On twisted symmetries and QM with a magnetic field on NC tori

G. Fiore, Universitá "Federico II" and INFN, Napoli.

Corfu, 10 September 2010

Introduction

Deformation quantization using Drinfel'd twists \mathcal{F} is a powerful tool to build noncommutative deformations of a space(time) X, of quantum theories on X and of their symmetries.

$$
\begin{align*}
& \overline{\mathcal{F}}_{t}:=\exp \left(\frac{i}{2} \partial_{a} \otimes \theta^{a b} \partial_{b}\right) \equiv \exp \left(\frac{i}{2} \partial^{t} \otimes \theta \partial\right), \quad \theta^{a b}=-\theta^{b a} \in \mathbb{R} \\
& {\left[f \star^{\prime} g\right](x):=\cdot\left[\overline{\mathcal{F}}_{t}(\triangleright \otimes \triangleright)(f \otimes g)\right]=f(x) \exp \left[\frac{i}{2} \overleftarrow{\partial_{a}} \theta^{a b} \overrightarrow{\partial_{b}}\right] g(x)} \tag{1}
\end{align*}
$$

deforms the pointwise product - of smooth functions f, g both on $X=\mathbb{R}^{m}$ (Grönewold-MoyalWeyl \star-product) and on $X=\mathbb{T}^{m}$ (Connes-Rieffel \star-product); here $x \in \mathbb{R}^{m}, \partial_{a}=\frac{\partial}{\partial x^{a}}$, and for $\mathbb{T}^{m} f, g$ are meant periodic: $f(x+2 \pi L)=f(x), L \in \mathbb{Z}^{m}$.
A better definition of \star^{\prime} (larger domains!) uses the Fourier transforms/series of f, g. $\partial_{a} \in \mathbf{g} \equiv$ Lie algebra of the group G of symmetries of X. The twist $\mathcal{F}_{t} \equiv \overline{\mathcal{F}}_{t}^{-1} \in U \mathbf{g} \otimes U \mathbf{g}$ determines also the deformation $H \rightsquigarrow \hat{H}$ of the symmetry Hopf algebra $H=U \mathbf{g}$. As $\mathcal{X}:=C^{\infty}\left(\mathbb{T}^{m}\right)$ is H-module algebra, so is $\widehat{\mathcal{X}} \equiv \mathcal{X}_{\star^{\prime}}$ a \hat{H}-module algebra.

Scalar quantum particle of electric charge q on $X=\mathbb{T}^{m}$ with a magnetic field $B=d A$: $\boldsymbol{\psi} \in \Gamma(X, E) \sim e \mathcal{X}^{n}$.
Here $\Gamma(X, E):=$ space of sections of the associated hermitean line bundle $E \stackrel{\pi}{\leadsto} X$, $n \in \mathbb{N}, e \in M_{n}(\mathcal{X})$ is a projector, and used the Serre-Swan theorem.

Standard approach: right \mathcal{X}-module structure of $\Gamma(X, E) \sim e \mathcal{X}^{n}$ also deformed by \star^{\prime}, $\boldsymbol{\psi} f \rightsquigarrow \boldsymbol{\psi} \star^{\prime} f, f \in \mathcal{X}$.
$\Gamma(X, E) \sim e \mathcal{X}^{n}$ is not symmetric under translation group $G=\mathbb{T}^{m}$, nor is $e_{\star^{\prime}} \mathcal{X}_{\star^{\prime}}^{n}$ under $\widehat{U \mathbf{g}}$. We point out: $\Gamma(X, E)$ is symmetric under a central extension of G, the projective translation group G_{Q}.
$G_{Q}=\mathbb{T}^{k} \times$ Heisenberg group, electric charge operator $Q \equiv$ central generator. G, G_{Q} have the same action on \mathcal{X}. Interesting result in itself.
Here we deform by a $\mathcal{F} \in U \mathbf{g}_{Q} \otimes U \mathbf{g}_{Q}$ and related \star to "preserve" the symmetries. To find G_{Q} we describe $\Gamma(X, E)$ as a subspace \mathcal{X}^{V} of $C^{\infty}\left(\mathbb{R}^{m}\right)$ characterized by a quasiperiodicity condition, i.e. periodicity up to a phase $V(L, x) \in U(1)$. This can be used also for physics on \mathbb{R}^{m}.

PLAN

1. Introduction
2. Mapping $\Gamma(X, E) \xrightarrow{\sim} \mathcal{X}^{V}$, defining G_{Q}
3. Basics in Twisting Deformation technology
4. Twisting $H=U \mathbf{g}_{Q}, \mathcal{X}, \mathcal{X}^{V}, \ldots$ (work in progress)

2. Mapping $\Gamma(X, E) \xrightarrow{\sim} \mathcal{X}^{V}$, defining G_{Q}

$$
\begin{align*}
& \mathcal{X}^{V}:=\left\{\psi \in C^{\infty}\left(\mathbb{R}^{m}\right) \quad \mid \quad \psi(x+2 \pi L)=V(L, x) \psi(x)\right. \tag{2}\\
& \tag{3}\\
& \mathcal{X}^{V} \text { is } \\
& \text { well- } \quad x \xrightarrow{L+L^{\prime}} x^{2+2 \pi\left(L+L^{\prime}\right)} \\
& \text { defined }
\end{aligned} \Leftrightarrow \quad \begin{aligned}
& \text { L }
\end{align*}
$$

is commutative
It must be $\nabla_{a}: \mathcal{X}^{V} \mapsto \mathcal{X}^{V} . \quad Q B_{a b}=\frac{i}{2}\left[\nabla_{a}, \nabla_{b}\right]: \mathcal{X}^{V} \mapsto \mathcal{X}^{V} \Rightarrow B_{a b}(x)$ periodic:

$$
\begin{equation*}
B_{a b}(x)=\frac{1}{2} \beta_{a b}^{A}+\underbrace{\sum_{L \neq 0} \beta_{a b}^{L} e^{i L \cdot x}}_{D^{\prime}} \Rightarrow A_{a}(x)=\frac{1}{2} x^{b} \beta_{b a}^{A}+\underbrace{A_{a}^{\prime}(x)}_{\text {periodic, } B^{\prime}=d A^{\prime}} \tag{4}
\end{equation*}
$$

$$
\nabla_{a} \psi \in \mathcal{X}^{V} \quad \text { if } \quad V(L, x)=e^{-i \pi L^{t} \beta^{A} x} ; \quad \stackrel{(3)}{\Rightarrow} \quad \pi \beta_{a b}^{A} \in \mathbb{Z}
$$

$$
\nabla_{a}=-i \partial_{a}+Q A_{a}(x)=p_{a}+Q A_{a}^{\prime}(x), \quad p_{a}:=-i \partial_{a}+\frac{Q}{2} x^{b} \beta_{b a}^{A} \quad u^{a}:=e^{i x^{a}}
$$

Set $u^{L}:=e^{i L \cdot x} . Q, p_{a}, u^{L} \cdot: \mathcal{X}^{V} \mapsto \mathcal{X}^{V}$; belong to the $*$-algebra of observables $\mathcal{O} \equiv$ algebra of polynomials in Q, p_{1}, \ldots, p_{m} with coefficients f in \mathcal{X}, constrained by

$$
\begin{equation*}
\left[p_{a}, p_{b}\right]=-i \beta_{a b}^{A} Q, \quad[Q, \cdot]=0, \quad\left[p_{a}, f\right]=-i\left(\partial_{a} f\right), \tag{5}
\end{equation*}
$$

Q, p_{a} generate a real Lie algebra $\mathbf{g}_{Q}=\mathbb{R}^{k} \oplus$ Heisenberg, $k \leq m$. Group G_{Q} consists of

$$
\begin{equation*}
\Gamma_{\left(z^{0}, z\right)}=e^{i\left[Q z^{0}+p \cdot z\right]} ; \quad\left[\Gamma_{\left(z^{0}, z\right)} \psi\right](x)=e^{i q\left[z^{0}+x^{t \frac{\beta^{A}}{2}}\right]} \psi(x+z) \in \mathcal{X}^{V} . \tag{6}
\end{equation*}
$$

G, G_{Q} have same actions if $q=0$. Gauge transformation $U(x)=$ unitary transformation,

$$
\begin{equation*}
\mathcal{X}^{V} \mapsto \mathcal{X}^{V^{U}}, \quad \psi \mapsto \psi^{U}=U \psi, \quad p_{a} \mapsto p_{a}^{U}=U p_{a} U^{-1} \quad u^{a} \mapsto u^{a} . \tag{7}
\end{equation*}
$$

Choosing $U(x)=e^{i \frac{q}{4} x^{t} \beta^{S} x}$ and setting $\beta:=\beta^{A}+\beta^{S}$, we find for $\psi \in \mathcal{X}^{V^{U}}=: \mathcal{X}^{\beta}$

$$
\begin{equation*}
\psi(x+2 \pi L)=e^{-i q \pi L^{t} \beta(x+L \pi)} \psi(x), \quad p_{a}=-i \partial_{a}+x^{b} \beta_{b a} \frac{Q}{2} . \tag{8}
\end{equation*}
$$

Let: P be the canonical cover map $P: x \in \mathbb{R}^{m} \mapsto u \in \mathbb{T}^{m} \sim \mathbb{R}^{m} / \mathbb{Z}^{m},\left\{X_{i}\right\}$ a finite open cover of $\mathbb{T}^{m}, \forall i W_{i} \subset \mathbb{R}^{m}$ such that $\left.P_{i} \equiv P\right|_{W_{i}}: W_{i} \mapsto X_{i}$ is invertible. Let

$$
\begin{gather*}
\psi_{i}(u):=\psi\left[P_{i}^{-1}(u)\right], \quad A_{i a}(u):=A_{a}\left[P_{i}^{-1}(u)\right], \quad U_{i}(u):=U\left[P_{i}^{-1}(u)\right], \quad u \in X_{i}, \\
\stackrel{(3)}{\Rightarrow} \quad \psi_{i}=c_{i j} \psi_{j} \quad \text { in } X_{i} \cap X_{j}, \quad c_{i k}=c_{i j} c_{j k} \quad \text { in } X_{i} \cap X_{j} \cap X_{k}
\end{gather*}
$$

Therefore $\left\{\left(X_{i}, \psi_{i}, A_{i}\right)\right\}$ defines a trivialization of a section of a line bundle $E \stackrel{\pi}{\mapsto} X$ with connection A of Chern numbers $n_{a b}:=\pi \beta_{a b}^{A}=\frac{1}{2 \pi} \phi_{a b} \in \mathbb{Z}$. $\left\{\left(X_{i}, U_{i}\right)\right\}$ defines a gauge transformation; if $U(x)$ is periodic (global gauge tr.) $c_{i j}^{U}=c_{i j}$. $c_{i j}(u)=\exp \left\{-i \frac{q}{2}\left[P_{i}^{-1}(u)\right]^{t} \beta^{A}\left[P_{j}^{-1}(u)\right]\right\}$ in the gauge $\mathcal{X}^{\beta^{A}}$
This map $\left[\mathcal{X}^{V}\right] \mapsto \Gamma(X, E)$ can be inverted, so we can identify $\left[\mathcal{X}^{V}\right] \simeq \Gamma(X, E)$.

$$
\begin{equation*}
\left(\psi^{\prime}, \psi\right):=\int_{X} \psi^{\prime *} \psi, \quad \int_{X}:=\int_{\mathbb{T}^{m}} d^{m} x \tag{10}
\end{equation*}
$$

defines an Hermitean structure as $\psi^{\prime *} \psi$ is periodic; p_{a}, ∇_{a} are essentially self-adjoint. We shall call \mathcal{H}^{V} the Hilbert space completion of \mathcal{X}^{V}.

Fixed a $\psi_{0} \in \mathcal{X}^{V}$ vanishing nowhere, $\psi \psi_{0}^{-1}$ is well-defined and periodic, i.e. in \mathcal{X}, whence the decomposition $\mathcal{X}^{V}=\mathcal{X} \psi_{0}: \psi_{0}$ is cyclic and separating.

3.1 Twisting $H=U \mathbf{g}$ to a noncocomm. Hopf algebra \hat{H}

If not familiar with Hopf algebras: start with cocommutative Hopf algebra $U \mathbf{g}$: then

$$
\begin{aligned}
& \varepsilon(\mathbf{1})=1, \\
& \Delta(\mathbf{1})=\mathbf{1} \otimes \mathbf{1}, \\
& S(\mathbf{1})=\mathbf{1}, \\
& \varepsilon(g)=0, \\
& \Delta(g)=g \otimes \mathbf{1}+\mathbf{1} \otimes g, \\
& S(g)=-g, \\
& \text { if } g \in \mathbf{g} \text {; }
\end{aligned}
$$

ε, Δ are extended to all of $H=U \mathbf{g}$ as $*$-algebra maps, S as a $*$-antialgebra map:

$$
\begin{array}{lll}
\varepsilon: H \rightarrow \mathbb{C}, & \varepsilon(a b)=\varepsilon(a) \varepsilon(b), & \varepsilon\left(a^{*}\right)=[\varepsilon(a)]^{*}, \\
\Delta: H \rightarrow H \otimes H, & \Delta(a b)=\Delta(a) \Delta(b), & \Delta\left(a^{*}\right)=[\Delta(a)]^{* * *}, \\
S: H \rightarrow H, & S(a b)=S(b) S(a), & S\left\{\left[S\left(a^{*}\right)\right]^{*}\right\}=a .
\end{array}
$$

The extension of Δ is unambiguous, as $\Delta\left(\left[g, g^{\prime}\right]\right)=\left[\Delta(g), \Delta\left(g^{\prime}\right)\right]$ if $g, g^{\prime} \in \mathbf{g}$.
ε gives the trivial representation, Δ, S are the abstract operations by which one constructs the tensor product of any two representations and the contragredient of any representation, respectively; S is uniquely determined by Δ.

Real deformation parameter $\lambda . \hat{H}, H[[\lambda]]$ have

1. same $*$-algebra (over $\mathbb{C}[[\lambda]]$) and counit ε
2. coproducts $\Delta, \hat{\Delta}$ related by

$$
\Delta(g) \equiv g_{I} g_{(1)}^{I} \otimes g_{(2)}^{I} \longrightarrow \hat{\Delta}(g)=\mathcal{F} \Delta(g) \mathcal{F}^{-1} \equiv g_{I} g_{(\hat{1})}^{I} \otimes g_{(\hat{2})}^{I}
$$

3. antipodes S, \hat{S} s.t. $\hat{S}(g)=\beta S(g) \beta^{-1}$, with $\beta=\sum_{I} \mathcal{F}_{I}^{(1)} S\left(\mathcal{F}_{I}^{(2)}\right)$.
where the twist [Drinfel'd 83] is for our purposes a unitary element $\mathcal{F} \in(H \otimes H)[[\lambda]]$ fulfilling

$$
\begin{align*}
& \mathcal{F}=\mathbf{1} \otimes \mathbf{1}+O(\lambda), \quad(\epsilon \otimes \mathrm{id}) \mathcal{F}=(\mathrm{id} \otimes \epsilon) \mathcal{F}=\mathbf{1}, \\
& (\mathcal{F} \otimes \mathbf{1})[(\Delta \otimes \mathrm{id})(\mathcal{F})]=(\mathbf{1} \otimes \mathcal{F})[(\mathrm{id} \otimes \Delta)(\mathcal{F})]=: \mathcal{F}_{3} . \tag{12}
\end{align*}
$$

\hat{H} has unitary triangular structure $\mathcal{R}=\mathcal{F}_{21} \mathcal{F}^{-1}$.
Here $H=U \mathbf{g}_{Q}, \mathcal{F} \in\left(U \mathbf{g}_{Q} \otimes U \mathbf{g}_{Q}\right)[[\lambda]] ;$ here for simplicity only Reshetikhin twists:

$$
\begin{equation*}
\mathcal{F}=e^{\frac{i}{2}\left(p^{t} \otimes \theta p+\mu \cdot p \wedge Q\right)}, \quad \theta=\tilde{h}^{t} \Theta \tilde{h}, \quad \text { where } \tilde{h} \text { solves } \tilde{h} \beta^{A} \tilde{h}^{t}=0 \tag{13}
\end{equation*}
$$

($\theta^{a b}=\lambda \vartheta^{a b}, \mu^{a}=\lambda \nu^{a}$; the term $\mu \cdot p \wedge Q$ irrelevant for 1-particle system).
(13) implies $\operatorname{tr}\left(\theta \beta^{A}\right)=0, \theta \beta^{A} \theta=0$.

Such $\theta \neq 0$ exist only if $m \geq 3$: Simple nontrivial deformations are $m=3$ with

$$
\begin{align*}
& \beta^{A}=\left(\begin{array}{ccc}
0 & -b & 0 \\
b & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \theta=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \eta \\
0 & -\eta & 0
\end{array}\right), \quad \Rightarrow \tag{14}\\
& \mathcal{F}=e^{\frac{i}{2} \eta p_{2} \wedge p_{3}}, \quad \hat{\Delta}(Q)=\Delta(Q), \quad \hat{\Delta}\left(p_{a}\right)=\Delta\left(p_{a}\right)+\delta_{a 1} \frac{\eta b}{2} p_{3} \wedge Q
\end{align*}
$$

and $m=4$ with

$$
\begin{align*}
& \beta^{A}=\left(\begin{array}{cccc}
0 & -b & 0 & 0 \\
b & 0 & 0 & 0 \\
0 & 0 & 0 & -c \\
0 & 0 & c & 0
\end{array}\right), \quad \theta=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \eta & 0 \\
0 & -\eta & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \mathcal{F}=e^{\frac{i}{2} \eta p_{2} \wedge p_{3}}, \quad \hat{\Delta}(Q)=\Delta(Q), \quad \hat{\Delta}\left(p_{a}\right)=\Delta\left(p_{a}\right)+\delta_{a}^{1} \frac{\eta b}{2} p_{3} \wedge Q+\delta_{a}^{4} \frac{\eta c}{2} p_{2} \wedge Q
\end{align*}
$$

3.2 Twisting H-module ($*$-)algebras

Let \mathcal{A} be a H-module ($*$)-algebra (over \mathbb{C}), $V(\mathcal{A})$ the vector space underlying \mathcal{A}.
$V(\mathcal{A})[[\lambda]]$ gets a \hat{H}-module ($*$-)algebra \mathcal{A}_{\star} when endowed with the product (and $*$-structure)

$$
\begin{equation*}
a \star a^{\prime}:={ }_{I}\left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a\right)\left(\overline{\mathcal{F}}_{I}^{(2)} \triangleright a^{\prime}\right), \quad\left(a^{\hat{*}}:=S(\beta) \triangleright a^{*}\right) . \tag{16}
\end{equation*}
$$

In fact, \star is associative by (2), fulfills $\left(a \star a^{\prime}\right)^{\hat{*}}=a^{\prime \hat{*}} \star a^{\hat{*}}$ and

$$
\begin{equation*}
g \triangleright\left(a \star a^{\prime}\right)=\sum_{I}\left[g_{(\hat{1})}^{I} \triangleright a\right] \star\left[g_{(\hat{2})}^{I} \triangleright a^{\prime}\right] . \tag{17}
\end{equation*}
$$

A left H-equivariant ($*$-) \mathcal{A}-bimodule \mathcal{M} is deformed into a left \hat{H}-equivariant \mathcal{A}_{\star} - - -bimodule \mathcal{M}_{\star} w.r.t. the left, right \mathcal{A}_{\star}-multiplication: (16) for all $a \in \mathcal{A}_{\star}, a^{\prime} \in \mathcal{M}_{\star}$ and $a \in \mathcal{M}_{\star}, a^{\prime} \in \mathcal{A}_{\star}$. If \mathcal{A} defined by generators a_{i} and relations, then also \mathcal{A}_{\star} is, with same Poincaré-BirkhoffWitt series. Generalized Weyl map $\wedge: f \in \mathcal{A} \rightarrow \hat{f} \in \mathcal{A}_{\star}$ defined by the equations

$$
\begin{equation*}
f\left(a_{1}, a_{2}, \ldots\right) \star=\hat{f}\left(a_{1} \star, a_{2 \star}, \ldots\right) \quad \text { in } V(\mathcal{A})=V\left(\mathcal{A}_{\star}\right) \tag{18}
\end{equation*}
$$

If $\exists \mathrm{a}(*)$-algebra map $\sigma: H \mapsto \mathcal{A}$ such that $g \triangleright a=\sum_{I} \sigma\left(g_{(1)}^{I}\right) a \sigma\left(S g_{(2)}^{I}\right)$, then $\exists \mathrm{a}$ \hat{H}-module $*$-algebra isomorphism $D_{\mathcal{F}}^{\sigma}: \mathcal{A}_{\star} \leftrightarrow \mathcal{A}[[\lambda]]$ (deforming map) defined by

$$
\begin{equation*}
D_{\mathcal{F}}^{\sigma}(a):=\sum_{I}\left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a\right) \sigma\left(\overline{\mathcal{F}}_{I}^{(2)}\right) \tag{19}
\end{equation*}
$$

Change notation: $\quad a_{i} \star a_{j} \rightsquigarrow \hat{a}_{i} \hat{a}_{j}, \hat{f}\left(a_{\imath} \star\right) \rightsquigarrow \hat{f}\left(\hat{a}_{i}\right), \mathcal{A}_{\star} \rightsquigarrow \widehat{\mathcal{A}}, \mathcal{M}_{\star} \rightsquigarrow \widehat{\mathcal{M}}, \ldots$

Twisting $\mathcal{X}, \mathcal{X}^{V}, \mathcal{O}, \ldots$

Weyl form of the comm. rel. $\left[Q, x^{a}\right]=\left[Q, p_{a}\right]=0,\left[p_{a}, x^{b}\right]=-i \delta_{a}^{b},\left[p_{a}, p_{b}\right]=-i \beta_{a b}^{A} Q$:

$$
\begin{equation*}
e^{i\left(h \cdot x+p \cdot y+\frac{Q}{2} y^{0}\right)} e^{i\left(k \cdot x+p \cdot z+\frac{Q}{2} z^{0}\right)}=e^{i\left[(h+k) \cdot x+p \cdot(y+z)+\frac{Q}{2}\left(y^{0}+z^{0}\right)\right]} e^{-\frac{i}{2}\left[k \cdot y-h \cdot z-Q y \beta^{A}\right.} \tag{20}
\end{equation*}
$$

for any $h, k, y, z \in \mathbb{R}^{m}$ and $y^{0}, z^{0} \in \mathbb{R}$.

$$
\begin{align*}
& Y:=\left\{\left.e^{i\left(Q h \cdot x+p \cdot z+\frac{Q}{2} z^{0}+i s\right)} \right\rvert\, h, z \in \mathbb{R}^{m}, z^{0}, s \in \mathbb{R}\right\} \simeq \text { Heisenberg Group } \supseteq G \\
& \mathcal{C}:=\text { the universal } C^{*} \text {-algebra generated by the } y \in Y \tag{21}
\end{align*}
$$

The group law of Y can be read off (20) replacing $h \rightarrow Q h$. Fixed a twist (13) and applying the deformation procedure to \mathcal{C} one obtains $\widehat{\mathcal{C}} \sim \mathcal{C}$ with basic commutation relations

$$
\begin{equation*}
e^{i\left(Q h \cdot \hat{x}+\hat{p} \cdot y+\frac{Q}{2} z^{0}\right)} e^{i\left(k \cdot \hat{x}+\hat{p} \cdot z+\frac{Q}{2} z^{0}\right)}=e^{i[(h+k) \cdot \hat{x}+\hat{p} \cdot(y+z)]-\frac{i}{2}\left[k \cdot y-h \cdot z+\left(h+\hat{Q} \beta^{A} y\right)^{t} \theta\left(k+\hat{Q} \beta^{A} z\right)\right]} \tag{22}
\end{equation*}
$$

for all $h, k, y, z \in \mathbb{R}^{m}$; for $y=z=0$ the second becomes exactly as on Moyal space

$$
\begin{equation*}
e^{i h \cdot \hat{x}} e^{i k \cdot \hat{x}}=e^{i(h+k) \cdot \hat{x}} e^{-\frac{i}{2} h \theta k} \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& {[\hat{Q}, \hat{f}]=0, \quad\left[\hat{p}_{a}, e^{i k \cdot \hat{x}}\right]=e^{i k \cdot \hat{x}}\left[k+\hat{Q} k \theta \beta^{A}\right]_{a}, \quad\left[e^{i k \cdot \hat{x}}, \hat{x}^{a}\right]=e^{i k \cdot \hat{x}}(\theta k)^{a}} \\
& \hat{Q}^{\hat{*}}=\hat{Q}, \\
& {\left[e^{i(k \cdot \hat{x}+\hat{p} \cdot y)}\right]^{\hat{*}}=e^{-i(k \cdot \hat{x}+\hat{p} \cdot y)}} \tag{24}
\end{align*}
$$

Given β^{A}, θ fulfilling (4), (13), we start with a gauge where (the symmetric part of) β fulfills

$$
\begin{equation*}
\beta \theta \equiv\left(\beta^{A}+\beta^{S}\right) \theta=0 \tag{25}
\end{equation*}
$$

(such a β always exists). In such a gauge we define $\widehat{\mathcal{X}}^{\beta} \subset \widehat{\mathcal{S}}^{\prime}$ as the spaces (and \hat{H}-*-modules) of objects of the form

$$
\begin{equation*}
\hat{\psi}(\hat{x})=\underset{\mathbb{R}^{m}}{ } d^{m} k e^{i k \cdot \hat{x}} \tilde{\psi}(k) \tag{26}
\end{equation*}
$$

with $\tilde{\psi}(k)$ fulfilling

$$
\begin{equation*}
\underset{\mathbb{R}^{m}}{d^{m}} k|\tilde{\psi}(k)|(1+|k|)^{h}<\infty, \quad \tilde{\psi}\left(k+\pi q L^{t} \beta\right)=e^{i \pi L \cdot[2 k+q \pi \beta L]} \tilde{\psi}(k) \tag{27}
\end{equation*}
$$

for all $h=0,1,2, \ldots$ and $L \in \mathbb{Z}^{m}$. This ensures the noncommutative quasiperiodicity property

$$
\begin{equation*}
\hat{\psi}(\hat{x}+2 \pi L)=e^{-i q \pi L^{t} \beta(\hat{x}+L \pi)} \psi(\hat{x}), \quad L \in \mathbb{Z}^{m} \tag{28}
\end{equation*}
$$

completely analogous to (8).

$$
\begin{equation*}
-i \hat{D}_{a}=-i \hat{\partial}_{a}+\hat{A}_{a} \hat{Q}=\hat{p}_{a}+\hat{A}_{a}^{\prime} \hat{Q}, \quad \hat{p}_{a}=-i \hat{\partial}_{a}+\hat{x}^{b} \beta_{b a} \frac{\hat{Q}}{2}, \quad \hat{A}_{a}^{\prime} \in \widehat{\mathcal{X}}, \tag{29}
\end{equation*}
$$

$\widehat{\mathcal{X}}^{\beta}$ is mapped into itself by multiplication by any \hat{u}^{L}, the action of \hat{p}_{a}. Moreover $\hat{\psi}^{\hat{*}} \hat{\psi}^{\prime} \in \widehat{\mathcal{X}}$ for any $\hat{\psi}, \hat{\psi}^{\prime} \in \widehat{\mathcal{X}}^{\beta}$; we define a Hermitean structure on $\widehat{\mathcal{X}}^{\beta}$ by

$$
\begin{equation*}
\left(\hat{\psi}, \hat{\psi}^{\prime}\right):=\hat{X}_{\hat{X}} \hat{\psi}^{\hat{*}} \hat{\psi}^{\prime}=\underset{\mathbb{T}^{n}}{ } d^{n} x \psi^{*} \psi^{\prime}=\left(\psi, \psi^{\prime}\right) ; \tag{30}
\end{equation*}
$$

where $\int_{\hat{X}}$ is Connes-Rieffel integration on the noncommutative torus. By the last equalities there exists a Hilbert space isomorphism $\widehat{\mathcal{H}}^{\beta} \simeq \mathcal{H}^{\beta}$, where $\widehat{\mathcal{H}}^{\beta}$ is the Hilbert space completion of $\widehat{\mathcal{X}}^{\beta} . \hat{p}_{a}, \hat{\nabla}_{a}$ are essentially self-adjoint.

Going to a more general gauge is under study...

