The plan

- 1. The Standard Model: the "indirect" informations
- 2. "Higgsless"
- 3. The Higgs boson as a PGB
- 4. Beyond mSUGRA

A fast supersymmetry primer

1. The general Lagrangian

 $\mathcal{L} = i\bar{\psi} \not D \psi - (m\psi\psi + h.c.) + |D_{\mu}\phi|^2 - m^2 |\phi|^2$ has a supersymmetry, under which $\psi \Leftrightarrow \phi$ which can be extended to include gauge inv. int.s

 $V^{\alpha} = (A^{\alpha}_{\mu}, \lambda^{\alpha}) \qquad \hat{\phi}_{a} = (\psi_{a}, \phi_{a})$ $\mathcal{L} = \mathcal{L}^{gauge} + \mathcal{L}^{f}$ $\mathcal{L}^{f} = \sum_{a} |f_{a}|^{2} + (f_{ab}\psi_{a}\psi_{b} + h.c.) \qquad (\text{R-symmetry})$ $\Rightarrow \text{No } \Lambda^{2} \text{ div.s, even after inclusion of appropriate "soft" breaking terms (and excluding trace-full U(1) factors)$ $\mathcal{L} = \mathcal{L}^{gauge} + \mathcal{L}^{f} + \mathcal{L}^{soft}$

2. The general MSSM

Standard particles into supermultiplets + \hat{H}_1, \hat{H}_2

$$f = \lambda_U Q u H_2 + \lambda_D Q d H_1 + \lambda_E L e H_1 + \mu H_1 H_2$$

$$\mathcal{L}^{soft} = \Sigma_{\alpha} m_{\alpha}^2 |\phi_{\alpha}|^2 + (\Sigma_{\beta} A_{\beta}^0 f_{\beta} + \Sigma_i m_{1/2i} \tilde{g}_i \tilde{g}_i + h.c.)$$
3. mSUGRA
$$m_{\alpha} = m_0, \ m_{1/2i} = m_{1/2}, \ A_U = A_D = A_L \equiv A \text{ universal at } M_{GUT}$$

$$A_{\mu} = B$$
(5 extra-par.s, as opposed to μ and λ of the SM)
LSP = lightest neutralino = χ_0^0 table

3. The MSSM Higgs sector reviewed

$$H_{1} \equiv \begin{pmatrix} h_{1}^{0} \\ h^{-} \end{pmatrix} \in (\mathbf{2})_{Y=-1/2}, \qquad H_{2} \equiv \begin{pmatrix} h^{+} \\ h_{2}^{0} \end{pmatrix} \in (\mathbf{2})_{Y=1/2}, \qquad f = \mu H_{1}H_{2}$$

$$V = \widetilde{m}_{H_{u}}^{2} H_{u}^{\dagger} H_{u} + \widetilde{m}_{H_{d}}^{2} H_{d}^{\dagger} H_{d} - \begin{pmatrix} m_{ud}^{2} H_{u} H_{d} + \text{ h.c.} \end{pmatrix} \qquad (\mathbf{d}, \mathbf{u}) \Leftrightarrow (1, 2)$$

$$+ \frac{g^{2}}{8} \left[(H_{u}^{\dagger} H_{u} + H_{d}^{\dagger} H_{d})^{2} - 4 (H_{u} H_{d})^{\dagger} (H_{u} H_{d}) \right] + \frac{g'^{2}}{8} (H_{u}^{\dagger} H_{u} - H_{d}^{\dagger} H_{d})^{2}$$

By minimizing the potential:

- 1. e.m and CP always unbroken
- 2. In a range of the par.s:

$$H_1 = \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad H_2 = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \quad \tan \beta \equiv \frac{v_2}{v_1} \quad v = \sqrt{v_1^2 + v_2^2} = 175 \ GeV$$

Parameter counting:

 $\tilde{m}_1^2, \tilde{m}_2^2, m_{12}^2 \Rightarrow v, \tan\beta + 1 \text{ extra } (+3^{rd} \text{ generation})$

The physical Higgs bosons

A simple counting:

$$2x4 - (2+1) = 5 = 2 + 1 + 1 + 1$$

 $H^{\pm} h H A$

Tree level

$$\begin{split} m_{h,H}^2 &= \frac{1}{2} \left[m_Z^2 + m_A^2 \mp \sqrt{(m_A^2 - m_Z^2)^2 + 4m_A^2 m_Z^2 \sin^2 2\beta} \right] \\ m_{H^{\pm}}^2 &= m_A^2 + m_W^2 \qquad \Rightarrow m_h^2 \simeq M_Z^2 \cos^2 2\beta \end{split}$$

Including top-loop corrections

The key equations

to be made more precise in any given SB-mediation scheme

see Dimopoulos, Giudice for SUGRA-mediation

E.g., take simple supergravity and $\tan \beta = 10$

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3G_F m_t^4}{\sqrt{2}\pi^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

by running from M_G down to M_Z

The Higgs boson mass and the fine-tuning

When shall I give up on SUSY?

No Higgs boson (LEP)

No s-particle (LEP + TEVATRON + LHC)

Flavour and CPV as in CKM picture (almost?) (the most important development of the past decade)

> A hard and embarrassing question, but a clearly inescapable one

A synthetic description of the LHC phenomenology

3 semi-inclusive decays (up to < few % in any case) direct or by cascade

$$\tilde{g} \to t\bar{t}\chi \qquad \qquad \tilde{g} \to t\bar{b}\chi^-(\bar{t}b\chi^+) \qquad \qquad \tilde{g} \to b\bar{b}\chi$$

IF $\mu < M_1, M_2$ then

forget cascades inside χ 's bb almost irrelevant

\Rightarrow 4 semi-inclusive final states

$$\begin{array}{l} pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\overline{t}\overline{t} + \chi\chi\\ pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\overline{t}\overline{b}(\overline{t}\overline{t}\overline{t}b) + \chi\chi\\ pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\overline{b}\overline{b}(\overline{t}\overline{t}bb) + \chi\chi\\ pp \rightarrow \tilde{g}\tilde{g} \rightarrow t\overline{t}\overline{b}\overline{b} + \chi\chi \end{array}$$

$$\chi = \chi^{\pm}, \chi_1, \chi_2$$

with rates determined by a single BR $B_{tb} \equiv BR(\tilde{g} \rightarrow t\bar{b}\chi^{-}) = BR(\tilde{g} \rightarrow \bar{t}b\chi^{+}) \approx \frac{1}{2}(1 - BR(\tilde{g} \rightarrow t\bar{t}\chi))$ (Kim: $\chi \rightarrow \tilde{G} + Z$)

current bounds on $\ \widetilde{g}, \widetilde{t}, \widetilde{b}$

Two issues (logically almost independent)

B, Hall, Nomura, Rychkov

How heavy can the lightest Higgs boson be?

$$f = \mu H_1 H_2 \Rightarrow f = \lambda S H_1 H_2$$

$$\Delta V = |f_S|^2 = \lambda^2 |H_1 H_2|^2$$

 $m_h^2 \simeq M_Z^2 \cos^2 2\beta \implies m_h^2 \simeq M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$

\Rightarrow The "NMSSM" motivated

The "µ" problem:
$$\mu_{eff} = \lambda < S >$$

(Other ways less effective, in my live)
10

The relevant RGEs

The general R-invariant superpotential: $f = \lambda SH_1H_2 + \frac{\kappa}{3}S^3$

$$16\pi^2 \frac{d\lambda^2}{dt} = \lambda^2 \left[4\lambda^2 + 2\kappa^2 + 3h_t^2 - 3g_2^2 - \frac{3}{5}g_1^2 \right] + 16\pi^2 \frac{d\kappa^2}{dt} = 6\kappa^2 \left[\lambda^2 + \kappa^2 \right]$$
$$16\pi^2 \frac{dh_t^2}{dt} = h_t^2 \left[\lambda^2 + 6h_t^2 - \frac{16}{3}g_3^2 - 3g_2^2 - \frac{13}{15}g_1^2 \right]$$

 \Rightarrow

1.
$$(\frac{\lambda}{4\pi})^2 (10TeV) \le 0.1 \implies \lambda(G_F^{-1/2}) \le 2$$
 " λ SUSY"
2. $(\frac{\lambda}{4\pi})^2 (M_{GUT}) \le 0.1 \implies \lambda(G_F^{-1/2}) \le 0.7$

Maximal Higgs boson mass* with $\Delta f = \lambda S H_u H_d$

What about gauge-coupling unification if $\lambda\approx 2$?

We already know of one gauge coupling that crosses the threshold of a strong interaction practically unchanged: α_{em}

If $\Delta f = \lambda S H_u H_d$, then $\lambda \gtrsim 0.8$ should be contemplated

Phenomenological consequences (non mSUGRA-like)

* gluino pair production and decays into top/bottom-rich final states

* a largely unconventional Higgs sector $h \rightarrow WW, ZZ$ (with reduced rate) $\rightarrow h \rightarrow aa \rightarrow (b\bar{b}, \ \tau\bar{\tau}, \ c\bar{c})^2$ $h \rightarrow \chi_{DM}\chi_{DM}$

 $\mathrm{if}\,\lambda(G_F^{-1/2})\approx 2$

* Dark Matter: relic abundance and detection affected

* Flavour and CPV signals (at low $tan\beta$)

Bertuzzo, Farina

k = -0.2	$\mu ~({ m GeV})$	$m_H ~({ m GeV})$	m_{s_1} (GeV)	m_{A_1} (GeV)	m_{χ_1} (GeV)
a	180	340	252	103	130
b	105	180	163	95	77
с	130	200	173	108	96
k = -0.6					
d	105	180	160	166	78
e	160	280	232	195	120

k = -0.2	$BR(A_1A_1)$	$BR(ZA_1)$	$BR(\chi_1\chi_1)$	BR(ZZ + WW)	${ m BR}(bar{b})$	Γ_{tot} (GeV)
a	0.51	0.09	0	0.38	0	7
b	0	0	0.7	0.05	0.24	0.04
с	0	0	0	0.69	0.31	0.03
k = -0.6						
d	0	0	0.57	0	0.43	0.03
е	0	0	0	0.95	0.05	0.3

Bertuzzo, Farina Franceschini, Gori

Particle spectrum (naturalness bounds)

B, Hall, Nomura, Rychkov

Summary on supersymmetry

1. Crucial to know where $m_{\tilde{g}}, m_{\tilde{t}}, m_{\tilde{b}}$ are

2. The simplest way to be consistent with $m_h > 115 \ GeV$ is to have $\Delta f = \lambda SH_1H_2$, in which case beware of non-standard phenomenology

(At LHC1 1 easier than 2?)

Overall Conclusions

Back to lecture 1 The (many) reactions to the FT problem

- 1. Cure it by symmetries: SUSY, Higgs as PGB, little Higgs 餐
- 2. A new strong interaction nearby

- 3. A new strong interaction not so nearby: quasi-CFT
- 4. Warp space-time: RS
- 5. Saturate the UV nearby: ADD, classicalons
- 6. Accept it: the multiverse

Every theorist should decide where to put his/her money Aaahhh!! The happy experimentalists!

Some (approximate) flavour symmetry must be operative

$$\begin{array}{ll} \hline V = (2,1,1) & \Gamma_u = (2,\bar{2},1) & \Gamma_d = (2,1,\bar{2}) & \text{all } \lesssim \mathcal{O}(\lambda^2) \\ \hline \textbf{(If } V = (1,2,1) & \text{or } V = (1,1,2) & \text{then } \approx \mathcal{O}(1) \textbf{)} & \text{with } \lambda = 0. \end{array}$$

= 0.2254

and perhaps also in the SUSY non-data flavour, EDMs, direct s-particle searches

A relevant example: supersymmetry

Particle spectrum

Flavour changing interactions

standard parametrization, in non standard notation

$$\begin{split} u_{i}^{L} & \underbrace{\begin{cases} W \\ V_{ij}^{CKM} \end{cases}}_{V_{ij}^{CKM}} d_{j}^{L} & V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & s_{u}se^{-i\delta} \\ -\lambda & 1 - \lambda^{2}/2 & c_{u}s \\ -s_{d}s e^{i(\phi+\delta)} & -sc_{d} & 1 \end{pmatrix} \\ s_{u}c_{d} - c_{u}s_{d}e^{-i\phi} = \lambda e^{i\delta} \\ & s_{u}c_{d} - c_{u}s_{d}e^{-i\phi} = \lambda e^{i\delta} \\ & M^{L} = \begin{pmatrix} c_{d} & s_{d}e^{-i(\delta+\phi)} & -s_{d}s_{L}e^{i\gamma}e^{-i(\delta+\phi)} \\ -s_{d}e^{i(\delta+\phi)} & c_{d} & -c_{d}s_{L}e^{i\gamma} \\ 0 & s_{L}e^{-i\gamma} & 1 \end{pmatrix} \\ & W^{R} \approx 1 & 1 \text{ new angle } S_{L} \text{ and } 1 \text{ new phase } \end{split}$$

 $\Delta F = 2$ – Our own SM fit

details subject to discussion

a hint of a potential problem for the SM

Supersymmetric fit

Constraints on extra parameters:

$ V_{ud} $	0.97425(22)	[14]	f_K	$(155.8 \pm 1.7) \text{ MeV}$	[15]
$ V_{us} $	0.2254(13)	[16]	\hat{B}_K	0.724 ± 0.030	[17]
$ V_{cb} $	$(40.89 \pm 0.70) imes 10^{-3}$	[13]	κ_ϵ	0.94 ± 0.02	[18]
$ V_{ub} $	$(3.97\pm0.45) imes10^{-3}$	[19]	$f_{B_s}\sqrt{\hat{B}_s}$	$(291 \pm 16) \text{ MeV}$	[20]
$\gamma_{ m CKM}$	$(74 \pm 11)^{\circ}$	[11]	ξ	1.23 ± 0.04	[20]
$ \epsilon_K $	$(2.229 \pm 0.010) imes 10^{-3}$	[21]			
$S_{\psi K_S}$	0.673 ± 0.023	[22]			
ΔM_d	$(0.507\pm0.004){ m ps}^{-1}$	[22]			
ΔM_s	$(17.77 \pm 0.12) \mathrm{ps^{-1}}$	[23]			

 $U(2)^3$ prediction

Input

data

 $S_{B_s \to \Psi \phi} = 0.12 \pm 0.5$

Electric Dipole Moments with flavour blind phases only

Flavour blind phases lead to contributions to electric dipole moments.

Exp.: $|d_e| < 1.6 \times 10^{-27} e \,\mathrm{cm}$, $|d_n| < 2.9 \times 10^{-26} e \,\mathrm{cm}$

<u>1-loop contributions</u> suppressed by heavy 1st generation sfermions

 $m_{\tilde{\nu}} > 4.0 \text{ TeV } \times (\sin \phi_{\mu} \tan \beta)^{\frac{1}{2}}$ $m_{\tilde{u}} > 2.7 \text{ TeV } \times (\sin \phi_{\mu} \tan \beta)^{\frac{1}{2}}$

2-loop contributions lead to effects in the ballpark of the experimental bound

CP asymmetries in B-physics

CP violating contributions to dipole operators not suppressed by 1st/2nd generation sfermion masses

Flavour and CPV in charged leptons

A sensible extension of $U(2)_q^3$ to leptons although with a main unknown $M_{ij}\nu_i^R\nu_j^R$ with no analogue in the quark sector

Educated guesses:

$$BR(\mu \to e\gamma) \approx 10^{-11 \div 14} \left| \frac{V_{\tau\mu}^l}{V_{ts}} \right|^2 \left| \frac{V_{\tau e}^l}{V_{td}} \right|^2$$

$$\frac{BR(\tau \to \mu \gamma)}{BR(\mu \to e\gamma)} \approx |\frac{V_{\tau\tau}^l}{V_{\tau e}^l}|^2 BR(\tau \to \mu \nu \bar{\nu}) \approx 2 \times 10^3 |\frac{V_{\tau\tau}^l}{V_{tb}}|^2 |\frac{V_{td}}{V_{\tau e}^l}|^2$$

$$d_e$$

 $au
ightarrow \mu \gamma$

 $\mu \rightarrow e\gamma$

$$d_e \approx \sin \phi \ 10^{-27} e \ cm \sqrt{BR(\mu \to e\gamma)/10^{-12}}$$