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Q@ In string theory, many CFT’s on the worldsheet describe flat or
AdS-like backgrounds : Static.

Since the Universe is at finite 7T, we can deform these CFT’s
in order to describe Universes filled with a gas of string

modes : The backreaction will induce a cosmological

evolution.

Since we want A = 0 at late times, we focus on the flat case.




Q@ In field theory, the canonical partition function Z, = Ir e PH

can be evaluated by a path integral in Euclidean time
compactified on S'(Ry), where 5= 27 R.

In Z T di
o 1l th:/ 2_1()
0

b
&is uv divergentj

In string theory, the infinite number of states implies a

new symmetry (modular invariance) :

@ / ;O’Brien, Tan (87)]

F =

‘McClain, David, Roth (87)]
27—2 Ditsas, Floratos (88)]

\Ls UV finite j




Q@ New problem : When 7T increases, the number of string modes

that can be thermalized increases exponentially.

—— Divergence of Zin above an Hagedorn temperature
TH — O(Mstring)-

It is believed that this signals a phase transition at the

maximal temperature 1.

When we go backward in time, this should occur before we
reach an initial singularity: This may be good to resolve
the Big Bang.




Q@ The general picture we find looks like :
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Q@ The general picture we find looks like :

INTERMEDIATE STANDARD
HAGEDORN ERA COSMOLOGY:

ERA
T ~ Mstrin

baryogenesis,

T < Mstring

nucleosynthesis,...

M and the dilaton need to be stabilized. It is expected to be

the case when IR effects enter the game : Electroweak radiative

breaking (T=Mgw), gaugino condensation.



Hagedorn Era A

Q@ Euclidean Type II on S (Rg) X TD_l(RbOX) x T2=P « g1 (Ry)

— d27_ 1 a a a 1 a-+b-+abpa F9—D,9—D
/= Rl?oxl/}_ D41 5 Z(_) ot be[b]4 QZ(_) o b9[5]4 ( =112 )

215 % % a4 — (n7)
T 2
_ e T _— & 2
\/ /T
7-2 nOamO 2 ’TLQ,’ﬁ’Lg
(_)(a+a)mo+(b+5)no (_)&m9+5n9+m9n9
= Finite T° = N = (4,4) — (4,0)

Alternatively, (—)emotbnotmono  breaks (4,0) — (0,0):
Still cosmological, but no obvious link with
temperature.




Q@ Thermal model : Reversed G50 in the odd 79, ny winding
sectors —=  (Jg()g character,

m25=R:—2 = Ryg=1V2

For Ry > Ry : Unfold the fundamental domain

/ dZTZ %/ .- ) where ng =20
strip

to bring Z in the form of a canonical partition function :

e? = Zy, = Tre P2 where 0 =21 Ry




Q@ For the 2¢ model :

1 ° 1 °
2
= R R > ()
The would-be tachyons generate an enhanced SO(4);,xSO(4)r
at the fermionic point, Ry = Rg = 1/ V2

Since (_)amo — (_)(a+a)m0 (_)c‘vfr’zo

we identify a dressed canonical partition function :

= < Total Right moving Ramond
(_) charge of the muti-particle
eigenstates of the Hamiltonian

e

1
b =2rRy for Ryp>—
where V2

1
B = QWQL for Rg < —= (by T-duality)

Ry V2

el = Zin = 17 e PH




Q@ Note that el = Zn = 1Ir e—BH(_)a

differs from the undressed trace for multi-particle states which

involve at least one mode with Right moving Ramond charge 1.

1
They have masses > A or Ry .

Ry

If Ry = 1, these masses = O( Mstring)-

In the I < Mstring , the multi-particle
states that contain them are Boltzmann suppressed :

—  Tre PH ()% ~ Tre PH




Q@ Other point of view :
Change of basis in the tachyon free model : xé — L9 — X

VG Z — Z (G'+B")i;(nT4+m); (nT+m), (_)(a a)mo—+(b+b)no+mong

e 72
T = B
n,m (_)dm9+bn9—|—ﬁ19n9
R% + nR:  RA 0 iRz
/! 0 9 9 /I 9
where G, = ( LR R? , Bi; = _ARZ 0

n=1, p=1/2
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Q@ Other point of view :
Change of basis in the tachyon free model : :z?g = L9 — X

VG’ Ze—L G'4+B');j(nT4+m);(nT+m), (_)(a a)mo+(b+b)no+mono

9
T2

7,1 (_)&ﬁ19—|—5n9+ﬁ19n9
, _ ( Rs+pR5 pRj ;o 0  jiR;
where G, = ( LR R? , B = _AR2 0

u=1, p=1/2
They are Wilson lines for the U(1)’s 5 and B 4 along

the Euclidean S'(Ry) = non-dynamical, fixed parameters.

The tachyons found for i = 1 = 0 are charged under
these U(1)’s.

The WL deform the thermal vacuum in order to lift
the mass? to positive values !
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Simpler Example i [ = 2}

[Florakis, Kounnas, H.P., Toumbas (10)]
Q@ Hybrid A or B: Euclidean ITA or 11B on S*(Ry) X S'(Rbox) X s

d*t 1 I 8 _
‘ :RbOX/ 572 5 D () TR T (Vas — Saa)
S Ty a,b 77

R2 _
RO e 7:_20 |n07'—|—m0|2
v/ T2 -
no,mno

Right movers satisfy a massive boson/fermion degeneracy

(_ ) amo—+bno-+mong

Symmetry MSDS: [Kounnas (08)] [Florakis, Kounnas (09)][Florakis, Kounnas, Toumbas (10)]

_ 5 ‘ Unpaired massless modes in NSR1ght4
V24 — SZ4 =24 [See 1. Florakis’ talk] ’

—
Ro, ..., Ry are stabilized at 1/\/5 : enhanced SU(Q)R

—> (Conventional canonical ensemble in the Intermediate Era
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for Ryg > 1/\/5

1
Vi 0
box 2Ry for Ry < 1/v/2

1 1
:24< | Ro)—24 Ry

2Ry 2Ry

'Similar to non-critical Heterotic string
analyzed by Davis, Larsen, Seiberg]

Always finite : No tachyon for any Rj.

Enhanced symmetry U(1); — SU(2); at Ry = 1/v/2 .

Or,Z is discontinusous there : Phase transition.
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Integrated over the fundamental domain, Z involves Left-
moving characters Vs, Ss, and Os, Cs (due to reversed GSO).

Unfold the fundamental domain in the phase Ry > 1/ V2

(Ting Vs = Tingt1/2 Ss) (Vaa — Saa)

—  e? =2y =Tre P () where S =27R,

Unfold the fundamental domain in the phase Ry < 1/ V2

(Tig Vs = Tagt1/2 Cs) (Vaa — Saa)

which is the result for for the T-dual radius

_ 1
— e/ =Zy =Tre "7 (=) where =21 —
2Ry
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Q@ The phase transition at the fermionic point changes :

Hybrid B with # Hybrid A with
KK Matsubara modes winding Matsubara modes

for Ry > 1/v/2 for Ry < 1/v2

pr = pr along Sl(Ro)

N 12 e/

massless states

pr=—1/2 , pr=1/2

\b PL = -PR

1 1 1 1
With marginal operators : O_ |Sg; — > — |Csg; >

27 2 27 2
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Q In both phases, the «deformed free energy density» (for the
dressed Tr) is 7 7 s

Vbox N Bvbox — 52

It is that of a standard radiation, even in the Hagedorn

Era Ry~ 1/v2 : Why ?

where K = 487

For a gas of a single Bosonic (or Fermionic) degree of freedom,
with Right moving Ramond charge @ |,

In Tr e_BH(—)‘_‘ — T Zln (1 (_)@G—Bwk>
k

—> (Boson, a) and (Fermion, a + 1) have opposite F.

But by definition, the MSDS symmetry on the Right matches
them when they are massive ! We are left with a standard
free energy for thermal radiation of bosons and fermions.
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@ This allows us to describe the cosmological phase
transition that occurs at Ry = 1/v/2.

The universe is flat Minkowski we started with, on which the
source F' we have computed at 1-loop backreacts.

Convention : ¢ = 0 when Ry = 1/v2 .
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@ This allows us to describe the cosmological phase
transition that occurs at Ry = 1/v/2.

The universe is flat Minkowski we started with, on which the
source F' we have computed at 1-loop backreacts.

Convention : ¢ = 0 when Ry = 1/v2 .

For ¢t > 0, we know the tree level + 1-loop effective action,
exact in & at the 2-derivatives level :

/ dtdx Ba _6_2¢ (g + 2(8gb)2> .
t>0 r L

oot

|

il
@
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@ This allows us to describe the cosmological phase
transition that occurs at Ry = 1/v/2.

The universe is flat Minkowski we started with, on which the

source F' we have computed at 1-loop backreacts.

Convention : ¢ = 0 when Ry = 1/v2 .

For ¢t > 0, we know the tree level + 1-loop effective action,

exact in @ at the 2-derivatives level :

Also for ¢ < 0O :

/ dtdz [
t<0 r

1

2M ———

"R,

“
t>0

dtdz [ _6_2¢ (
r L

2n By

3
2

2(00)°)

il
@
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At t = 0, the thermal system contains additional massless
states, which trigger the phase transition,

They are 24 complex scalars x;, with . They do
not exist for ¢ > 0 (or ¢ < 0), where the thermal system
contains pure KK (or winding) Matsubara modes only:.

_ dx; dXi
/dﬂ? gii € 2¢ <—911 ;; dﬁ) —  Xi =0 T Yi\/911 <
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At t = 0, the thermal system contains additional massless

states, which trigger the phase transition,

They are 24 complex scalars X;, with . They do

not exist for ¢ > 0 (or ¢ < 0), where the thermal system
contains pure KK (or winding) Matsubara modes only:.

dx dx

_ dx; dXi
/df gii € 2¢<—911 X X) —> Xi=Q; T Yi\/g11 T

In total, the action is :

/dtdat Ba :6_2¢ (g + 2(6’qb)2> ;2

Tension of a brane-like object

f
/dtda:' ae 2 §(t) Z i 2

The constant gradients 7i at every point in space introduce

some non-trivial winding quantum number in the pure KKy

thermal vacuum at the transition. This is analogous to the

condensation of winding tachyons.
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@ Solution :
®0
e? c

14200t

where

a —
V1 +2C |t
2
C=e"vV2 and T.—= i

2T

e® A

t

a

eCltl T =T, Clt /1 +2C |t]

/ 7

Bouncing cosmology : No Big Bang singularity.

Fully perturbative.

Phase transition at the maximal temperature 7., where
there is a conical singularity in ¢(¢) only and a constant

entropy.




[ntermediate Era, F< Mstring}

Q@ In realistic models :

All moduli should get a mass (to not modify Newton’s law).

V=1 susy should be softly broken at low energy (to solve the

hierarchy problem) :

M~1TeV — moduli masses M ~ 1 TeV .

Coug]
Q@ Moduli problem : Coug

hlan, Fishler, Kolb, Raby, Ross (83)]
hlan, Holman, Ramond, Ross (84)]

‘Goncl

harov, Linde, Vysotsky (84)]

When massive, the moduli oscillate around their minima :

—  Pmoduli X T° will dominate pPraq X 1.

It stable : overclose the Universe.

It decay into radiation : alter baryogenesis.
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Q@ We would like first to ask how to obtain M < Mstring 7

It in the Hagedorn Era we now have T' = M = Mjstring, W€

are going to see that in the following ,
both

The moduli have decreasing mass M(t). This is an
intermediate situation, between a constant mass and a

vanishing mass !

The energy stored in their oscillations is dominated by

thermal energy | There is no moduli problem.

Bourliot, Kounnas, H.P (09)]
Bourliot, Estes, Kounnas, H.P. (09)]
Estes, Kounnas, H.P. (10)]
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e V=1 Heterotic orbifold in D=4 at finite T < Muiring

1
If the internal radii satisty R_ < R; < Ry , the masses
0

Mtring (for oscillators)

1 1
(for KK states) > — oc T’
Ry

R;
R; (for winding states)

F
F = Vbox n Z 2]€0 + ) O(e T )

In fact, this «constant» can vary in the neighborhood of

enhanced symmetry points : 7 — 70 + Nenhan.
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E.g., JF is the effective potential at finite T for Ry :

—

F

| ZRQ In Ro lnR4

>

R4(t) can be stabilized at 1, which is the SU(2)

enhanced symmetry point.

This occurs with a mass T(t), which drops.

NB: If R4(t) > Ro(t), it is always caught by the increasing
size of the plateau. Along the plateau, R4 freezes or is

stabilized = We do not decompactify to 10 dimensions !
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1 1
® We add N=1 VARl o — ., M ox —
RO Rg

The light states are the KK, (Matsubara) modes and the
KKy modes :

Mass __ Mass )

.7:=—T4nf(¥)+0(6_ e

M aASS aASS
which in fact is JF = —T49(T,R4) + O(e™ 7 , € B )

to interpolate the jump in n at the enhanced sym point Ry = 1.

E.om for ¢ = M/ T, g +0:9
O.1n 10r / 8V _—'_» —

()Z—I—()ZI o 0

When ) admits a minimum z., there is attraction

to a particular solution

1 1
e* T(t) = M(t) x — ox e**®) oc — where H? «x T, Ru(t)

a(t) Vi

1
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-

1 1

Q e T(t) = M(t) x — ox e*®V o« — where H? xT?, Ru(t) =1

a(t) Vi
is radiation-like : [,Uth + kmetm} — 7<?, R4) : {Pth + kinetic
4 N I -
f_; — 3
M
Pth = 7th (T? R4> Pech = this solution has nothing

to do with the usual Radiation Era after EW breaking.
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1 1
Q e T(t) = M(t) x — ox e*®V oc — where H? xT*, Ru(t) =1

- a(t) Vi
is radiation-like : [,Uth + kmetm} — 7(?, R4) : {Pth + kinetic
4 N I -
f_; — 3
M
Pth = 7th (T’ R4) Pech = this solution has nothing

to do with the usual Radiation Era after EW breaking.

The kinetic energy of the oscillations of /7, and ~ in their
potentials & and )/ is negligible in Friedmann’s equation :
No moduli problem.

Since the gravitino (and modulini) have mass M(t),
which drops with T(t¢), they are never thermally
produced abundantly. This is not the case in models where
their masses are supposed to be constant = 1 TeV :

gravitino problem.
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We need to know when the potential )/ for z = In(M /T

admits a minimum 2 c - [Catelin-Jullien, Kounnas, H.P, Toumbas (07)]

)

7 = T (thermal contribution present when M:())

+ M (effective potential contribution present when T:())

>Oor<0j

It is when the effective potential part is negative that there is
balancing and we have a minimum 2. .
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[ntermediate ra mype i

Liu, Estes, H.P (in progress)|

Q@ Problem 1 : We have RR moduli.
Problem 2 : There is no enhanced symmetry point !
@ The Heterotic and Type I strings are dual (S-dual in D=10).
Their respective gases at finite T must be dual.

Since the backreactions we study are quasi-static, we can

use
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Q@ Heterotic string compactified on a torus, with £; ~ 1 :

F = TD {nap + Z nsy(2) g<27TRQ |R

’L_

: » e e |
Type I coupling D-strings wrapped on S 1 ( RiI )
in 10 dim, A\; > 1

with momentum

— R’ is stabilized at /s .

(/




Q@ At late time, R;(t) — 1 and &(t) = ¢9 <O

N

D —6 perturbative heterotic
——S ¢](t) ? 1 ¢() — Cst.

string coupling in D dim

T ——
For D > 6 : It is not a surprise for solitons to contribute, for

a thermal gas at strong coupling.

For D 6 : We are at weak coupling but massless
solitons are still essential in Type 1 cosmology.

Also essential in Type I phenomenology, since there is
10-D

a solitonic enhanced gauge symmetry, e.g. SU(2)
Is it awkward 7 The contribution to the free energy of these
massless solitons can be seen to be equal to that of
El-instantons computed by heterotic / Type duality.
However, they span the directions 0 (Euclidean) and <.
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Q@ Generalization : In Type I string, with V"= 4 in D=4, all

kinds of moduli can be stabilized this way, except the dilaton :

RR 2-form moduli .} (dual to By in heterotic)
NS-NS moduli - (G

open string Wilson lines : Y/
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