varphi\right)-\Gamma_{e}^{\dagger} / \bar{e}+\Gamma_{u} \varepsilon \bar{q} u-\Gamma_{d}^{\dagger} q \bar{d}=0
$$

we get

$$
\left(\bar{\psi}_{L} \psi_{R}\right)\left(D_{\mu} D^{\mu} \varphi\right)=\psi \psi \varphi+\psi \psi \varphi \varphi \varphi+\psi \psi \psi \psi
$$

Bosonic invariant operators

X^{3}		φ^{6} and $\varphi^{4} D^{2}$	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{φ}	$\left(\varphi^{\dagger} \varphi\right)^{3}$
$Q_{\widetilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$Q_{\varphi \square}$	$\left(\varphi^{\dagger} \varphi\right) \square\left(\varphi^{\dagger} \varphi\right)$
Q_{W}	$\varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star}\left(\varphi^{\dagger} D_{\mu} \varphi\right)$
$Q_{\widetilde{W}}$	$\varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$		

Bosonic invariant operators

$X^{2} \varphi^{2}$	
$Q_{\varphi G}$	$\varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$
$Q_{\varphi W B}$	$\varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}$
$Q_{\varphi \widetilde{W} B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W_{\mu \nu}^{I}} B^{\mu \nu}$

Invariant operators with 2 fermions

$Q^{2} \varphi^{3}$	
$Q_{u \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{l}_{p} e_{r} \varphi\right)$
$Q_{d \varphi}$	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} u_{r} \widetilde{\varphi}\right)$
	$\left(\varphi^{\dagger} \varphi\right)\left(\bar{q}_{p} d_{r} \varphi\right)$

(φ^{2} singlet)(SM Yukawa couplings of φ)

Invariant operators with 2 fermions

$\psi^{2} X \varphi$		$\psi^{2} \varphi^{2} D$	
$Q_{e W}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi l}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}^{I}} \varphi\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{\varphi} G_{\mu \nu}^{A}$	$Q_{\varphi e}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}$	$Q_{\varphi q}^{(1)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{\varphi} B_{\mu \nu}$	$Q_{\varphi q}^{(3)}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{\left.D_{\mu}^{I} \varphi\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)}\right.$
$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) \varphi G_{\mu \nu}^{A}$	$Q_{\varphi u}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} \varphi W_{\mu \nu}^{I}$	$Q_{\varphi d}$	$\left(\varphi^{\dagger} i \stackrel{\leftrightarrow}{D_{\mu}} \varphi\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \varphi B_{\mu \nu}$	$Q_{\varphi u d}$	$i\left(\widetilde{\varphi}^{\dagger} D_{\mu} \varphi\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Fermionic operators

General structure:

$$
\left(\bar{\psi}_{1} \gamma_{\mu} \psi_{1}\right)\left(\bar{\psi}_{2} \gamma^{\mu} \psi_{2}\right) \quad\left(\bar{\psi}_{1} \gamma_{\mu} T^{\alpha} \psi_{1}\right)\left(\bar{\psi}_{2} \gamma^{\mu} T^{\alpha} \psi_{2}\right)
$$

$\left(\bar{L}_{L} L\right)(\bar{L} L)$		$\left(\bar{R}^{2} R\right)\left(\bar{R}^{2} R\right)$		$\left(\bar{L}^{2} L\right)\left(\bar{R}^{2} R\right)$	
$Q_{l l}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)$	$Q_{e e}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l q}^{(1)}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{e u}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{e d}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
		$Q_{u d}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$
		$Q_{u d}^{(8)}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
			$Q_{q d}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	

$(\bar{L} R)(\bar{R} L)$ and $(\bar{L} R)(\bar{L} R)$

$Q_{l e d q}$
$\left({ }_{p}^{\bar{l}} e_{r}\right)\left(\bar{d}_{s} q_{t}^{j}\right)$
$Q_{q u q d}^{(1)}$
$\left(\bar{q}_{p}^{j} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$
$Q_{q u q d}^{(8)}$
$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$
$Q_{\text {lequ }}^{(1)}$
$\left(\bar{l}_{p}^{j} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$
$Q_{\text {lequ }}^{(3)}$
$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \varepsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$

Redundant operators

$$
\frac{1}{2} \partial_{\mu}\left(\varphi^{\dagger} \varphi\right) \partial^{\mu}\left(\varphi^{\dagger} \varphi\right)
$$

$$
\frac{1}{2} \partial_{\mu}\left(\varphi^{\dagger} \varphi\right) \partial^{\mu}\left(\varphi^{\dagger} \varphi\right)
$$

$$
\begin{gathered}
\left(\bar{\psi}_{R} D_{\mu} \psi_{L}\right)\left(D^{\mu} \varphi\right) \\
{\left[\left(D_{\mu} \bar{\psi}_{R}\right) \psi_{L}\right]\left(D^{\mu} \varphi\right)} \\
\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi\right) X^{\mu \nu}
\end{gathered}
$$

Redundant operators

$$
\frac{1}{2} \partial_{\mu}\left(\varphi^{\dagger} \varphi\right) \partial^{\mu}\left(\varphi^{\dagger} \varphi\right)
$$

$$
\begin{gathered}
\left(\bar{\psi}_{R} D_{\mu} \psi_{L}\right)\left(D^{\mu} \varphi\right) \\
{\left[\left(D_{\mu} \bar{\psi}_{R}\right) \psi_{L}\right]\left(D^{\mu} \varphi\right)} \\
\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi\right) X^{\mu \nu}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\bar{T}_{p_{1}} \gamma_{\mu} T^{\prime} l_{p_{2}}\right)\left(\bar{T}_{p_{3}} \gamma^{\mu} T^{\prime} l_{p_{4}}\right. \\
& T_{i j}^{\prime} T_{k l}^{\prime}=\frac{1}{2} \delta_{i l} \delta_{k j}-\frac{1}{2 N} \delta_{i j} \delta_{k l}
\end{aligned}
$$

$$
\frac{1}{2} \partial_{\mu}\left(\varphi^{\dagger} \varphi\right) \partial^{\mu}\left(\varphi^{\dagger} \varphi\right)
$$

$$
\begin{gathered}
\left(\bar{\psi}_{R} D_{\mu} \psi_{L}\right)\left(D^{\mu} \varphi\right) \\
{\left[\left(D_{\mu} \bar{\psi}_{R}\right) \psi_{L}\right]\left(D^{\mu} \varphi\right)} \\
\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi\right) X^{\mu \nu}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\bar{T}_{p_{1}} \gamma_{\mu} T^{\prime} l_{p_{2}}\right)\left(\bar{T}_{p_{3}} \gamma^{\mu} T_{p_{4}}\right) \\
& T_{i j}^{\prime} T_{k l}^{\prime}=\frac{1}{2} \delta_{i l} \delta_{k j}-\frac{1}{2 N} \delta_{i j} \delta_{k l}
\end{aligned}
$$

The absent one: $(\bar{q} e) \varepsilon(\bar{l} u)^{T}$

Independence of listed operators

How do we know that these operators are finally independent?
Main arguments:

- field content
- EOM contain at least one/two derivatives

Independence of listed operators

How do we know that these operators are finally independent?
Main arguments:

- field content
- EOM contain at least one/two derivatives

Why $(\bar{q} e) \varepsilon(\bar{l} u)^{T}$ must be on the list?

- completeness of classification
- field content

Lepton/baryon nr violating invariant operators

$$
\left(I^{T} \tilde{\varphi}^{*}\right)\left(\tilde{\varphi}^{\dagger} l\right)
$$

B-violating	
$Q_{d u q}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d_{p}^{\alpha}\right)^{T} C u_{r}^{\beta}\right]\left[\left(q_{s}^{\gamma j}\right)^{T} C l_{t}^{k}\right]$
$Q_{q q u}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha j}\right)^{T} C q_{r}^{\beta k}\right]\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$
$Q_{q q q}^{(1)}$	$\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k} \varepsilon_{m n}\left[\left(q_{p}^{\alpha j}\right)^{T} C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{q q q}^{(3)}$	$\varepsilon^{\alpha \beta \gamma}\left(\tau^{I} \varepsilon\right)_{j k}\left(\tau^{I} \varepsilon\right)_{m n}\left[\left(q_{p}^{\alpha j}\right)^{T} C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C l_{t}^{n}\right]$
$Q_{d u u}$	$\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)^{T} C u_{r}^{\beta}\right]\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]$

list already given by L.F. Abbott and M. B. Wise (1980), which simplified those given by S. Weinberg (1976) and F. Wilczek and A. Zee (1979)

The importance of classification

How to discover new physics?

How to discover new physics?
Recent papers with redundant operators:

- J. A. Aguilar-Saavedra, "Single top quark production at LHC with anomalous Wtb couplings", Nucl. Phys. B804 (2008) 160;
- K. Agashe, R. Contino, "Composite Higgs-mediated flavor-changing neutral current", Phys. Rev. D 80, 075016 (2009);
- S. Kanemura, K. Tsumura, "Effects of the anomalous Higgs couplings on the Higgs boson production at the Large Hadron Collider ", Eur. Phys. J. C63 (2009) 11;
- Bohdan Grzadkowski, Mikołaj Misiak, Janusz Rosiek, MI "Dimension-Six Terms in the Standard Model Lagrangian" JHEP 1010:085,2010
- J. A. Aguilar-Saavedra
"Effective four-fermion operators in top physics: a roadmap" Nucl.Phys.B843:638-672,2011

Questions

Example: reduction of $\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)$

$$
\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \eta^{\nu} \psi\right)\left(D_{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \frac{1}{2}\left\{\gamma^{\nu}, \gamma^{\mu}\right\} \psi\right)\left(D_{\mu} \varphi\right)
$$

$$
=\frac{1}{2}\left(\bar{\psi} D_{\nu} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+\frac{1}{2}\left(\bar{\psi} \gamma^{\mu} \underline{D \psi}\right)\left(D_{\mu} \varphi\right)
$$

$$
-\frac{1}{2}\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\nu} D_{\mu} \varphi\right)
$$

Example: reduction of $\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)$

$$
\begin{gathered}
\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \eta^{\nu} \psi\right)\left(D_{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \frac{1}{2}\left\{\gamma^{\nu}, \gamma^{\mu}\right\} \psi\right)\left(D_{\mu} \varphi\right) \\
=\frac{1}{2}\left(\bar{\psi} D_{\nu} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+\frac{1}{2}\left(\bar{\psi} \gamma^{\mu} \underline{D \psi}\right)\left(D_{\mu} \varphi\right)
\end{gathered}
$$

Example: reduction of $\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)$

$$
\begin{aligned}
& \left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \eta^{\nu \mu} \psi\right)\left(D_{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\mu}\right\} \psi\right)\left(D_{\mu} \varphi\right) \\
& =\frac{1}{2}\left(\bar{\psi} D_{\nu} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+\frac{1}{2}\left(\bar{\psi} \gamma^{\mu} \underline{D \psi}\right)\left(D_{\mu} \varphi\right) \\
& =\psi \psi \varphi \varphi D+\frac{1}{2} D_{\nu}\left[\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)\right]-\frac{1}{2}\left(\bar{\psi} \overleftarrow{\bar{D}} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+ \\
& -\frac{1}{2}\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\nu} D_{\mu} \varphi\right)
\end{aligned}
$$

Example: reduction of $\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)$

$$
\begin{aligned}
& \left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)=\left(\bar{\psi} D_{\nu} \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\mu}\right\} \psi\right)\left(D_{\mu} \varphi\right) \\
& =\frac{1}{2}\left(\bar{\psi} D_{\nu} \gamma^{\mu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+\frac{1}{2}\left(\bar{\psi} \gamma^{\mu} D \psi\right)\left(D_{\mu} \varphi\right) \\
& =\psi \psi \varphi \varphi D+\frac{1}{2} D_{\nu}\left[\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)\right]-\frac{1}{2}\left(\bar{\psi} \overleftarrow{\bar{D}} \gamma^{\mu} \psi\right)\left(D_{\mu} \varphi\right)+ \\
& -\frac{1}{2}\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\nu} D_{\mu} \varphi\right)
\end{aligned}
$$

but

$$
\begin{equation*}
\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\nu} D_{\mu} \varphi\right)=\left(\bar{\psi}(-i) \sigma^{\nu \mu} \psi\right)\left(\sum_{k} X_{\nu \mu}^{k} \varphi\right)+(\bar{\psi} \psi)\left(\underline{D^{\mu} D_{\mu} \varphi}\right) \tag{SO}
\end{equation*}
$$

Example: reduction of $\left(\bar{\psi} D_{\mu} \psi\right)\left(D^{\mu} \varphi\right)$

but

$$
\left(\bar{\psi} \gamma^{\nu} \gamma^{\mu} \psi\right)\left(D_{\nu} D_{\mu} \varphi\right)=\left(\bar{\psi}(-i) \sigma^{\nu \mu} \psi\right)\left(\sum_{k} X_{\nu \mu}^{k} \varphi\right)+(\bar{\psi} \psi)\left(\underline{D^{\mu} D_{\mu} \varphi}\right)
$$

so
$\left(\bar{\psi}_{L} D_{\mu} \psi_{R}\right)\left(D^{\mu} \varphi\right)=\psi \psi \varphi \varphi D+\psi \psi X \varphi+\psi \psi \varphi+\psi \psi \varphi \varphi \varphi+\psi \psi \psi \psi$

