On twisted symmetries and QM with a magnetic field on NC tori

G. Fiore, Universitá "Federico II" and INFN, Napoli.

Corfu, 10 September 2010

On twisted symmetries and QM with a magnetic field on NC tori -p.1/12

Introduction

Deformation quantization using Drinfel'd twists \mathcal{F} is a powerful tool to build noncommutative deformations of a space(time) X, of quantum theories on X and of their symmetries.

$$\overline{\mathcal{F}}_t := \exp\left(\frac{i}{2}\partial_a \otimes \theta^{ab}\partial_b\right) \equiv \exp\left(\frac{i}{2}\partial^t \otimes \theta\partial\right), \qquad \theta^{ab} = -\theta^{ba} \in \mathbb{R}$$

$$[f\star'g](x) := \cdot \left[\overline{\mathcal{F}}_t(\triangleright \otimes \triangleright)(f \otimes g)\right] = f(x) \exp\left[\frac{i}{2} \overleftarrow{\partial_a} \theta^{ab} \overrightarrow{\partial_b}\right] g(x), \qquad (1)$$

deforms the pointwise product \cdot of smooth functions f, g both on $X = \mathbb{R}^m$ (Grönewold-Moyal-Weyl \star -product) and on $X = \mathbb{T}^m$ (Connes-Rieffel \star -product); here $x \in \mathbb{R}^m$, $\partial_a = \frac{\partial}{\partial x^a}$, and for $\mathbb{T}^m f, g$ are meant periodic: $f(x + 2\pi L) = f(x), L \in \mathbb{Z}^m$. A better definition of \star' (larger domains!) uses the Fourier transforms/series of f, g. $\partial_a \in \mathbf{g} \equiv$ Lie algebra of the group G of symmetries of X. The twist $\mathcal{F}_t \equiv \overline{\mathcal{F}}_t^{-1} \in U\mathbf{g} \otimes U\mathbf{g}$ determines also the deformation $H \rightsquigarrow \hat{H}$ of the symmetry Hopf algebra $H = U\mathbf{g}$. As $\mathcal{X} := C^{\infty}(\mathbb{T}^m)$ is H-module algebra, so is $\hat{\mathcal{X}} \equiv \mathcal{X}_{\star'}$ a \hat{H} -module algebra.

Scalar quantum particle of electric charge q on $X = \mathbb{T}^m$ with a magnetic field B = dA: $\psi \in \Gamma(X, E) \sim e\mathcal{X}^n$.

Here $\Gamma(X, E) :=$ space of sections of the associated hermitean line bundle $E \xrightarrow{\pi} X$, $n \in \mathbb{N}, e \in M_n(\mathcal{X})$ is a projector, and used the Serre-Swan theorem.

Standard approach: right \mathcal{X} -module structure of $\Gamma(X, E) \sim e\mathcal{X}^n$ also deformed by \star' , $\psi f \rightsquigarrow \psi \star' f, f \in \mathcal{X}$. $\Gamma(X,E) \sim e\mathcal{X}^n$ is not symmetric under translation group $G = \mathbb{T}^m$, nor is $e_{\star'}\mathcal{X}^n_{\star'}$ under \widehat{Ug} . We point out: $\Gamma(X,E)$ is symmetric under a central extension of G, the *projective translation* group G_Q .

 $G_Q = \mathbb{T}^k \times \text{Heisenberg group, electric charge operator } Q \equiv \text{central generator. } G, G_Q$ have the same action on \mathcal{X} . Interesting result in itself.

Here we deform by a $\mathcal{F} \in U\mathbf{g}_Q \otimes U\mathbf{g}_Q$ and related \star to "preserve" the symmetries. To find G_Q we describe $\Gamma(X, E)$ as a subspace \mathcal{X}^V of $C^{\infty}(\mathbb{R}^m)$ characterized by a quasiperiodicity condition, i.e. periodicity up to a phase $V(L, x) \in U(1)$. This can be used also for physics on \mathbb{R}^m .

PLAN

- 1. Introduction
- 2. Mapping $\Gamma(X,E) \xrightarrow{\sim} \mathcal{X}^V$, defining G_Q
- 3. Basics in Twisting Deformation technology
- 4. Twisting $H = U\mathbf{g}_Q, \mathcal{X}, \mathcal{X}^V, \dots$ (work in progress)

2. Mapping $\Gamma(X,E) \xrightarrow{\sim} \mathcal{X}^V$, defining G_Q

$$\mathcal{X}^{V} := \{ \psi \in C^{\infty}(\mathbb{R}^{m}) \mid \psi(x + 2\pi L) = V(L, x) \, \psi(x) \qquad \forall x \in \mathbb{R}^{m}, \ L \in \mathbb{Z}^{m} \}, \quad (2)$$

It must be $\nabla_a : \mathcal{X}^V \mapsto \mathcal{X}^V$. $QB_{ab} = \frac{i}{2} [\nabla_a, \nabla_b] : \mathcal{X}^V \mapsto \mathcal{X}^V \Rightarrow B_{ab}(x)$ periodic:

$$B_{ab}(x) = \frac{1}{2}\beta^{A}_{ab} + \underbrace{\sum_{L \neq 0} \beta^{L}_{ab} e^{iL \cdot x}}_{B'_{ab}(x)} \Rightarrow A_{a}(x) = \frac{1}{2}x^{b}\beta^{A}_{ba} + \underbrace{A'_{a}(x)}_{\text{periodic, }B'=dA'}$$
(4)

 $\nabla_a \psi \in \mathcal{X}^V$ if $V(L, x) = e^{-i\pi L^t \beta^A x};$ $\stackrel{(3)}{\Rightarrow} \pi \beta^A_{ab} \in \mathbb{Z}$

Set $u^L := e^{iL \cdot x}$. $Q, p_a, u^L \cdot : \mathcal{X}^V \mapsto \mathcal{X}^V$; belong to the *-algebra of observables $\mathcal{O} \equiv$ algebra of polynomials in $Q, p_1, ..., p_m$ with coefficients f in \mathcal{X} , constrained by

$$[p_a, p_b] = -i\beta^A_{ab}Q,$$
 $[Q, \cdot] = 0,$ $[p_a, f] = -i(\partial_a f),$ (5)

 Q, p_a generate a real Lie algebra $\mathbf{g}_Q = \mathbb{R}^k \oplus$ Heisenberg, $k \leq m$. Group G_Q consists of

$$\Gamma_{(z^0,z)} = e^{i\left[Qz^0 + p \cdot z\right]}; \qquad [\Gamma_{(z^0,z)}\psi](x) = e^{iq\left[z^0 + x^t \frac{\beta^A}{2}\right]}\psi(x+z) \in \mathcal{X}^V.$$
(6)

 G, G_Q have same actions if q = 0. Gauge transformation U(x) = unitary transformation,

$$\mathcal{X}^V \mapsto \mathcal{X}^{V^U}, \qquad \psi \mapsto \psi^U = U\psi, \qquad p_a \mapsto p_a^U = Up_a U^{-1} \qquad u^a \mapsto u^a.$$
 (7)

Choosing $U(x) = e^{i\frac{q}{4}x^t\beta^S x}$ and setting $\beta := \beta^A + \beta^S$, we find for $\psi \in \mathcal{X}^{V^U} =: \mathcal{X}^{\beta}$

$$\psi(x+2\pi L) = e^{-iq\pi L^t \beta(x+L\pi)} \psi(x), \qquad p_a = -i\partial_a + x^b \beta_{ba} \frac{Q}{2}. \tag{8}$$

Let: P be the canonical cover map $P: x \in \mathbb{R}^m \mapsto u \in \mathbb{T}^m \sim \mathbb{R}^m / \mathbb{Z}^m$, $\{X_i\}$ a finite open cover of \mathbb{T}^m , $\forall i \ W_i \subset \mathbb{R}^m$ such that $P_i \equiv P|_{W_i} : W_i \mapsto X_i$ is invertible. Let

$$\psi_i(u) := \psi[P_i^{-1}(u)], \qquad A_{ia}(u) := A_a[P_i^{-1}(u)], \qquad U_i(u) := U[P_i^{-1}(u)], \qquad u \in X_i,$$

$$\stackrel{(3)}{\Rightarrow} \qquad \psi_i = c_{ij}\psi_j \quad \text{in } X_i \cap X_j, \qquad \qquad c_{ik} = c_{ij}c_{jk} \quad \text{in } X_i \cap X_j \cap X_k \qquad (9)$$

Therefore $\{(X_i, \psi_i, A_i)\}$ defines a trivialization of a section of a line bundle $E \xrightarrow{\pi} X$ with connection A of Chern numbers $n_{ab} := \pi \beta_{ab}^A = \frac{1}{2\pi} \phi_{ab} \in \mathbb{Z}$. $\{(X_i, U_i)\}$ defines a gauge transformation; if U(x) is periodic (global gauge tr.) $c_{ij}^U = c_{ij}$. $c_{ij}(u) = \exp\left\{-i\frac{q}{2}[P_i^{-1}(u)]^t \beta^A[P_j^{-1}(u)]\right\}$ in the gauge \mathcal{X}^{β^A}

This map $[\mathcal{X}^V] \mapsto \Gamma(X, E)$ can be inverted, so we can identify $[\mathcal{X}^V] \simeq \Gamma(X, E)$.

$$(\psi',\psi) := \int_X \psi'^* \psi, \qquad \qquad \int_X := \int_{\mathbb{T}^m} d^m x \qquad (10)$$

defines an Hermitean structure as $\psi'^*\psi$ is periodic; p_a, ∇_a are essentially self-adjoint. We shall call \mathcal{H}^V the Hilbert space completion of \mathcal{X}^V .

Fixed a $\psi_0 \in \mathcal{X}^V$ vanishing nowhere, $\psi \psi_0^{-1}$ is well-defined and periodic, i.e. in \mathcal{X} , whence the decomposition $\mathcal{X}^V = \mathcal{X} \psi_0$: ψ_0 is cyclic and separating.

3.1 Twisting $H = U\mathbf{g}$ to a noncocomm. Hopf algebra \hat{H}

If not familiar with Hopf algebras: start with cocommutative Hopf algebra Ug: then

$$\varepsilon(\mathbf{1}) = 1, \qquad \Delta(\mathbf{1}) = \mathbf{1} \otimes \mathbf{1}, \qquad S(\mathbf{1}) = \mathbf{1},$$

$$\varepsilon(g) = 0,$$
 $\Delta(g) = g \otimes \mathbf{1} + \mathbf{1} \otimes g,$ $S(g) = -g,$ if $g \in \mathbf{g}$;

 ε, Δ are extended to all of $H = U\mathbf{g}$ as *-algebra maps, S as a *-antialgebra map:

$$\varepsilon: H \to \mathbb{C}, \qquad \qquad \varepsilon(ab) = \varepsilon(a)\varepsilon(b), \qquad \qquad \varepsilon(a^*) = [\varepsilon(a)]^*,$$

$$\Delta: H \to H \otimes H, \qquad \Delta(ab) = \Delta(a)\Delta(b), \qquad \Delta(a^*) = [\Delta(a)]^{*\otimes *}, \qquad (11)$$

 $S: H \to H,$ S(ab) = S(b)S(a), $S\{[S(a^*)]^*\} = a.$

The extension of Δ is unambiguous, as $\Delta([g,g']) = [\Delta(g), \Delta(g')]$ if $g, g' \in \mathbf{g}$.

 ε gives the trivial representation, Δ , S are the abstract operations by which one constructs the tensor product of any two representations and the contragredient of any representation, respectively; S is uniquely determined by Δ .

Real deformation parameter λ . \hat{H} , $H[[\lambda]]$ have

- 1. same *-algebra (over $\mathbb{C}[[\lambda]]$) and counit ε
- 2. coproducts Δ , $\hat{\Delta}$ related by

$$\Delta(g) \equiv \sum_{I} g^{I}_{(1)} \otimes g^{I}_{(2)} \longrightarrow \hat{\Delta}(g) = \mathcal{F}\Delta(g)\mathcal{F}^{-1} \equiv \sum_{I} g^{I}_{(\hat{1})} \otimes g^{I}_{(\hat{2})}$$

3. antipodes
$$S, \hat{S}$$
 s.t. $\hat{S}(g) = \beta S(g)\beta^{-1}$, with $\beta = \sum_{I} \mathcal{F}_{I}^{(1)} S\left(\mathcal{F}_{I}^{(2)}\right)$.

where the *twist* [Drinfel'd 83] is for our purposes a unitary element $\mathcal{F} \in (H \otimes H)[[\lambda]]$ fulfilling

$$\mathcal{F} = \mathbf{1} \otimes \mathbf{1} + O(\lambda), \qquad (\epsilon \otimes \mathrm{id}) \mathcal{F} = (\mathrm{id} \otimes \epsilon) \mathcal{F} = \mathbf{1},$$
$$(\mathcal{F} \otimes \mathbf{1})[(\Delta \otimes \mathrm{id})(\mathcal{F})] = (\mathbf{1} \otimes \mathcal{F})[(\mathrm{id} \otimes \Delta)(\mathcal{F})] =: \mathcal{F}_3. \tag{12}$$

 \hat{H} has unitary triangular structure $\mathcal{R} = \mathcal{F}_{21} \mathcal{F}^{-1}$.

Here $H = U\mathbf{g}_Q$, $\mathcal{F} \in (U\mathbf{g}_Q \otimes U\mathbf{g}_Q)[[\lambda]]$; here for simplicity only Reshetikhin twists:

 $\mathcal{F} = e^{\frac{i}{2}(p^t \otimes \theta p + \mu \cdot p \wedge Q)}, \qquad \theta = \tilde{h}^t \Theta \tilde{h}, \qquad \text{where } \tilde{h} \text{ solves } \tilde{h} \beta^A \tilde{h}^t = 0 \qquad (13)$

 $(\theta^{ab} = \lambda \vartheta^{ab}, \mu^a = \lambda \nu^a;$ the term $\mu \cdot p \wedge Q$ irrelevant for 1-particle system). (13) implies $\operatorname{tr}(\theta \beta^A) = 0, \ \theta \beta^A \theta = 0.$

On twisted symmetries and QM with a magnetic field on NC tori - p.8/12

Such $\theta \neq 0$ exist only if $m \geq 3$: Simple nontrivial deformations are m = 3 with

$$\beta^{A} = \begin{pmatrix} 0 & -b & 0 \\ b & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \qquad \theta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \eta \\ 0 & -\eta & 0 \end{pmatrix}, \qquad \Rightarrow$$
(14)

 $\mathcal{F} = e^{\frac{i}{2}\eta \, p_2 \wedge p_3}, \qquad \hat{\Delta}(Q) = \Delta(Q), \qquad \hat{\Delta}(p_a) = \Delta(p_a) + \delta_{a1} \frac{\eta b}{2} \, p_3 \wedge Q,$

and m = 4 with

$$\beta^{A} = \begin{pmatrix} 0 & -b & 0 & 0 \\ b & 0 & 0 & 0 \\ 0 & 0 & 0 & -c \\ 0 & 0 & c & 0 \end{pmatrix}, \qquad \qquad \theta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \eta & 0 \\ 0 & -\eta & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow$$

$$\mathcal{F} = e^{\frac{i}{2}\eta p_2 \wedge p_3}, \qquad \hat{\Delta}(Q) = \Delta(Q), \qquad \hat{\Delta}(p_a) = \Delta(p_a) + \delta_a^1 \frac{\eta b}{2} p_3 \wedge Q + \delta_a^4 \frac{\eta c}{2} p_2 \wedge Q.$$
(15)

3.2 Twisting *H***-module** (*-)algebras

Let \mathcal{A} be a H-module (*)-algebra (over \mathbb{C}), $V(\mathcal{A})$ the vector space underlying \mathcal{A} . $V(\mathcal{A})[[\lambda]]$ gets a \hat{H} -module (*-)algebra \mathcal{A}_{\star} when endowed with the product (and *-structure)

$$a \star a' := \sum_{I} \left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a \right) \left(\overline{\mathcal{F}}_{I}^{(2)} \triangleright a' \right), \qquad (a^{\hat{*}} := S(\beta) \triangleright a^{*}).$$
(16)

In fact, \star is associative by (2), fulfills $(a \star a')^{\hat{*}} = a'^{\hat{*}} \star a^{\hat{*}}$ and

$$g \triangleright (a \star a') = \sum_{I} \left[g_{(\hat{1})}^{I} \triangleright a \right] \star \left[g_{(\hat{2})}^{I} \triangleright a' \right].$$

$$(17)$$

A left *H*-equivariant (*-)*A*-bimodule \mathcal{M} is deformed into a left \hat{H} -equivariant \mathcal{A}_{\star} -*-bimodule \mathcal{M}_{\star} w.r.t. the left, right \mathcal{A}_{\star} -multiplication: (16) for all $a \in \mathcal{A}_{\star}$, $a' \in \mathcal{M}_{\star}$ and $a \in \mathcal{M}_{\star}$, $a' \in \mathcal{A}_{\star}$. If \mathcal{A} defined by generators a_i and relations, then also \mathcal{A}_{\star} is, with same Poincaré-BirkhoffWitt series. *Generalized Weyl map* $\wedge : f \in \mathcal{A} \rightarrow \hat{f} \in \mathcal{A}_{\star}$ defined by the equations

$$f(a_1, a_2, ...) \star = \hat{f}(a_1 \star, a_2 \star, ...)$$
 in $V(\mathcal{A}) = V(\mathcal{A}_{\star})$ (18)

If $\exists a (*)$ -algebra map $\sigma : H \mapsto \mathcal{A}$ such that $g \triangleright a = \sum_{I} \sigma \left(g_{(1)}^{I} \right) a \sigma \left(Sg_{(2)}^{I} \right)$, then $\exists a \hat{H}$ -module *-algebra isomorphism $D_{\mathcal{F}}^{\sigma} : \mathcal{A}_{\star} \leftrightarrow \mathcal{A}[[\lambda]]$ (deforming map) defined by

$$D_{\mathcal{F}}^{\sigma}(a) := \sum_{I} \left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a \right) \, \sigma \left(\overline{\mathcal{F}}_{I}^{(2)} \right) \tag{19}$$

Change notation: $a_i \star a_j \rightsquigarrow \hat{a}_i \hat{a}_j, \hat{f}(a_i \star) \rightsquigarrow \hat{f}(\hat{a}_i), \mathcal{A}_{\star} \rightsquigarrow \hat{\mathcal{A}}, \mathcal{M}_{\star} \rightsquigarrow \hat{\mathcal{M}}, \dots$ On twisted symmetries and QM with a magnetic field on NC tori – p.10/12

Twisting $\mathcal{X}, \mathcal{X}^V, \mathcal{O}, \dots$

Weyl form of the comm. rel. $[Q, x^a] = [Q, p_a] = 0$, $[p_a, x^b] = -i\delta^b_a$, $[p_a, p_b] = -i\beta^A_{ab}Q$:

$$e^{i(h\cdot x+p\cdot y+\frac{Q}{2}y^{0})}e^{i(k\cdot x+p\cdot z+\frac{Q}{2}z^{0})} = e^{i\left[(h+k)\cdot x+p\cdot (y+z)+\frac{Q}{2}(y^{0}+z^{0})\right]}e^{-\frac{i}{2}\left[k\cdot y-h\cdot z-Qy\beta^{A}\right]}$$
(20)

for any $h, k, y, z \in \mathbb{R}^m$ and $y^0, z^0 \in \mathbb{R}$.

$$Y := \{ e^{i(Qh \cdot x + p \cdot z + \frac{Q}{2}z^0 + is)} \mid h, z \in \mathbb{R}^m, \ z^0, s \in \mathbb{R} \} \simeq \text{Heisenberg Group} \supseteq G,$$

 $\mathcal{C} :=$ the universal C^* -algebra generated by the $y \in Y$.

(21)

The group law of Y can be read off (20) replacing $h \to Qh$. Fixed a twist (13) and applying the deformation procedure to C one obtains $\widehat{C} \sim C$ with basic commutation relations

$$e^{i(Qh\cdot\hat{x}+\hat{p}\cdot y+\frac{Q}{2}z^{0})}e^{i(k\cdot\hat{x}+\hat{p}\cdot z+\frac{Q}{2}z^{0})} = e^{i[(h+k)\cdot\hat{x}+\hat{p}\cdot(y+z)]-\frac{i}{2}\left[k\cdot y-h\cdot z+(h+\hat{Q}\beta^{A}y)^{t}\theta(k+\hat{Q}\beta^{A}z)\right]}$$
(22)

for all $h, k, y, z \in \mathbb{R}^m$; for y = z = 0 the second becomes exactly as on Moyal space

$$e^{ih\cdot\hat{x}}e^{ik\cdot\hat{x}} = e^{i(h+k)\cdot\hat{x}}e^{-\frac{i}{2}h\theta k}.$$
(23)

$$[\hat{Q}, \hat{f}] = 0, \qquad [\hat{p}_a, e^{ik \cdot \hat{x}}] = e^{ik \cdot \hat{x}} [k + \hat{Q}k\theta\beta^A]_a, \qquad [e^{ik \cdot \hat{x}}, \hat{x}^a] = e^{ik \cdot \hat{x}} (\theta k)^a,$$
$$\hat{Q}^{\hat{*}} = \hat{Q}, \qquad [e^{i(k \cdot \hat{x} + \hat{p} \cdot y)}]^{\hat{*}} = e^{-i(k \cdot \hat{x} + \hat{p} \cdot y)},$$
(24)

Given β^A , θ fulfilling (4), (13), we start with a gauge where (the symmetric part of) β fulfills

$$\beta \theta \equiv (\beta^A + \beta^S)\theta = 0 \tag{25}$$

(such a β always exists). In such a gauge we define $\widehat{\mathcal{X}}^{\beta} \subset \widehat{\mathcal{S}}'$ as the spaces (and \widehat{H} -*-modules) of objects of the form

$$\hat{\psi}(\hat{x}) = \int_{\mathbb{R}^m} d^m k \ e^{ik \cdot \hat{x}} \tilde{\psi}(k) \tag{26}$$

with $\tilde{\psi}(k)$ fulfilling

$$\int_{\mathbb{R}^m} d^m k \, |\tilde{\psi}(k)| \left(1 + |k|\right)^h < \infty, \qquad \tilde{\psi}(k + \pi q L^t \beta) = e^{i\pi L \cdot [2k + q\pi\beta L]} \tilde{\psi}(k), \qquad (27)$$

for all h = 0, 1, 2, ... and $L \in \mathbb{Z}^m$. This ensures the noncommutative quasiperiodicity property

$$\hat{\psi}(\hat{x} + 2\pi L) = e^{-iq\pi L^t \beta(\hat{x} + L\pi)} \psi(\hat{x}), \qquad L \in \mathbb{Z}^m, \qquad (28)$$

completely analogous to (8).

On twisted symmetries and QM with a magnetic field on NC tori -p.12/12

$$-i\hat{D}_a = -i\hat{\partial}_a + \hat{A}_a\hat{Q} = \hat{p}_a + \hat{A}'_a\hat{Q}, \qquad \hat{p}_a = -i\hat{\partial}_a + \hat{x}^b\beta_{ba}\frac{\hat{Q}}{2}, \qquad \hat{A}'_a \in \widehat{\mathcal{X}}, \quad (29)$$

 $\hat{\mathcal{X}}^{\beta}$ is mapped into itself by multiplication by any \hat{u}^{L} , the action of \hat{p}_{a} . Moreover $\hat{\psi}^{*}\hat{\psi}' \in \hat{\mathcal{X}}$ for any $\hat{\psi}, \hat{\psi}' \in \hat{\mathcal{X}}^{\beta}$; we define a Hermitean structure on $\hat{\mathcal{X}}^{\beta}$ by

$$(\hat{\psi}, \hat{\psi}') := \int_{\hat{X}} \hat{\psi}^{\hat{*}} \hat{\psi}' = \int_{\mathbb{T}^n} d^n x \, \psi^* \psi' = (\psi, \psi'); \tag{30}$$

where $\int_{\hat{X}}$ is Connes-Rieffel integration on the noncommutative torus. By the last equalities there exists a Hilbert space isomorphism $\hat{\mathcal{H}}^{\beta} \simeq \mathcal{H}^{\beta}$, where $\hat{\mathcal{H}}^{\beta}$ is the Hilbert space completion of $\hat{\mathcal{X}}^{\beta}$. $\hat{p}_a, \hat{\nabla}_a$ are essentially self-adjoint.

Going to a more general gauge is under study...