TEVATRON 2011: At the time of LHC TSUNAMI

Aurore Savoy-Navarro, CNRS-IN2P3 and FNAL

Corfu Summer Institute .1th Hellenic School and Warkshops on Elementary Particle Physics and Gravity Corfus Greene 2011

- Since more than *4 decades*, the collider machines have been major discovery tools in H.E.P.
- They were first called dirty and "discovery machines".
- They have proven to be indeed *fantastic discovery machines* but also *high precision measurement machines*, competing with e+ e- (including B or charm factories) machines.
- This is due to continuous progress in Physics at hadron collider together with continuous detector upgrades, based on the most advanced technologies.
- The Tevatron experiments and especially CDF have been covering 25 years of this impressive success story.
- The Tevatron will close on September 30 this year

This lecture tries to point out a few of the major success with emphasis on the latest results and remaining puzzles.

Collider machines story

ISR: (1971-1983) pp, 34 up to 63 GeV cm, up to 1.4x 10³² cm²/s, CERN, First hadron collider machine, instrumental training camp for collider machine & Physics

First direct evidence for jets, first high Pt Physics, rising total xcross section...

(SPEAR (SLAC) and PETRA (DESY) e+e- colliders: 30-40 GeV)

ISABELLE⁺ (1978-1983)(BNL-USA): pp collider, 400 GeV cm, cancelled before machine achieved

SppbarS (1981-1991), ppbar, 546 ->630 GeV cm, 10²⁷->2x10³⁰ /cm²/s, CERN, UA1 and UA2
 Discovery of W & Z, precursor: B Physics at hadron colliders (first indirect evidence of B0-B0bar mixing), Top search, QCD and BSM. Has opened the road to LHC

Tevatron 0 (1985-1989), ppbar, FNAL, 1.8 TeV, CDF only (since 85): Search for top (eµ and all-jets channels), EWK and QCD Physics, construction of the 1st vertex detector in hadron colliders, new developments on triggers & tracking

(LEP (1989-2000): e+e- machine: 90 to 200 GeV cm, CERN) Tevatron I(1992-1995), ppbar, FNAL, 1.8 TeV, up to 5x10³¹cm²/s, CDF &D0 Discoveries: Top First vertex detector successfully installed in hadron collider (CDF in 1992) Pioneering work on: Top, B, EWK Physics, BSM searches

SSC ⁺ (Texas-USA): pp collider, 40 TeV cm, 10³³ /cm²/s cancelled 1992 before machine achieved

04/09/2011

ZD'S

80's

90's

2000

1st decade

What's next??? 2nd decade

Collider machines story (cont'd)

Tevatron II(2001-2011), 1.96TeV, up to 4.2x10³²/cm²/s Discoveries & Major breaktroughs: **Single top, Bs mixing, Top & W precise mass mst** in Top, B, and EWK/dibosons Physics, pioneering Higgs and BSM searches First triggering with tracking (CDF: L1 COT and L2 SVT)

sLHC (towards 2020-_): higher Lum and or increase in energy, major detector upgrades => Future LC under study: ILC, CLIC projects a very high energy LHC (VLHC?)

TEVATRON vs LHC 2011 Tevatron LHC

- 2 experiments (CDF since 1985, D0 since 1992, BTeV aborted 07-2005)
- ppbar collider (qqbar dominance)
- Started 1985 (run0-1989 vs SppbarS') Ends September 30 2011
- Ecm=2TeV
- Luminosity:peak: 4.2x10³³/cm/s

~ 60pb-1/week

- 3 experiments (ATLAS, CMS, LHCb + Heavy Ion dedicated experiment: ALICE)
- pp collider (gg dominance)
- Started 2010 (2008) First long shutdown 2013-part 2014
- Ecm= 7 TeV -> 14 TeV
- Luminosity: peak~ 2.4x 10³³/cm/s
 ~ 250 pb-1 /week

Outline

A few latest results of the Tevatron on:

- HEAVY FLAVOURS: B and Top Physics.
- HIGGS SECTOR Exploration
- BSM

LEGACY will be underlined in a few words in these different topics and in the concluding remarks...

B Physics and the BSM exploration: Let's concentrate on 3 flagship measurements:

1) rare B decays with: $Bs \rightarrow \mu\mu$ **2)** CP violation study in Bs sector with: $B_s \rightarrow J/\Psi\varphi$ Dimuon charge asymmetry

- ➤ At start of Run II, one decade ago, the limit set by CDF at Run I, on Br(Bs→µµ) was 3 orders of magnitude above the SM expected value.
- Tevatron (mainly CDF) decreased by more than 2 orders of magnitude this limit.
 We are now in the last round => near to get the final answer

on: SM= Si or No?

What can the Tevatron still say? => see next...

The $B_s \rightarrow \mu + \mu$ - case

FCNC decays predicted to be very rare in the SM due to GIM & helicity suppression Forbidden at tree level, proceed through loop diagrams

S,M, expectation: Buras => Br(Bs \rightarrow µµ) = (3.2 ± 0.2)x10⁻⁹

New search for $B_{c} \rightarrow \mu\mu$ at CDF with 7fb⁻¹ The events are searched in a sample of dimuon triggered events, but: 7 fb⁻¹ data (x 2 Lum.) & acceptance improved by 20%, adding CC and CF dimuon triggered events plus refined pre-selection and Forward (F) Central (C) $0.6 < |\eta| < 1$ $|\eta| < 0.6$ upgraded analysis (next slide) p₊ > 2 GeV p₊ > 1.5 GeV *Preselection:* 3D vertex fit and baseline cuts on R = 1 Track quality Muon likelihood, dE/dx p_τ(μμ) arbitrary normalization p_τ(μ) в Proper decay time significance Pointing angle ٠ \overline{p} sideband sideband Isolation: • $p_{T}(\mu\mu) / [\sum_{R<1} p_{T}(track) + p_{T}(\mu\mu)]$ 5.6 5.2 5.8 4.8 5 5.4 $M(\mu^{+}\mu^{-})$ [GeV/c². Blinded search region: 5.169 - 5.469 GeV

Tevatron, Corfu 2 Mitte extended sidebands in the new analysis

$B_s \rightarrow \mu \mu$ analysis

A set of 14 discriminating variables, comparing data (sidebands, black)=bkgd with MC generated events (red) = signal are studied and trained in a NN; 6 most sensitive variables are shown here:

Relative 2D

decay length

10 20 30 40 50 60 70

45000

40000

35000

30000

25000

20000

15000

10000

5000

Signal region determined by 5.169<Mµµ (GeV/c²)<5.469 Previous sideband regions to estimate the background (here below) $4.669 < M_{\mu\mu} < 5.169 \,\text{GeV}/c^2$ and $5.469 < M_{\mu\mu} < 5.969 \,\text{GeV}/c^2$ have bee extended.

The Branching fraction is obtained by normalizing to the number of $B^+ \rightarrow J/\Psi K^+ \rightarrow \mu + \mu - K^+$

 $\boldsymbol{B}(\mathsf{B}^{0}_{\mathrm{s},\mathrm{d}} \rightarrow \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) = [\mathsf{N}_{\mathrm{s},\mathrm{d}}/\mathsf{N}_{+}] \times [\boldsymbol{\alpha}_{+}/\boldsymbol{\alpha}_{\mathrm{s}}] \times [\boldsymbol{\epsilon}_{+}/\boldsymbol{\epsilon}_{\mathrm{s},\mathrm{d}}] \times [1/\boldsymbol{\epsilon}^{\mathsf{NN}}_{\mathrm{s},\mathrm{d}}] \times f_{\mathrm{u}}/f_{\mathrm{s},\mathrm{d}} \times \boldsymbol{B}(\mathsf{B}^{+} \rightarrow \mathsf{J}/\Psi \mathsf{K}^{+})$

Where N_s=number of $B^0_s \rightarrow \mu + \mu$ - at 95%CL for N observed and N_b expected backg. α stands for the acceptance, ϵ for efficiency and f for fragmentation function

40000

35000

30000

25000

20000

15000

10000

5000

NN

RESULTS:

Suppress background with NN trained on MC/sideband data

CDF 2011 new result

> 90% CL region: 4.6 x 10⁻⁹ < BR(B⁰_s → $\mu^+\mu^-$) < 3.9 x 10⁻⁸

First double sided confidence region on $Br(Bs \rightarrow \mu\mu)$ "Although of moderate statistical significance this is the first indication of a $Bs \rightarrow \mu\mu$ signal"

> May be the first glimpse of exciting times ahead?

EPS 2011

combined with 2010: <1.5 x 10-8 @ 95% CL

CMS, LHCb: $B_s \rightarrow \mu \mu$ Limits

Tevatron, Corfu 2011, ASN • 04/09/20@\$ing fs/fu=0.282±0.037 [pdg]

LHCb-CONF-2011-047= CMS-PAS-BPH-11-019

Exploring the Bs CP Violation sector

Exploring the Bs CP Violation sector

Exploring the Bs CP Violation sector

Neutral B_s System: Recap!

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

-Diagonalize mass (*M*) and decay (Γ) matrices \rightarrow mass eigenstates :

$$|B_s^H\rangle = p \,|B_s^0\rangle - q \,|\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p \,|B_s^0\rangle + q \,|\bar{B}_s^0\rangle$$

u,c,t

 V_{ts}

W

u,c,t

- Flavor eigenstates differ from mass eigenstates and mass eigenvalues are also different: $\Delta m_s = m_H - m_L \approx 2/M_{12}/$ B oscillates with frequency Δm_s precisely measured by \overline{b} W V_{ts}

→ B_s oscillates with frequency Δm_{s} , precisely measured by CDF $\Delta m_s = 17.77 \pm 0.12 \text{ ps}^{-1}$ 2006: first & unprecedently precise measurement (1fb⁻¹) B_s^{0}

DØ $\Delta m_s = 18.56 \pm 0.87 \text{ ps}^{-1}$ And now LHCb (see later)

- Mass eigenstates have different decay widths

$$\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos(\Phi_s) \quad \text{where} \quad \phi_s^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$$

04/09/2011

$\beta_{\rm s}$ vs $\phi_{\rm s}$

- Up to now, introduced two different phases:

$$\phi_s^{\rm SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3} \qquad \text{ and } \qquad \beta_s^{\rm SM} = \arg\left(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*\right) \approx 0.02$$

- New Physics affects both phases by same quantity $\phi^{
m NP}_s$

$$2\beta_s = 2\beta_s^{\rm SM} - \phi_s^{\rm NP}$$
$$\phi_s = \phi_s^{\rm SM} + \phi_s^{\rm NP}$$

- If the new physics phase ϕ_s^{NP} dominates over the SM phases $2\beta_s^{\text{SM}}$ and $\phi_s^{\text{SM}} \rightarrow$ neglect SM phases and obtain:

$$2\beta_s = -\phi_s^{\rm NP} = -\phi_s$$

04/09/2011

CP Violation in $B_s \to J/\Psi\Phi$ Decays

- Analogously to the neutral B^0 system, CP violation in B_s system occurs through interference of decays with and without mixing:

- New physics particles running in the mixing diagram may enhance eta_s

- large $\beta_s \rightarrow$ clear indication of New Physics !

$B_s \to J/\Psi \Phi \text{ Decays}$

- Extremely physics rich decay mode

- Can measure lifetime, decay width difference $\Delta\Gamma$ and *CP* violating phase β_s

- Decay of B_s (spin 0) to J/Ψ (spin 1) and Φ (spin 1) leads to three different angular momentum final states:

L = 0 (s-wave), 2 (d-wave) $\rightarrow CP even$ (= short lived or light B_s if no CPV)

 \rightarrow CP odd (= long lived or heavy B_s if no CPV)

- Three decay angles $\rho = (\theta, \phi, \psi)$ describe directions of final decay products $\mu^+ \mu^- K^+ K^-$

Caveat: $Bs \rightarrow J/\Psi \phi$ is golden mode, but additional experimental complications:

- J/ $\psi \varphi$: a mix of CP-even and CP-odd eigenstates, treat them separately
- B_s oscillates ~ 35 times faster than B^0

 $^{04/09/2011}$ - sin2 β ~0.7, sin2 β_s expected about 20 times smaller

ANALYSIS OUTLINE

N.B. All based on quantities directly derived from data!!

04/09/2011

RESULTS in 2010 still the latest one from CDF

http://public.web.cern.ch/public

August 30th 2011

Lepton-photon conf. 2011: LHC data shedding new light

"A data visualization from the LHCb experiment's results. LHCb's measurements of B meson decay correlate with Standard Model predictions – but they also indicate that there is still room for a contribution from new physics. **IMAGE: LHCb collaboration**"

NEW RESULTS from LHCb and CDF very soon ; by end of this year important result!!!! 04/09/2011 Tevatron, Corfu 2011, ASN

• Both B_d and B_s contribute in A^b_{sl} at Tevatron :

$$A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$$

$$B_{d} \text{ contribution}$$

$$B_{s} \text{ contribution}$$

• a_{sl}^q is the charge asymmetry of "wrong sign" semileptonic B_q^0 (q = d, s) decays:

$$a_{sl}^{q} = \frac{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) - \Gamma(B_{q}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \to \mu^{+}X) + \Gamma(B_{q}^{0} \to \mu^{-}X)}; \quad q = d, s$$

and is related to CP violating

$$a_{sl}^{q} = \frac{\Delta \Gamma_{q}}{\Delta M_{q}} \tan(\phi_{q})$$

SM prediction

• SM predicts very small values of ϕ_q and A^b_{sl} :

$$\phi_d^{SM} = -0.091^{+0.026}_{-0.038}$$
$$\phi_s^{SM} = 0.0042 \pm 0.0014$$
$$A_{sl}^{b,SM} = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

A. Lenz, U. Nierste, J. High Energy Phys. 0706, 072 (2007)

These values are below current experimental sensitivity

• New physics contribution can significantly change these values

$$\phi_d = \phi_d^{SM} + \phi_d^{NP}$$
$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$

Non-zero A^{b}_{sl} would indicate the presence of new physics

Remember:

$$\begin{split} \phi_{s}^{\text{SM}} &= \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3} \quad \text{and} \quad \beta_{s}^{\text{SM}} = \arg\left(-V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*}\right) \approx 0.02 \\ 2\beta_{s} &= 2\beta_{s}^{\text{SM}} = 2\beta_{s}^{\text{SM}} - \phi_{s}^{\text{NP}} & \phi_{s} = \phi_{s}^{\text{SM}} + \phi_{s}^{\text{NP}} \xrightarrow{} 2\beta_{s} = -\phi_{s}^{\text{NP}} = -\phi_{s} & _{33} \end{split}$$

Measurement strategy

• Measure two raw asymmetries (include μ's from all sources):

raw dimuon charge asymmetry

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$

$$= (0.564 \pm 0.053)\%$$

raw inclusive muon charge asymmetry

$$a \equiv \frac{n(\mu^+) - n(\mu^-)}{n(\mu^+) + n(\mu^-)}$$

= (0.955 ± 0.003)%

 Both asymmetries contain contributions from A^b_{sl} and detector-related background asymmetries

$$A = K A_{sl}^b + A_{bkg}$$

$$a = k A_{sl}^b + a_{bkg}$$

- contribution from A_{sl}^{b} to *a* is strongly suppressed by *k*=0.041±0.003
- Determine background contributions A_{bkg} and a_{bkg} using data with minimal input from simulation
- Exploit the correlation of background content in raw asymmetries to reduce the uncertainty on A^b_{sl}

Some experimental remarks

1) Test of background description

- Raw inclusive muon asymmetry *a* is dominated by the background asymmetry *a*_{bkq}
- a_{bkg} is measured in data
- Compare *a* and *a_{bkg}* to verify the background description as f(Pt(μ))

2) Original experimental technique

Polarities of DØ solenoid and toroid are reversed every ~2 weeks => *difference in reconstruction efficiency between positive* & *ne gative particles minimized*

Reconstruction asymmetries reduced from ~1% to <0.1%

5 To be compared with raw dimuon asymmetry A= (0.564±0.053)% Tevatron, Corfu 2011, ASN

Updated measurement of the anomalous like-sign dimuon charge asymmetry for b-hadron semi-leptonic decays, 9fb⁻¹ A^b_{sl}=(-0.787±0.172(stat) ±0.093(sys))% o.02 تر « Was =(-0.957±0.0251(stat) ±0.146(sys))% with 6.1fb⁻¹ **~3.9 σ deviation from SM** (previously 3.2σ) 0 A^{b}_{sl} produces a band in a^{d}_{sl} v.s. a^{s}_{sl} plane: $\overline{A_{sl}^{b}} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s}$ Standard Model Obtained result agrees well with other B Factory W.A. -0.02 $\blacksquare D Ø B_{s} \rightarrow \mu D_{s} X$ measurements of a^{d}_{sl} and a^{s}_{sl} DØ A₁^b 0.01 Asymmetry $DØ, 9.0 \text{ fb}^{-1}$ (a) -0.04 DØ A^b_{s1}95% C.L. 0.005 DØ, 9.0 fb⁻¹ - Observed asymmetry -0.04-0.02 0.02 **•** - Expected asymmetry 0 for $A_{sl}^{b} = A_{sl}^{b}(SM)$ \mathbf{a}_{sl} New physics in B_s^0 mixing? since 30 10 20 40 50 M(µµ) [GeV] a_{sl}^d constrained by "sin2 β " in global fits: 0.01 Asymmetry DØ, 9.0 fb⁻¹ **(b)** a_{sl}^d (pred.) = $(-36_{-11}^{+23}) \times 10^{-4}$ PRD **83**, 036004 (2011) 0.005 **Observed asymmetry** *CDF* is trying to perform this measurement if - Expected asymmetry not impeded by systematics ("Central tracking for $A_{sl}^{b} = -0.787\%$ 40 50 Asymmetry" to be corrected) and personpower... 30 10 20 04/09/2011

p-value⁰at²SM point is: 7.5%. When adding^tBr($\hat{B}_{s}^{s} \xrightarrow{t} \hat{D}_{s}^{s} \hat{D}_{s}^{s}$) p-value decreases to 6%.

p-value⁰at²SM point is: 7.5%. When adding^tBr($\hat{B}^{C} \to \hat{D}^{S}_{C}$) p-value decreases to 6%.

How the Bs measurements impact on the BSM Models:

a summary from Buras and collaborators (Beauty 2010-11).

ABGPS

DNA Tests of Flavour Models

0909.1333

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	4G
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?	**
ϵ_K	*	***	***	*	*	**	***	**
$S_{\psi\phi}$	***	***	***	*	*	***	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?	**
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?	*
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?	**
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?	**
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***	*
d_e	***	***	**	*	***	*	***	*
$(g - 2)_{\mu}$	***	★★ ¢	tro x, s or	fu #011 / A	SN ***	*	?	*

40

Maximal Enhancements of $S_{\psi\phi}$, $Br(B_s \to \mu^+ \mu^-)$ and $K^+ \to \pi^+ \nu \overline{\nu}$

Enhancement of Upper Bound Enhancement of Model on $(S_{\psi\phi})$ $Br(B_s \rightarrow \mu^+ \mu^-)$ $Br(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ **CMFV** 0.04 20% 20% MFV 30% 0.04 1000% LHT 0.30 30% 150% RS 0.75 60% 10% **4G** 300% 0.80 400% AC 0.75 1000% 2% **RVV** 10% 0.50 1000% **RS** = **RS** with custodial protections Large AC = Agashe, Carone U(1)_F **RH** Currents $SU(3)_F$ RVV = Ross, Velaso-Sevilla, Vives (04)

(without taking correlation between them)

TOP WAS DISCOVERED AT TEVATRON!!!!

Tevatron, Corfu 2011, ASN

TOP: A little bit of history...

1992: FIRST OBSERVATION!

29 Oct 1992, first observation of TOP by CDF in the Run I in a golden e μ event and the vertex detector signing b-jet! Thanks to the first vertex detector successfully built for a hadron collider experiment

04/09/2011

Tevatron, Corfu 2011, ASN

Top production at Tevatron

04/09/2011

Tevatron & LHC complementarity in Top sector

1 fb-1 at LHC => 4 times more top paires than 5 fb-1 at Tevatron => Tevatron still interesting for some top Physics aspects.

TEVATRON has performed a complete SCAN of TOP PHYSICS

The Many ways to find N.P. with the Top explored at Tevatron

	Property		Measurement	SM Prediction	Luminosity (fb ⁻¹)
	$\sigma_{t\bar{t}}$ (for $M_t = 172.5 \text{ GeV}$)	$p\bar{p} \rightarrow t\bar{t}$	CDF: $7.5 \pm 0.31(stat) \pm 0.34(syst) \pm 0.15(theory)$ pb	7.46 ^{+0.48} _{-0.67} pb	up to 4.6
			D0: 7.56 ^{+0.63} _{-0.56} (stat + syst + lumi) pb		5.6
		$pp \rightarrow t\bar{t}$	Atlas: $180 \pm 9(\text{stat}) \pm 15(\text{syst}) \pm 6(\text{lumi})$ pb	164.6 ^{+11.4} _{-15.7} pb	up to 0.7
			CMS: 158 ± 10 (uncor.) ± 15 (cor.) ± 6 (lumi) pb		0.036
1	σ_{tbq} (for $M_t = 172.5$ GeV)	$p\bar{p} \rightarrow t\bar{t}$	CDF: 0.8 ± 0.4 pb ($M_l = 175$ GeV)	$2.26\pm0.12~\rm pb$	3.2
			D0: 2.90 ± 0.59 pb		5.4
		$pp \rightarrow t\bar{t}$	Atlas: 90 ⁺³² ₋₂₂ pb	64.6 ^{+3.3} pb	0.7 0.
)F			CMS: $83.6 \pm 29.8(\text{stat} + \text{syst}) \pm 3.3(\text{lumi}) \text{ pb}$		0.035 0
	σ_{tb} (for $M_1 = 172.5$ GeV)	$p\bar{p} \rightarrow t\bar{t}$	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	1.04 ± 0.04 pb	3.2 <u>U</u>
7			D0: 0.68 ^{+0.38} pb		5.4 00
	σ_{Wt} (for $M_t = 172.5 \text{ GeV}$)	$pp \rightarrow t\bar{t}$	Atlas: < 39.1 pb	$15.7 \pm 1.4 \text{ pb}$	0.7
	Vtb		CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	1	3.2
			D0: $ V_{ik} = 1.02^{+0.10}_{-0.11}$		5.4
JF	$R = B(t \to Wb)/B(t \to Wq)$		CDF: > 0.61 @ 95% CL	1	0.2
			D0: 0.90 ± 0.04		5.4
	$\sigma(qq \rightarrow t\bar{t})/\sigma(p\bar{p} \rightarrow t\bar{t})$	$p\bar{p} \rightarrow t\bar{t}$	CDF: 0.07 ^{+0.15}	0.18	1
	Mt		Tev: 173.2 ± 0.9 GeV	-	up to 5.8
			Atlas: 169.3 ± 6.3 GeV		0.035
			CMS: 173.4 ± 3.3 GeV	-	0.036
	$M_t - M_{\tilde{t}}$		CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6
			D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
	W helicity fraction		Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4
			Atlas: $f_0 = 0.59 \pm 0.10 (\text{stat}) \pm 0.07 (\text{syst})$	0.7	0.035
	Charge		CDF: -4/3 excluded @ 95% CL	2/3	5.6
			D0: 4/3 excluded 0 92% CL		0.37
	Γ _r		CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3
			D0: 1.99 ^{+0.69} _{-0.55} GeV		up to 2.3
	spin correlation	Chean	CDF: $0.72 \pm 0.64(stat) \pm 0.26(syst)$	0.777+0.027	5.3
			D0: $0.57 \pm 0.31(\text{stat} + \text{sys})$		5.4
ר	Charge asymmetry	$p\bar{p} \rightarrow t\bar{t}$	CDF: 0.158 ± 0.074	0.06	5.3
Л			D0: 0.196 ± 0.065		5.4
0 1	04/09/2011	$pp \rightarrow t\bar{t}$	Atlas: Atomat 0.024 + 0.016(stat) + 0.023(syst)	0.006	0.7 Courtesy De
	04/05/2011		CMS: $A^{\eta}_{\eta} = -0.016 \pm 0.030(\text{stat})^{+0.010}(\text{syst})$	0.013	EPS 2011

New Top Mass Measurements at Tevatron

Top Mass Measurement in CDF ℓ +jets

- CDF ℓ +jets channel
 - $e,\mu+\geq 4$ jets, ≥ 1 b-tag
 - 1016(1b-tag), 247(≥2b-tag)
- Matrix element method
- in-situ JES calibration
 - $L_i(\vec{y} \mid m_t, \Delta_{\text{JES}})$ for each event
 - $L(m_t, \Delta_{\text{JES}}) = \prod_i L_i(\vec{y} \mid m_t, \Delta_{\text{JES}})$

Latest Top Mass Measurement at Tevatron

Currently about 7 M W's/expt (9fb⁻¹)

- Last Tevatron combination:
 - mw=80420±31MeV (0.038%)
 - Update previous CDF result to modern PDFs
 - Correct to same $\Gamma_{\rm W}$
 - PDF, QED, $\Gamma_{\rm W}$ uncertainties correlated
- More precise than LEPII legacy: 80.367±0.033 GeV (0.04%)
- ★ Current World average (2009):
 m_w=80399 ± 23 MeV

CDF (2.4 fb⁻¹) and D0 (5fb⁻¹) are working on updates with improved analyses ⇒ expect to reach ≤ 25 MeV per experiment -> 15 MeV combining both experiments

=> W-MASS: ONE of the OUTSTANDING LEGACY OF THE TEVATRON

Best possible scenario in about 2 years?

Top quark charge asymmetry

!!Not Forward Backward Asymmetry!!

At $O(\alpha_s^2)$: top and antitop quarks have identical angular distributions

As teached by German Rodrigo (EPS11)

Inclusive asymmetry at Tevatron

Charge conjugation symmetry^{*} ($N_{\bar{t}}(y) = N_t(-y)$)

forward-backward

$$A^{p\overline{p}} = \frac{N_t(y > 0) - N_{\overline{t}}(y > 0)}{N_t(y > 0) + N_{\overline{t}}(y > 0)} = 0.051(6)$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} = 0.078(9) \quad \Delta y = y_t - y_t -$$

mixed QCD-EW interference: factor 1.09 included [Hollik, Pagani, claim 1.19]

 stable to NLL threshold resummations (one per mille) [Almeida,Sterman,Vogelsang]

NNLL threshold resummations
 [Ahrens,Ferroglia,Neubert,Pecjak,Yang]
 Not expanding the asymmetry in α_s : the asymmetry decreases by 20% at NLO (K factor), but only by 5% at NLO+NNLL

[Kühn, GR, 1998; Antuñano, Kühn, GR, 2008]

* CP violation arising from electric or chromoelectric dipole moments do not contribute to the asymmetry

The asymmetry increases with Mttbaabecause of gluon fusion

TOP Forward-Backward Asymmetry

Compare the number of top and antitop produced with momentum in a given direction:

Lepton+jets result (5.3fb⁻¹)

- $\Delta Y(=y_t y_{tbar})$
- Background subtracted, then unfolded back to parton level
- $A^{ttbar} = 0.158 \pm 0.074 \ (2\sigma \ deviation)$

Lepton+jets result (5.3 fb⁻¹)

- Found A_{FB} has a strong dependence on M_{tt}
- Many possible theoretical scenarios where A_{FB} depends on M_{tt}

Dilepton results (5.1fb⁻¹)

Confirms observation in Lepton+jets !!

$ \begin{array}{l} \mbox{ppbar rest frame} \\ A_{\rm FB}{}^{\rm ppbar} = 0.17 \ \pm 0.07 \ ({\rm stat}) \ \pm 0.04 \ ({\rm syst}) \\ A_{\rm FB}{}^{\rm ppbar} = 0.193 \pm 0.065 \ ({\rm stat}) \pm 0.024 \ ({\rm syst}) \\ A_{\rm FB}{}^{\rm ppbar} = 0.150 \pm 0.050 \ ({\rm stat}) \pm 0.024 \ ({\rm syst}) \end{array} $	1.9 fb ⁻¹ 3.2 fb ⁻¹ 5.3 fb ⁻¹	C
ttbar rest frame $A_{FB}^{ttbar} = 0.24 \pm 0.13 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $A_{FB}^{ttbar} = 0.158 \pm 0.072 \text{ (stat)} \pm 0.017 \text{ (syst)}$	1.9 fb ⁻¹ 5.3 fb ⁻¹	÷
ttbar rest frame (dilepton channel) A _{FB} ^{ttbar} = 0.42 ± 0.15 (stat) ± 0.05 (syst)	5.1 fb ⁻¹	i

CDF Top Asymmetry results

About 3σ above zero room for positive BSM within 2σ

Invariant mass charge dependent asymmetry

 below 450 GeV: negative asymmetry but still compatible with the SM within 1σ

 above 450 GeV: positive asymmetry, disagrees with the SM at 3.4σ

The deviation from the SM in the lab frame is not as significant !!!

Top AFB Asymmetry: new D0 results

TABLE IV. Δy -based asymmetries.				
	$A_{\rm FB}$ (%)			
	Reconstruction level	Production level		
Data	9.2 ± 3.7	19.6 ± 6.5		
MC@NLO	2.4 ± 0.7	5.0 ± 0.1		

2.4σ measured vs expected at prod level 1.9σ at reconstruction level

TABLE VI. Lepton-based asymmetries.

	$A_{\rm FB}^l$ (2)	%)
	Reconstruction level	Production level
Data	14.2 ± 3.8	15.2 ± 4.0
MC@NLO	0.8 ± 0.6	2.1 ± 0.1

3σ effect for lepton based Asymmetry

TABLE III. Reconstruction-level $A_{\rm FB}$ by subsample.

	$A_{\rm FB}$ (%	%)
Subsample	Data	MC@NLO
$m_{t\bar{t}} < 450 \mathrm{GeV}$	7.8 ± 4.8	1.3 ± 0.6
$m_{t\bar{t}} > 450 \mathrm{GeV}$	11.5 ± 6.0	4.3 ± 1.3
$ \Delta y < 1.0$	6.1 ± 4.1	1.4 ± 0.6
$ \Delta y > 1.0$	21.3 ± 9.7	6.3 ± 1.6

04/09/2011

Tevatron, Corfu 2011, ASN

Tevatron, Corfu 2011, ASN

From Tevatron to LHC

Interesting competition and complementary information from both sides that will be essential for a final conclusion whether or not there is a BSM effect there. Should get soon more about it, stay tuned! 04/09/2011 63 Tevatron. Corfu 2011. ASN

W boson polarization in top decay

- The SM top decays via EW interaction: $Br(t \rightarrow bW) \sim 100\%$
 - Top decays as a bare quark (no hadronization) \Rightarrow spin info transferred to final states
- ► V-A coupling in the SM \Rightarrow $F_0 \equiv BR(t \rightarrow W_0 b) \approx \frac{m_t^2}{m_t^2 + 2M_w^2} \approx 70\%, F_- \approx 30\%, F_+ \approx 0\%$
 - longitudinal fraction f0 ~ 70%
 - left-handed fraction f- ~ 30%
 - right-handed fraction f+ ~ 0%
- **The SM prediction modified in various new physics models**
- W polarization fractions are sensitive to non-SM tWb couplings
- Use cos θ* : Angle between lepton (down-type quark) in W rest frame and the momentum of the W in the top-quark rest frame 04/09/2011 Tevatron, Corfu 2011, ASN

Result from lepton+jets events

- Simultaneous measurement:
 - $f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (sys)}$
 - f_{+} = -0.15 ± 0.07 (stat) ±0.06 (syst)
 - Correlation coefficient of -0.59
 - As measured central values are unphysical use Feldman Cousins (FC) method to obtain confidence level intervals
- Model dependent measurements:
 f₀ = 0.70 ± 0.07 (stat) ±0.04 (syst) constraining f₊=0.0
 f₊ = -0.01 ± 0.02 (stat) ±0.05 (syst)
 - constraining $f_0=0.7$ • Upper limit at 95% CL : $f_+<0.12$

Published for PRL publication FERMILAB-PUB-10-041-E, Phys. Rev. Lett. **105**, 042002 (2010)

Result from dilepton events

- Used 343 pre-tagged di-lepton candidates (304 passed reconstruction) with 5.1 fb⁻¹ and 137 b-tagged events (118 passed reconstruction) with 4.8 fb⁻¹
- Simultaneous measurement:
 - Before b-tagging : $f_0^{2D} = 0.73 + 0.18_{-0.17}(\text{stat}) \pm 0.06(\text{syst})$

$$f_{+}^{2D} = -0.08 \pm 0.09 (\text{stat}) \pm 0.03 (\text{syst})$$

• After b-tagging : $f_0^{2D} = 0.78 + 0.19_{-0.20}(\text{stat}) \pm 0.06(\text{syst})$

 $f_{+}^{2D} = -0.12 \stackrel{+}{}_{-0.10}^{0.11} (\text{stat}) \pm 0.04 (\text{syst})$

- Model dependent measurements:
 - Before b-tagging: $f_0^{1D} = 0.60 \pm 0.09(\text{stat}) \pm 0.06(\text{syst})$ $f_+^{1D} = -0.06 \pm 0.04(\text{stat}) \pm 0.03(\text{syst})$
 - After b-tagging A $f_0^{1D} = 0.62 \pm 0.11(\text{stat}) \pm 0.06(\text{syst})$ $f_+^{1D} = -0.07 \stackrel{+}{_{-}} \stackrel{0.06}{_{-}} (\text{stat}) \pm 0.03(\text{syst})$
 - Determined upper limit on f+<0.07 at 95% CL
 Well in agreement with SM expextations 04/09/2011 Tevatron, Corfu 2011, ASN

66

Precision measurement of ratio $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ by D0 with 5.4fb⁻¹ z⁴10³ DØ, L=5.4 fb⁻¹ $R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}.$ around 10² 10 Assuming Unitarity of 3x3 CKM Matrix, IVtbl is highly constrained to: $|V_{tb}| = 0.999152^{+0.000030}_{-0.00045}$ 1 10-1 Thus if $R \neq 1 \Rightarrow$ indication of BSM; indeed: 10 If 4^{th} generation of quarks => no more such constraint. NN output A smaller value of IVtbI can be directly £ DØ, 5.4 fb⁻¹ observed in single top production and 68% CL 0.8 also affects xcross(ttbat production. 95% CL Measure of R with q=d, s or b-quark 99.7% CL 0.6 in dilepton and lepton+jets channels. Distinguishing ttbar with 2 b tags or 1 or none 0.4 $R = 0.90 \pm 0.04 \text{ (stat+syst)}$ $\sigma_{t\bar{t}} = 7.74^{+0.67}_{-0.57} \text{ (stat+syst) pb.}$ 0.2 R agrees within 2.5σ with SM CDF is pursuing the analysis done so far 0.5 Tevatron, Corfu 2011, ASN with only 160 pb⁻¹ 04/09/2011 67

SINGLE TOP: TEVATRON versus LHC

Latest results on single top: D0

Interest to measure the tb and tbq production cross-sections separatly, in an independent way

from theoretical assumptions about their relative section [pb] DØ 5.4 fb Rates (as previously done by CDF and D0). 68% C.L. \Rightarrow will allow to see if any deviation wrt SM. 90% C.L. CDF Run II Preliminary, L=3.2 fb⁻¹ 95% C.L. 4 t-Channel Cross Section σ_t [pb] **Best Fit** Old CDF result 4.5 68.3% CL t-channel cross For comparison 95.5% CL 4 3.5 (NLO) \diamond 3 SM (NNNLO) 2.5 2 ^{\$M} 2 Measurement 1.5 SM^[1] 1 [1] PRD 74: 114012, 2006 [2] EPJ C49: 791, 2007 0.5 Top-flavor^[3] [3] PRD 63: 014018, 2001 [4] PRL 99: 191802, 2007 0.5 2 2.5 3 3.5 4 4.5 5 1 1.5 FCNC^[4] s-Channel Cross Section o. [pb] 0 DO new results: 2 TABLE II: Variation of the measured cross section for tqb and

 $\sigma(ppbar \rightarrow tqb + X) = 2.90 \pm 0.59 pb$ in good agreement with SM

!!Most precise to date!!

Probability of the background to fluctuate & produce a signal as large as the one observed is: **1.6 x10⁻⁸, corresponding to a significance of 5.5 σ deviation** Tevatron, Corfu 2011, ASN 04/09/2011 71

tb single top quark production with the top quark mass.

m_t	$170 {\rm GeV}$	$172.5 {\rm GeV}$	175 GeV
tqb	$2.80^{+0.57}_{-0.61}$	$2.90^{+0.59}_{-0.59}$	$2.53^{+0.5}_{-0.5}$
tb	$1.31\substack{+0.77\\-0.74}$	$0.98\substack{+0.62\\-0.63}$	$0.65^{+0.5}_{-0.5}$

Two main goals and challenges: low mass Higgs & especially H-> bbbar

04/09/2011

Tevatron, Corfu 2011, ASN
LOW MASS HIGGS:

The many ways to produce a light Higgs at the Tevatron

04/09/2011

Higgs Production at the Tevatron: the main channels

Tevatron unique for finding H into bbar channel

Higgs Mass (GeV/c²)	WH→lvbb	ZH→vvbb	ZH→llbb	H→WW→lvlv
120	25	12	4	13
135	10	5	2	26
150	3	2	1	32

reconstruction/selection/tagging efficiencies ~ 10% in H→bb channels and ~25% in H→WW channels

On the path to the Higgs sector at Tevatron:

Higgs sector demands it all from the detectors

04/09/2011

New trigger strategies for the Higgs (by 2008)

The calorimeter trigger upgrade together with XFT-3D, SVT upgrades significantly improves CDF reach for the Higgs (and lots of Physics topics)

Mode	Acceptance increase
WH → e∨bb	+97 %
$WH \rightarrow \mu\nu bb$	+110 %
$ZH \rightarrow e+e-bb$	+27 %
$ZH \rightarrow \mu+\mu-bb$	+60 %
$ZH \rightarrow vvbb$	+30 %
H → Ivlv	+24 %

04/09/2011

Goal: to leave NO HIGGS event behind.

Best sensitivity obtained by combining MANY INDEPENDENT search channels

Not mentioned here ALL the BSM Higgs that are looked for as well!

Goal: to leave NO HIGGS event behind.

Best sensitivity obtained by combining MANY INDEPENDENT search channels

H2GG_CCCC hwwee_0jet_p17 HWWem_p17_1jets HWWem p17 2iets HWWem p20 Ojets HWWem_p20_1jets HWWem_p20_2jets hww_mm_p17_0jet hww_mm_p17_1jet hww_mm_p17_2jet hww_mm_p20_0jet hww_mm_p20_1jet hwwee_0jet_p20 hww_mm_p20_2jet hwwmii.p17 hwwmjj.p20 HWW_analysis type 1 HWW_analysis type 2 HWW_analysis type 3 mtjj Channel VHIX_p17_diem hwwee_1jet_p17 VHIIX_p17_dim VHIX p17 emm VHIX p20 diem VHIX p20 dim VHIIX_p20_emm WHevbbRunila 1Tag,2Jet WHevbbRunila 2Tag,2Jet WHevbbRunila 1Tag, 3Jet WHevbbRunila 2Tag, 3Jet WHeybbRunib1 1Tag.2Jet hwwee_1jet_p20 WHeybbRunilb1 2Tag.2Jet WHeybbRunilb1 1Tag.3Jet WHeybbRuniib1 2Tag.3Jet WHevbbRuniib2 1Tag,2Jet

WHeybbRuniib2 1Tag.3Jet WHeybbRuniib2 2Tag 3Jet WHmybbRunila 1Tag.2Jet WHmybbRunlla 2Tag.2Jet WHmybbRunlla 1Tag, 3Jet hwwee_2jet_p17 WHmybbRunila 2Tag.3Jet WHmybbRunilb1 1Tag,2Jet WHmvbbRuniib1 2Tag,2Jet WHmybbRuniib1 1Tag.3Jet WHmybbRuniib1 2Tag 3jet WHmybbRunilb2 1Tag 2Jet WHmybhRunilb2 2Tag 2 let WHmybbRuniib2 1Tag.3Jet WHmybbRuniib2 2Tag, 3Jet zhccccbb_run2a_dt_2j hwwee_2jet_p20 zhccccbb_run2a_st_2j zhccccbb_run2b1_dt_2j zhccccbb_run2b1_st_2j zhccccbb_run2b23_dt_2 zhccccbb_run2b23_st_2j zhccecbb_run2a_dt_2j zhccecbb_run2a_st_2j zhccecbb run2b1 dt 2 zhccecbb_run2b1_st_2j zhccecbb_run2b23_dt_2 hwwejj.p17 zhccecbb_run2b23_st_2j zheicrbb_run2a_dt_2j zheicrbb_run2a_st_2j zheicrbb_run2b1_dt_2 zheicrbb_run2b1_st_2 zheicrbb run2b23 dt 2 zheicrbb run2b23 st 2 zhmmbb_run2a_dt_2j

hwweii.p20 zhmmbb run2b1 st 2i zhmmbb run2b23 dt 2j zhmmbb run2b23 st 2j zhmtrkbb run2a dt 2j zhmtrkbb run2a st 2i zhmtrkbb_run2b1_dt_2j zhmtrkbb run2b1 st 2j zhmtrkbb run2b23 dt 2j zhmtrkbb run2b23 st 2j ZHvvbb_Runlla_1tag HWWem p17 Oiets ZHvvbb Runlla 2tag ZHvvbb Runllb1 1tag ZHvvbb Runllb1 2tag ZHvvbb Runllb23 1tag ZHvvbb RunIIb23 2tag etaujetjet ** new

List of CDF & D0 channels to be combined

zhmmbb run2a st 2j

cdf15 ↔ CDF VH->MET bb 18 7.8 fb-1 cdf16 ↔ CDF VH-MET bb SS 7.8 fb-1 cdf17 ↔ CDF VH->MET bb SJ 7.8 fb-1 cdf28 ↔ CDF VH->MET bb SJ 7.8 fb-1 cdf29 CDF HWW 8.2fb LowSB0J cdf30 CDF HWW 8.2fb HighSB13 cdf31 ⇔ CDP HWW 8.2fb LowSB1J cdf32 ⇔ CDP HWW 8.2fb 2JOS cdf56 ⇔ CDF WH WWW 8.2 fb-1 like-sign $\begin{array}{c} cd \texttt{C56} \Leftrightarrow \texttt{CDF} \texttt{WH} \texttt{WW} \texttt{W.2} \texttt{Tb-1} \texttt{Ike-sign} \\ cd \texttt{C57} \Leftrightarrow \texttt{CDF} \texttt{H} \rightarrow \texttt{WW} \texttt{W.2} \texttt{Tb-1} \texttt{Inde-mll} \\ cd \texttt{C64} \Leftrightarrow \texttt{CDF} \texttt{WH} \texttt{ME} \texttt{5.6} \texttt{fb-1} \texttt{3J} \texttt{SVJP} \\ cd \texttt{C56} \Leftrightarrow \texttt{CDF} \texttt{WH} \texttt{ME} \texttt{5.6} \texttt{fb-1} \texttt{3J} \texttt{SVJP} \\ \texttt{cd f66} \Leftrightarrow \texttt{CDF} \texttt{WH} \texttt{ME} \texttt{5.6} \texttt{fb-1} \texttt{3J} \texttt{SVJn} \\ \texttt{Data} \texttt{Data} \texttt{Data} \texttt{SV} \texttt{SV}$ cdf67 ↔ CDF WH ME 5.6 fb-1 3J SYnoJP loose cdf68 ↔ CDF WH ME 5.6 fb-1 3J SYSV cdf69 ↔ CDF WH ME 5.6 fb-1 3J SYSV loose cdf84 ↔ CDF H->WW Trilepton NoZ 8.2 fb-1 cdf85 ↔ CDF H->WW Trilepton InZ 1jet 8.2 fb-1 cdf86 ⇔ CDF H->WW etau 8.2 fb-1 cdf87 ⇔ CDF H->WW mutau 8.2 fb-3 cdf88 C CDF H->WW Trilenton Ing 2jet 8.2 fb-1 cdf101 <> CDF Htautau 2jets 6.0 fb-1 cdf102 <> CDF Htautau 1jet 6.0 fb-1 cdf118 <> CDF Vtautau emutau 6.2 fb-1 cdf119 <> CDF Vtautau Itautau 6.2 fb-1 stautau illi 0.2 cdf121 <> CDF ttH MET+jets 2btag 5.7 fbcdf122 <> CDF ttH MET+jets 3btag 5.7 fb-1 cdf122 \Leftrightarrow CDF ttH All 2btag 5.7 fb-1 cdf124 \Leftrightarrow CDF ttH All 3btag 5.7 fb-1

as	of J	July	14	201	L1
		_			

cdf162 ⇔ CDF ttH 1+5J STST 6.3 fb-1 cdf163 ⇔ CDF ttH 1+5J STJPJP 6.3 fb-1 cdf164 ⇔ CDF ttH 1+5J STJP 6.3 fb-1

cdf165 \Leftrightarrow CDF ttH 1+5J STSTST 6.3 fb-1 cdf166 \Leftrightarrow CDF ttH 1+5J STSTJP 6.3 fb-1

cdf167 <> CDF ttH 1+5J STST 6.3 fb-1

cdf168 ↔ CDF ttH 1+5J STJPJP 6.3 fb-1 cdf169 ↔ CDF ttH 1+5J STJP 6.3 fb-1

Do-not-leave-any-Higgs-event-behind flow diagram

Optimize event selection (including triggers), reconstruction and tagging/identification algorithms

Maximize sensitivity:

- ✓ Combine all possible decay channels
 - ✓ Use all production modes

Maximize acceptance to Higgs signal:

✓ Be inclusive for selecting candidat sample

ν Improve e,μ ID efficiency

 \checkmark Improve and further develop the τ -lepton ID

(fake rate estimate)

- ✓ Improve b-tagging
- ✓ Improve jet tagging

✓ Handle the increase of pile ups (Lum) on some more sensitive variables

Model Backgrounds

- ✓ Cross-checks using control regions in data
- Measure xcross section for SM processes

Signal/background separation

Multivariate techniques

Analysis repeated using different signal templates for each $m_{\rm H}$ between 100 and 200 GeV in 5 GeV steps

Courtesy Eric James

Tevatron, Corfu 2011, ASN

Analysis repeated using different signal templates for each m_H between 100 and 200 GeV in 5 GeV steps

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

Observed Exclusion : 100-109 and 156-177 GeV/c²

04/09/2011 Expected Exclusion :, 1000-108 and 148-181 GeV/c² 85

LOW MASS HIGGS: search for Higgs into bb

Efficiency for tagging b-quark jets is critical as well as rate for mis-tagging light quark jets

04/09/2011

Tevatron, Corfu 2011, ASN

Searching for $H \rightarrow bb$

95% CL Limits at m_{H} = 115 GeV

	Channel	Exp/obs Limit (σ/SM)	VS 10 Tevatron Exclusion ±1σ Expected ±2σ Expected			
ſ	WH→Ivbb (7.5 fb ⁻¹)	2.7/2.6	CCL 1			
(1)	ZH→vvbb (7.8 fb ⁻¹)	2.9/2.3	66			
	ZH→I⁺I⁻bb (7.9 fb⁻1)	3.9/4.8	1			
ſ	WH→Ivbb (8.5 fb ⁻¹)	3.5/4.6	July 17, 2011			
B	ZH→vvbb (8.4 fb ⁻¹)	4.0/3.2	100 105 110 115 120 125 130 135 140 145 150 m. (GeV/c ²)			
	ZH→I+I⁻bb (8.6 fb⁻1)	4.8/4.9	At 115-120 GeV			
	WH→Ivbb (1.0 fb ⁻¹)	~25/20	- No excess seen			
h	ZH→I+I⁻bb (1.0 fb⁻1)	~25/20	At 130-140 GeV			
	VH/VBF→jjbb (4.0 fb ⁻¹)	17.8/9.1	 - 2xSivi-3xSivi sensitivity - No excess seen 			
	ttH→I+jets (7.5 fb ⁻¹)	11.722.9	This channel is important as "Higgs reference			
L	ttH→jets (5.7 fb ⁻¹)	20.2/28.1	channel => to ensure the Higgs identity of			

Tevatron Run II Preliminary H \rightarrow bb Combination, L \leq 8.6 fb⁻¹

Tevatron exploration of BSM

Remaining puzzles or hints to BSM from Tevatron?

Que reste t'il de nos amours...?

??: will probably
not be confirmed

	Process	Experiment	Luminosity (fb ⁻¹)	significance	My personal opinion
	$ZZ \rightarrow 4$ leptons	CDF	6.0	~ 3 σ Solve	ed: no excess
	$t' \rightarrow qW$	DO	5.3	2.5σ	???
	W + jj excess	CDF	7.3	4.1σ	???
	bbb excess	CDF	2.6	2.8σ	???
\Rightarrow	Dimuon asymmetry	DO	9.0	3.9σ	?
	B⁰s→μ+μ-	CDF	7.0	3σ	?? Soon
	ttbar forward backward asymmetry	CDF	5.1	3.4σ	?
	Br(t→Wb)/Br(t→Wq)	DO	5.4	2.5σ	???

N.B. We indicate in this Table the Tevatron experiment that has found some deviation wrt SM. It does not mean that the other experiment didn't perform or is performing the analysis too.

SEARCH for HIGH MASS ZZ RESONANCES at CDF (6fb-1)

Analysis of pp \rightarrow ZZ \rightarrow II+MET & pp \rightarrow ZZ \rightarrow IIjj final states does not confirm a heavy resonance decaying into a pair of Z bosons. 95% CL upper limits are set on the production cross section x BR $\sigma(pp \rightarrow X \rightarrow ZZ)$ at 0.26 pb and 0.28 pb for two signal models.

"CDF Wjj excess": one of the action-packed serials of this summer

04/09/2011

CDF SEES AN EXCESS INCREASING with D0 "mirrors" the analysis and does not see any

SM Templates + Gaussian

•Statistical significance (no systematics) 4.8 σ , including trial factor

- Shape systematics on:
 - QCD, Jet Energy Scale
 - W+jets renorm. scale
 - The largest p-value is 1.9 * 10⁻⁵
 - significance of 4.1 s. d.
 - was 3.2 s. d. in 4.3 fb⁻¹
- Measured cross-section 3.0 ± 0.7 pb
 - cross-section model dependence
 - use W+Higgs $m_{H}(150)$ acceptance * efficiency

	muons	electrons	
Excess events	158 +- 46	240 +- 55	
Excess/exp. WW+WZ	42% +- 12%	47% +- 10%	
Gaussian mean	147 +- 5 GeV (stat. only)		

SM Templates + Gaussian

•Statistical significance (no systematics) 4.8σ, including trial factor

- Shape systematics on:
 - QCD, Jet Energy Scale
 - W+jets renorm. scale
 - The largest p-value is 1.9 * 10⁻⁵
 - significance of 4.1 s. d.
 - was 3.2 s. d. in 4.3 fb⁻¹
- Measured cross-section $3.0 \pm 0.7 \text{ pb}$
 - cross-section model depended
 - use W+Higgs m_H(150) acceptance * efficiency

	muons	electrons	
Excess events	158 +- 46	240 +- 55	
Excess/exp. WW+WZ	42% +- 12%	47% +- 10%	
Gaussian mean	147 +- 5 GeV (stat. only)		

The two results are about 2σ apart. Need of clarification on both sides.

04/09/2011

On the other side of the Ring: DO => controversy

Gaussian (4 pb) $M_{\rm ij} = 145 \, {\rm GeV/c} \, \, \sigma(p\bar{p} \to WX) = 0.82^{+0.83}_{-0.82} \, {\rm pb}$

D0 "mirrors what was done in the CDF analysis" =>
 "No evidence for such an excess, ruling out a particle with
 4.3 pb-1 at the 4.1 σ level" (EPS 2011)

CDF identifies some differences:

- D0 jets corrected for out-of-cone:
- effective jet threshold lower
- Double QCD contamination from low purity electrons
- Fit procedure morphs Mjj to correct for systematics
- Quantitative effect on Mjj templates not available

✓ D0 excludes a 4pb signal at 4.3σ level
 Does not account for uncertainty on CDF number: O(4pb)

- ✓ Evaluated xsec using D0 procedure:
 - 3.1 ± 0.8 pb (with 4.3fb-1 data)
 - 3.0 ± 0.7 pb (with 7.3 fb-1 data)
- ✓ To be compared with 0.82 ± 0.83 pb Tevatron, Corfu 2011, ASN

CDF Wjj excess: as viewed by a young theoretician **Gordan Krnjaic** CDF: More Than Just Mjj^(Johns Hopkins, FNAL) CDF Run II Preliminary L_{int}= 7.30 fb⁻¹ CDF Run II Preliminary L = 7.30 fb⁻¹ CDF Run II Preliminary Lu= 7.30 fb⁻¹ Entries Entries - CDF Data Entries CDF Data CDF Data 800 800 WW+WZ WW+WZ WW+WZ 300 W+jets N+ lets ALPGEN W+jets **QCD** Multijef QCD Multijet QCD Multije 600 600 Z+jets Z+jets Z+lets Top Тор Top 200 400 400 100 200 200 00 = 1 = 23KS = 0.2 %, χ^2 /ndf= 92.0/ 17 $\begin{array}{cccccccc} 0 & 50 & 100 & 150 & 20 \\ \text{KS} = 1.3 \ \%, \ \chi^2/\text{ndf} = 67.6/19 & P_{T,j1j2} \ \text{GeV/c} \end{array}$ 4 5 200 400 200 600 $\Delta R_{..}$ KS = 91.6 %, χ²/ndf= 148.9/ 96 M(lv₂jj) GeV/c²

 Plots show large, consistent excesses in signal region where 115 GeV < Mjj < 175 GeV

Sidebands consistent with SM predictions for all observables

^{04/09} Significance of Mjj bump Tevatron Sorth 2011 Ashrder PT cuts

DO Claims Null Result, BUT ...

unreweighted

reweighted

D0 Higgs search has similar feature near Mjj \approx 150 GeV (S. Zelitch PhD thesis 2010)

~3 sigma above BG in *unreweigted* sample with 5.4/fb

Controversy

- D0 may also be seeing bump near ~150 GeV in Wjj (Zelitch thesis)
- Larger D0 jet definition may veto signals with additional soft jets
- D0 null result corrects out-of-cone radiation and vetoes 3+ jet events
 - More high PT jets per event, more likely to veto signal (Buckley et. al. hep-ph/1107.5799)
- How does D0 signal change with different cuts?
- Will we see inclusive D0 plots? Other kinematic plots?

Our strategy: Interpret CDF signal as new physics

Several other theoretical nice explanations also showing why this is not found (yet) at LHC and wait and see for more luminosity at LHC.... 100

OCTO-TRIPLETS

 $\Theta^{a\alpha}:(8,3,0)$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

Conclusions & Legacy

CDF & D0 have produced a tremendous amount of important results in all topics:

QCD, B Physics (competing with B & charm factories) with some unique features (Bs), Top (scan of all Top properties and beyond), EWB (W properties:Mass, helicity...), dibosons, large scan of BSM models in a large parameter space.

Pioneering searches with new ideas & improved tools (hardware & software)

 Continuously upgrading/innovating (especially CDF: longuest-life expt.) and the MACHINE! The electron cooling has saved Run II at the Tevatron allowing dramatic increase in L&perf.
 Some major breakthrough or discoveries: in Bs Mixing & Bs-CPV, Bs in μμ, Single Top, unprecedented precision on Top and W mass.

A number of analyses are still undergoing..

A new era in HEP has started:

The LHC experiments and the LHC have entered in the game at very high speed after a long waiting time

VERY EXCITING TIME! IMPORTANT TO SUCCEED THE OVERLAP: Tevatron x LHC And thus to conclude the analyses where the Tevatron is still valuable or even unique.

04/09/2011

BACKUP slides

W detection at Tevatron

Charge asymmetry at LHC

LHC is symmetric is no forward-backward

But suppose that there is a charge asymmetry at parton level (QCD predicts that tops are preferentially emitted in the direction of incoming quark, BSM asymmetry can be positive or negative)

quarks carry more momenta than antiquarks

 Excess of tops
 (or antitops) in the forward and backward regions

Top cross section is gg dominated, which is symmetric; but gg can be suppressed by selecting pairs with large invariant mass

Partonic asymmetry and dependence on M_{ttbar}

The asymmetry increases with M_{ttbar} because gluon fusion get supressed.

Same effect for bottom production, but much more supressed by gluon fusion: inclusive asymmetry almost vanishes

A=4.3%-5.1% for M_{bbar} >300 GeV |cos θ |<0.9 Very challenging experimentally.

The asymmetry though the decay products

[Godbole, Rao, Rindani,Singh / Jung, Ko, Lee/ Choudhury, Godbole, Rindani, Saha/ Cao, Wu, Yang / Melnikov, Schulze / Bernreuther, Si/ Krohn, Liu, Shelton, Wang / Bai, Han/ Baumgart, Tweedie]

Direction of the lepton (antilepton) correlated with the direction of the top quark (antitop quark), particularly for very boosted tops: asymmetry partially washed out

The top quark decays before hadronizing: polarizations (angular distribution of the lepton wrt the parent top) and spin correlations will be altered by BSM