A New Perspective on QFT from the ERG arXiv:1003.1366 [hep-th]

Oliver J. Rosten
Sussex U.
September 2010

Outline of this Lecture

(1) Context

(3) Introducing a Source

Outline of this Lecture

(1) Context
(2) ERGEs
(3) Introducing a Source

Outline of this Lecture

(1) Context
(2) ERGEs
(3) Introducing a Source

Textbook renormalization

Textbook renormalization

- Choose an action e.g.

$$
S[\phi]=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

- Choose a UV regulator
- Start computing the correlation functions

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{z} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S[\phi]}
$$

- Adjust the action to absorb UV divergences:

$$
S[\phi] \rightarrow S[\phi]+\delta S[\phi]
$$

- If δS has the same form as S, the theory is renormalizable

Textbook renormalization

- Choose an action e.g.

$$
S[\phi]=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

- Choose a UV regulator
- Start computing the correlation functions

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S[\phi]}
$$

- Adjust the action to absorb UV divergences:

$$
S[\phi] \rightarrow S[\phi]+\delta S[\phi]
$$

- If δS has the same form as S, the theory is renormalizable

Textbook renormalization

- Choose an action e.g.

$$
S[\phi]=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

- Choose a UV regulator
- Start computing the correlation functions

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S[\phi]}
$$

- Adjust the action to absorb UV divergences:

$$
S[\phi] \rightarrow S[\phi]+\delta S[\phi]
$$

- If δS has the same form as S, the theory is renormalizable

Textbook renormalization

- Choose an action e.g.

$$
S[\phi]=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

- Choose a UV regulator
- Start computing the correlation functions

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S[\phi]}
$$

- Adjust the action to absorb UV divergences:

$$
S[\phi] \rightarrow S[\phi]+\delta S[\phi]
$$

- If δS has the same form as S, the theory is renormalizable

Textbook renormalization

- Choose an action e.g.

$$
S[\phi]=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right]
$$

- Choose a UV regulator
- Start computing the correlation functions

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \phi \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) e^{-S[\phi]}
$$

- Adjust the action to absorb UV divergences:

$$
S[\phi] \rightarrow S[\phi]+\delta S[\phi]
$$

- If δS has the same form as S, the theory is renormalizable

Drawbacks

Drawbacks

- In practice, this scheme is perturbative
- It offers no physical intuition

Drawbacks

- In practice, this scheme is perturbative
- It offers no physical intuition

Wilsonian Renormalization

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale
- Integrate out degrees of freedom between Λ_{0} and Λ
- The bare action evolves into the Wilsonian effective action

$$
S_{\Lambda_{0}}[\phi] \rightarrow S_{\wedge}[\phi]
$$

- Demanding invariance of the partition function gives an ERGE
$\Lambda \partial_{\wedge} S_{\Lambda}[\phi]=$

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale
- Integrate out degrees of freedom between Λ_{0} and Λ
- The bare action evolves into the Wilsonian effective action
$S_{\wedge_{0}}[\phi] \rightarrow S_{\wedge}[\phi]$
- Demanding invariance of the partition function gives an ERGE
$\wedge \partial_{\wedge} S_{\wedge}[\phi]=$

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale

Energy

- Integrate out degrees of freedom between Λ_{0} and \wedge
- The bare action evolves into the Wilsonian effective action
$S_{\wedge_{0}}[\phi] \rightarrow S_{\wedge}[\phi]$
- Demanding invariance of the partition function gives an ERGE
$\wedge \partial_{\wedge} S_{\Lambda}[\phi]=$

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale

Energy

- Integrate out degrees of freedom between Λ_{0} and Λ
- The bare action evolves into the Wilsonian effective action

$$
S_{\Lambda_{0}}[\phi] \rightarrow S_{\Lambda}[\phi]
$$

- Demanding invariance of the partition function gives an ERGE $\wedge \partial_{\wedge} S_{\wedge}[\phi]=$

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale

Energy

- Integrate out degrees of freedom between Λ_{0} and Λ
- The bare action evolves into the Wilsonian effective action

$$
S_{\Lambda_{0}}[\phi] \rightarrow S_{\wedge}[\phi]
$$

- Demanding invariance of the partition function gives an ERGE $\wedge \partial_{\wedge} S_{\wedge}[\phi]=$

Wilsonian Renormalization

- Don't try to integrate over all fluctuations at once!
- Partition up the modes by introducing an effective scale

Energy

- Integrate out degrees of freedom between Λ_{0} and Λ
- The bare action evolves into the Wilsonian effective action

$$
S_{\Lambda_{0}}[\phi] \rightarrow S_{\wedge}[\phi]
$$

- Demanding invariance of the partition function gives an ERGE

$$
\Lambda \partial_{\Lambda} S_{\Lambda}[\phi]=\ldots
$$

What have we gained?

What have we gained?

- Suppose we work with dimensionless variables:

$$
x \rightarrow x / \Lambda, \quad \phi(x) \rightarrow \phi(x) \Lambda^{(d-2) / 2} \sqrt{Z}, \quad t=\ln \mu / \Lambda
$$

- Define a fixed-point as a scale-invariant action:

$$
\partial_{t} S_{\star}[\phi]=0
$$

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} S_{\star}[\varphi]=0$
- Or from relevant (source-dependent) perturbations

What have we gained?

- Suppose we work with dimensionless variables:

$$
x \rightarrow x / \Lambda, \quad \phi(x) \rightarrow \phi(x) \Lambda^{(d-2) / 2} \sqrt{Z}, \quad t=\ln \mu / \Lambda
$$

- Define a fixed-point as a scale-invariant action:

$$
\partial_{t} S_{\star}[\phi]=0
$$

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} S_{\star}[\varphi]=0$
- Or from relevant (source-dependent) perturbations

What have we gained?

- Suppose we work with dimensionless variables:

$$
x \rightarrow x / \Lambda, \quad \phi(x) \rightarrow \phi(x) \Lambda^{(d-2) / 2} \sqrt{Z}, \quad t=\ln \mu / \Lambda
$$

- Define a fixed-point as a scale-invariant action:

$$
\partial_{t} S_{\star}[\phi]=0
$$

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} S_{\star}[\varphi]=0$
- Or from relevant (source-dependent) perturbations

What have we gained?

- Suppose we work with dimensionless variables:

$$
x \rightarrow x / \Lambda, \quad \phi(x) \rightarrow \phi(x) \Lambda^{(d-2) / 2} \sqrt{Z}, \quad t=\ln \mu / \Lambda
$$

- Define a fixed-point as a scale-invariant action:

$$
\partial_{t} S_{\star}[\phi]=0
$$

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} S_{\star}[\varphi]=0$
- Or from relevant (source-dependent) perturbations

What have we gained?

- Suppose we work with dimensionless variables:

$$
x \rightarrow x / \Lambda, \quad \phi(x) \rightarrow \phi(x) \Lambda^{(d-2) / 2} \sqrt{Z}, \quad t=\ln \mu / \Lambda
$$

- Define a fixed-point as a scale-invariant action:

$$
\partial_{t} S_{\star}[\phi]=0
$$

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} S_{\star}[\varphi]=0$
- Or from relevant (source-dependent) perturbations

Flows in Theory Space

Flows in Theory Space

Textbook versus Wilsonian

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

The Simple Answer

My aims in this talk

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

My aims in this talk

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions

The Simple Answer

My aims in this talk

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

My aims in this talk

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{\wedge} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{Λ} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

My aims in this talk

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{Λ} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{Λ} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

My aims in this talk

- To show that there is more to the answer
- To convince you that the question is profound

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{Λ} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

My aims in this talk

- To show that there is more to the answer
- To convince you that the question is profound

Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of the WEA

The Simple Answer

- Suppose that S_{Λ} obeys the Polchinski equation
- Then the correlation functions are generated by $\lim _{\Lambda \rightarrow 0} S_{\Lambda}$

My aims in this talk

- To show that there is more to the answer
- To convince you that the question is profound

(1) Context

(2) ERGEs
(3) Introducing a Source

General ERGs

General ERGs

Formulation

- Demand invariance of the partition function under blocking
- $\Lambda \partial_{\wedge} \mathcal{Z}=\Lambda \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

Flow Equation

$-\wedge \partial_{\wedge} S^{\text {tot }}=\int d^{d} x \frac{\delta S^{\text {tot }}}{\delta \phi(x)} \Psi(x)-\int d^{d} x \frac{\delta \psi(x)}{\delta \phi(x)}$

General ERGs

Formulation

- Demand invariance of the partition function under blocking

- $\wedge \partial_{\wedge} \mathcal{Z}=\wedge \partial_{\wedge} \int \mathcal{D} \phi e^{- \text {Stot }_{\wedge}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\wedge} Z=\wedge \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\wedge}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\Lambda} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\Lambda} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

- Ψ corresponds to a field redefinition
- Under RG step $\Lambda \rightarrow \Lambda-\delta \Lambda, \phi \rightarrow \phi-\Psi \delta \Lambda / \Lambda$

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

- Ψ corresponds to a field redefinition
- Under RG step $\Lambda \rightarrow \Lambda-\delta \Lambda, \phi \rightarrow \phi-\Psi \delta \Lambda / \Lambda$

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

- Ψ corresponds to a field redefinition
- Under RG step $\Lambda \rightarrow \Lambda-\delta \wedge, \phi \rightarrow \phi-\Psi \delta \wedge / \Lambda$

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\Lambda} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

- Ψ corresponds to a field redefinition
- Under RG step $\Lambda \rightarrow \Lambda-\delta \Lambda, \phi \rightarrow \phi-\Psi \delta \Lambda / \Lambda$

Flow Equation

General ERGs

Formulation

- Demand invariance of the partition function under blocking

$$
-\Lambda \partial_{\Lambda} e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-S_{\Lambda}^{\mathrm{tot}}[\phi]}\right\}
$$

- $\wedge \partial_{\Lambda} \mathcal{Z}=\Lambda \partial_{\wedge} \int \mathcal{D} \phi e^{-S_{\Lambda}^{\text {tot }}[\phi]}=\int \mathcal{D} \phi \frac{\delta}{\delta \phi} \cdots=0$
- Parametrizes the blocking procedure

Alternative point of view

- Ψ corresponds to a field redefinition
- Under RG step $\Lambda \rightarrow \Lambda-\delta \Lambda, \phi \rightarrow \phi-\Psi \delta \Lambda / \Lambda$

Flow Equation

$-\Lambda \partial_{\Lambda} S^{\text {tot }}=\int d^{d} x \frac{\delta S^{\text {tot }}}{\delta \phi(x)} \Psi(x)-\int d^{d} x \frac{\delta \Psi(x)}{\delta \phi(x)}$

The Modified Polchinski Equation I

The Modified Polchinski Equation I

- Introduce UV cutoff function, $K\left(p^{2} / \Lambda^{2}\right)$
- quasi-local, with $K(0)=1$ and $K(\infty)=0$
- Define regularized propagator $C_{\Lambda}\left(p^{2}\right)=K\left(p^{2} / \Lambda^{2}\right) / p^{2}$
- Introduce regularized kinetic term:

$$
\hat{S}=\frac{1}{2} \int_{p} \phi(p) C_{\Lambda}^{-1}\left(p^{2}\right) \phi(-p)
$$

- Make the split

The Modified Polchinski Equation I

- Introduce UV cutoff function, $K\left(p^{2} / \Lambda^{2}\right)$
- quasi-local, with $K(0)=1$ and $K(\infty)=0$
- Define regularized propagator $C_{\wedge}\left(p^{2}\right)=K\left(p^{2} / \Lambda^{2}\right) / p^{2}$
- Introduce regularized kinetic term:

$$
\hat{S}=\frac{1}{2} \int_{p} \phi(p) C_{\wedge}^{-1}\left(p^{2}\right) \phi(-p)
$$

- Make the split

The Modified Polchinski Equation I

- Introduce UV cutoff function, $K\left(p^{2} / \Lambda^{2}\right)$
- quasi-local, with $K(0)=1$ and $K(\infty)=0$
- Define regularized propagator $C_{\Lambda}\left(p^{2}\right)=K\left(p^{2} / \Lambda^{2}\right) / p^{2}$
- Introduce regularized kinetic term:

$$
\hat{S}=\frac{1}{2} \int_{p} \phi(p) C_{\Lambda}^{-1}\left(p^{2}\right) \phi(-p)
$$

- Make the split
$S^{\text {tot }}=\hat{S}+S$

The Modified Polchinski Equation I

- Introduce UV cutoff function, $K\left(p^{2} / \Lambda^{2}\right)$
- quasi-local, with $K(0)=1$ and $K(\infty)=0$
- Define regularized propagator $C_{\Lambda}\left(p^{2}\right)=K\left(p^{2} / \Lambda^{2}\right) / p^{2}$
- Introduce regularized kinetic term:

$$
\hat{S}=\frac{1}{2} \int_{p} \phi(p) C_{\Lambda}^{-1}\left(p^{2}\right) \phi(-p)
$$

- Make the split
$S^{\text {tot }}=\hat{S}+S$

The Modified Polchinski Equation I

- Introduce UV cutoff function, $K\left(p^{2} / \Lambda^{2}\right)$
- quasi-local, with $K(0)=1$ and $K(\infty)=0$
- Define regularized propagator $C_{\Lambda}\left(p^{2}\right)=K\left(p^{2} / \Lambda^{2}\right) / p^{2}$
- Introduce regularized kinetic term:

$$
\hat{S}=\frac{1}{2} \int_{p} \phi(p) C_{\Lambda}^{-1}\left(p^{2}\right) \phi(-p)
$$

- Make the split

$$
S^{\text {tot }}=\hat{S}+S
$$

The Modified Polchinski Equation II

The Modified Polchinski Equation II

- Define $\dot{C} \equiv-\wedge \partial_{\Lambda} C$ and take

$$
\Psi(p)=\frac{1}{2} \dot{C}_{\Lambda}\left(p^{2}\right) \frac{\delta\left(S^{\text {tot }}-2 \hat{S}\right)}{\delta \phi(p)}+\psi(p)
$$

where ψ allows for an extra field redefinition along the flow - The modified Polchinski equation is:

The Modified Polchinski Equation II

- Define $\dot{C} \equiv-\Lambda \partial_{\Lambda} C$ and take

$$
\Psi(p)=\frac{1}{2} \dot{C}_{\Lambda}\left(p^{2}\right) \frac{\delta\left(S^{\text {tot }}-2 \hat{S}\right)}{\delta \phi(p)}+\psi(p)
$$

where ψ allows for an extra field redefinition along the flow - The modified Polchinski equation is:

The Modified Polchinski Equation II

- Define $\dot{C} \equiv-\Lambda \partial_{\Lambda} C$ and take

$$
\Psi(p)=\frac{1}{2} \dot{C}_{\Lambda}\left(p^{2}\right) \frac{\delta\left(S^{\text {tot }}-2 \hat{S}\right)}{\delta \phi(p)}+\psi(p)
$$

where ψ allows for an extra field redefinition along the flow

- The modified Polchinski equation is:

$$
-\Lambda \partial_{\Lambda} S=\frac{1}{2} \frac{\delta S}{\delta \phi} \cdot \dot{C} \cdot \frac{\delta S}{\delta \phi}-\frac{1}{2} \frac{\delta}{\delta \phi} \cdot \dot{C} \cdot \frac{\delta S}{\delta \phi}+\psi \cdot \frac{\delta S^{\text {tot }}}{\delta \phi}-\frac{\delta}{\delta \phi} \cdot \psi
$$

Rescalings

Rescalings

- Remove the canonical dimensions

$$
\tilde{p}=p / \Lambda, \quad \varphi(\tilde{p})=\phi(p) \Lambda^{(d+2) / 2}
$$

(Henceforth drop tildes)

- Choose

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action
- This process is (essentially) equivalent to $\phi(p) \rightarrow \phi(p) \Lambda^{-(d+2) / 2} \sqrt{Z}$

Rescalings

- Remove the canonical dimensions

$$
\tilde{p}=p / \Lambda, \quad \varphi(\tilde{p})=\phi(p) \Lambda^{(d+2) / 2}
$$

(Henceforth drop tildes)

- Choose

$$
\psi=-\frac{1}{2} \eta \varphi, \quad \eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}
$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action
- This process is (essentially) equivalent to $\phi(p) \rightarrow \phi(p) \Lambda^{-(d+2) / 2} \sqrt{Z}$

Rescalings

- Remove the canonical dimensions

$$
\tilde{p}=p / \Lambda, \quad \varphi(\tilde{p})=\phi(p) \Lambda^{(d+2) / 2}
$$

(Henceforth drop tildes)

- Choose

$$
\psi=-\frac{1}{2} \eta \varphi, \quad \eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}
$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action
- This process is (essentially) equivalent to $\phi(p) \rightarrow \phi(p) \wedge^{-(d+2) / 2} \sqrt{Z}$

Rescalings

- Remove the canonical dimensions

$$
\tilde{p}=p / \Lambda, \quad \varphi(\tilde{p})=\phi(p) \Lambda^{(d+2) / 2}
$$

(Henceforth drop tildes)

- Choose

$$
\psi=-\frac{1}{2} \eta \varphi, \quad \eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}
$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action
- This process is (essentially) equivalent to $\phi(p) \rightarrow \phi(p) \Lambda^{-(d+2) / 2} \sqrt{Z}$

Rescalings

- Remove the canonical dimensions

$$
\tilde{p}=p / \Lambda, \quad \varphi(\tilde{p})=\phi(p) \Lambda^{(d+2) / 2}
$$

(Henceforth drop tildes)

- Choose

$$
\psi=-\frac{1}{2} \eta \varphi, \quad \eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}
$$

- Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action
- This process is (essentially) equivalent to $\phi(p) \rightarrow \phi(p) \Lambda^{-(d+2) / 2} \sqrt{Z}$

Rescaled flow equation

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Renormalizability

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Renormalizability

- S does not satisfy the plain Polchinski equation
- How does renormalizability of the correlation functions follow from renormalizability of S ?

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Renormalizability

- S does not satisfy the plain Polchinski equation
- How does renormalizability of the correlation functions follow from renormalizability of S ?

Rescaled flow equation

$$
\left(\partial_{t}-\hat{D}\right) S_{t}[\varphi]=\frac{\delta S}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta S}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

with

$$
\hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
$$

- Fixed-points follow from $\partial_{t} S_{\star}[\varphi]=0$
- η_{\star} is quantized at critical fixed-points

Renormalizability

- S does not satisfy the plain Polchinski equation
- How does renormalizability of the correlation functions follow from renormalizability of S ?

Aside: Gauge Theory

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- U can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- We must consider expectation values of manifestly gauge invariant operators
- The standard correlation functions play no role

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- We must consider expectation values of manifestly gauge invariant operators

Aside: Gauge Theory

- It is possible to construct a gauge invariant cutoff, using
- Covariant higher derivatives
- Pauli-Villars fields
- Ψ can be chosen to give a
manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- We must consider expectation values of manifestly gauge invariant operators
- The standard correlation functions play no role

(1) Context

(2) ERGEs
(3) Introducing a Source

Textbook

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\mathrm{conn}}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Composite Operators

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

Composite Operators

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\text {conn }}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\text {conn }}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Composite Operators

- Add additional source terms e.g. $J_{2} \cdot \phi^{2}$
- Take derivatives with respect to J and J_{2} to find

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \phi^{2}\left(y_{1}\right) \cdots \phi^{2}\left(y_{m}\right)\right\rangle_{\text {conn }}
$$

- Analyse the renormalization properties

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\text {conn }}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Composite Operators

- Add additional source terms e.g. $J_{2} \cdot \phi^{2}$
- Take derivatives with respect to J and J_{2} to find

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \phi^{2}\left(y_{1}\right) \cdots \phi^{2}\left(y_{m}\right)\right\rangle_{\mathrm{conn}}
$$

- Analyse the renormalization properties

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\text {conn }}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Composite Operators

- Add additional source terms e.g. $J_{2} \cdot \phi^{2}$
- Take derivatives with respect to J and J_{2} to find

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \phi^{2}\left(y_{1}\right) \cdots \phi^{2}\left(y_{m}\right)\right\rangle_{\mathrm{conn}}
$$

- Analyse the renormalization properties

Textbook

The Standard Correlation Functions

- Introduce a source term in the bare action

$$
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S_{\Lambda_{0}}[\phi]+J \cdot \phi}
$$

- Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle_{\text {conn }}=\left.\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{n}\right)} W[J]\right|_{J=0}
$$

Composite Operators

- Add additional source terms e.g. $J_{2} \cdot \phi^{2}$
- Take derivatives with respect to J and J_{2} to find

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \phi^{2}\left(y_{1}\right) \cdots \phi^{2}\left(y_{m}\right)\right\rangle_{\mathrm{conn}}
$$

- Analyse the renormalization properties

New ERG Approach

New ERG Approach

- Introduce an external field, J, with undetermined scaling dimension, d_{J}
- Allow for J-dependence of the action

$$
S_{\Lambda}[\phi] \rightarrow T_{\Lambda}[\phi, J]
$$

- The flow equation follows as before

- A sensible boundary condition would be

- But we will not implement the bc in this way

New ERG Approach

- Introduce an external field, J, with undetermined scaling dimension, d_{J}
- Allow for J-dependence of the action

$$
S_{\Lambda}[\phi] \rightarrow T_{\wedge}[\phi, J]
$$

- The flow equation follows as before

- A sensible boundary condition would be

- But we will not implement the bc in this way

New ERG Approach

- Introduce an external field, J, with undetermined scaling dimension, d_{J}
- Allow for J-dependence of the action

$$
S_{\Lambda}[\phi] \rightarrow T_{\Lambda}[\phi, J]
$$

- The flow equation follows as before

$$
-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, Л]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, J]}\right\}
$$

- A sensible boundary condition would be
- But we will not implement the bc in this way

New ERG Approach

- Introduce an external field, J, with undetermined scaling dimension, d_{J}
- Allow for J-dependence of the action

$$
S_{\Lambda}[\phi] \rightarrow T_{\Lambda}[\phi, J]
$$

- The flow equation follows as before

$$
-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, J]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, J]}\right\}
$$

- A sensible boundary condition would be

$$
\lim _{\Lambda \rightarrow \Lambda_{0}} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

- But we will not implement the bc in this way

New ERG Approach

- Introduce an external field, J, with undetermined scaling dimension, d_{J}
- Allow for J-dependence of the action

$$
S_{\Lambda}[\phi] \rightarrow T_{\Lambda}[\phi, J]
$$

- The flow equation follows as before

$$
-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, J]}=\int d^{d} x \frac{\delta}{\delta \phi(x)}\left\{\Psi(x) e^{-T_{\Lambda}^{\mathrm{tot}}[\phi, J]}\right\}
$$

- A sensible boundary condition would be

$$
\lim _{\Lambda \rightarrow \Lambda_{0}} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

- But we will not implement the bc in this way

Rescalings again

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{J}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{J}}, \quad \tilde{p}=p / \Lambda
$$

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{\jmath}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

- Search for renormalizable solutions

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{\jmath}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

$$
\left(\partial_{t}-\hat{D}-\hat{D}^{J}\right) T_{t}[\varphi, J]=\frac{\delta T}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi
$$

- Search for renormalizable solutions

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{\jmath}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

$$
\begin{aligned}
& \left(\partial_{t}-\hat{D}-\hat{D}^{J}\right) T_{t}[\varphi, J]=\frac{\delta T}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi \\
& \bullet \hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)}
\end{aligned}
$$

- Search for renormalizable solutions

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{\jmath}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

$$
\begin{aligned}
& \left(\partial_{t}-\hat{D}-\hat{D}^{J}\right) T_{t}[\varphi, J]=\frac{\delta T}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi \\
& \cdot \hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)} \\
& \cdot \hat{D}^{J}=\int_{p}\left[\left(d-d_{J}+p \cdot \partial_{p}\right) J(p)\right] \frac{\delta}{\delta J(p)}
\end{aligned}
$$

Rescalings again

- Treat ϕ as before
- Introduce the dimensionless source

$$
j(\tilde{p})=j(p) \Lambda^{d-d_{J}}, \quad \tilde{p}=p / \Lambda
$$

- This gives the source-dependent flow equation

$$
\begin{aligned}
& \left(\partial_{t}-\hat{D}-\hat{D}^{J}\right) T_{t}[\varphi, J]=\frac{\delta T}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\delta}{\delta \varphi} \cdot K^{\prime} \cdot \frac{\delta T}{\delta \varphi}-\frac{\eta}{2} \varphi \cdot C^{-1} \cdot \varphi \\
& \cdot \hat{D}=\int_{p}\left[\left(\frac{d+2-\eta}{2}+p \cdot \partial_{p}\right) \varphi(p)\right] \frac{\delta}{\delta \varphi(p)} \\
& \cdot \hat{D}^{J}=\int_{p}\left[\left(d-d_{J}+p \cdot \partial_{p}\right) J(p)\right] \frac{\delta}{\delta J(p)}
\end{aligned}
$$

- Search for renormalizable solutions

Source-Dependent Renormalization

Source-Dependent Renormalization

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} T_{\star}[\varphi, j]=0$
- Or from relevant (source-dependent) perturbations

Source-Dependent Renormalization

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} T_{\star}[\varphi, j]=0$
- Or from relevant (source-dependent) perturbations

Source-Dependent Renormalization

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_{t} T_{\star}[\varphi, j]=0$
- Or from relevant (source-dependent) perturbations

A Source-Dependent Fixed-Point

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-j \cdot \cdot \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right]
$$

Two crucial points

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
\begin{aligned}
& T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-\bar{j} \cdot \varrho \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right] \\
& \bullet \cdot \bar{j}(p) \equiv j(p) / p^{2}
\end{aligned}
$$

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
\begin{aligned}
& T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-\bar{j} \cdot \varrho \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right] \\
& \quad \cdot \bar{j}(p) \equiv j(p) / p^{2} \\
& \left.\bullet \varrho=\varrho\left(p^{2}\right)=p^{2}+\mathrm{O}\left(p^{4}\right) \text { (quasi-local }\right)
\end{aligned}
$$

Two crucial points

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
\begin{aligned}
& T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-\bar{j} \cdot \varrho \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right] \\
& \bullet \bar{j}(p) \equiv j(p) / p^{2} \\
& \bullet \varrho=\varrho\left(p^{2}\right)=p^{2}+\mathrm{O}\left(p^{4}\right) \text { (quasi-local) }
\end{aligned}
$$

Two crucial points

- The solution only works if $d_{\jmath}=\left(d+2-\eta_{\star}\right) / 2$
- In dimensionful variables

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
\begin{aligned}
& T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-\bar{j} \cdot \varrho \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right] \\
& \bullet \bar{j}(p) \equiv j(p) / p^{2} \\
& \bullet \varrho=\varrho\left(p^{2}\right)=p^{2}+\mathrm{O}\left(p^{4}\right) \text { (quasi-local) }
\end{aligned}
$$

Two crucial points

- The solution only works if $d_{J}=\left(d+2-\eta_{\star}\right) / 2$

- In dimensionful variables

A Source-Dependent Fixed-Point

- Suppose that we have found a critical fixed-point

$$
\partial_{t} S_{\star}[\varphi]=0
$$

- Then there is always a source-dependent f-p

$$
\begin{aligned}
& T_{\star}[\varphi, j]=S_{\star}[\varphi]+\left[e^{-\bar{j} \cdot \varrho \cdot \delta / \delta \varphi}-1\right]\left[S_{\star}[\varphi]+\frac{1}{2} \varphi \cdot C^{-1}\left(1+\varrho^{-1}\right) \cdot \varphi\right] \\
& \bullet \bar{j}(p) \equiv j(p) / p^{2} \\
& \bullet \varrho=\varrho\left(p^{2}\right)=p^{2}+\mathrm{O}\left(p^{4}\right) \text { (quasi-local) }
\end{aligned}
$$

Two crucial points

- The solution only works if $d_{J}=\left(d+2-\eta_{\star}\right) / 2$
- In dimensionful variables

$$
\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

Example: The Gaussian Fixed-Point

Example: The Gaussian Fixed-Point

$$
S_{\star}[\varphi]=0, \text { with } \eta_{\star}=0
$$

Dimensionless Variables

Dimensionful Variables

Example: The Gaussian Fixed-Point

$$
S_{\star}[\varphi]=0, \text { with } \eta_{\star}=0
$$

Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+O\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$
Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$

Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$
Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

- $\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]=-J \cdot \phi$

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$
Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

- $T_{\Lambda}[\phi, J]=-J \cdot \phi+\frac{1}{2} \int_{p} J(p) J(-p) \frac{K\left(p^{2} / \Lambda^{2}\right)-1}{p^{2}}$
- $\lim _{\wedge \rightarrow \infty} T_{\Lambda}[\phi, J]$
$\lim _{\Lambda \rightarrow 0} T_{\Lambda}[0, J]$

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$
Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

- $T_{\wedge}[\phi, J]=-J \cdot \phi+\frac{1}{2} \int_{p} J(p) J(-p) \frac{K\left(p^{2} / \Lambda^{2}\right)-1}{p^{2}}$
- $\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]=-J \cdot \phi$
- $\lim _{\Lambda \rightarrow 0} T_{\Lambda}[0, J]$

Example: The Gaussian Fixed-Point

$S_{\star}[\varphi]=0$, with $\eta_{\star}=0$
Dimensionless Variables

- $T_{\star}[\varphi, j]=-j \cdot \varphi+\frac{1}{2} \int_{\tilde{p}} j(\tilde{p}) j(-\tilde{p}) \frac{K\left(\tilde{p}^{2}\right)-1}{\tilde{p}^{2}}$
- T_{\star} is quasi-local since

$$
K\left(\tilde{p}^{2}\right)=1+\mathrm{O}\left(\tilde{p}^{2}\right)
$$

Dimensionful Variables

- $T_{\Lambda}[\phi, J]=-J \cdot \phi+\frac{1}{2} \int_{p} J(p) J(-p) \frac{K\left(p^{2} / \Lambda^{2}\right)-1}{p^{2}}$
- $\lim _{\Lambda \rightarrow \infty} T_{\wedge}[\phi, J]=-J \cdot \phi$
- $\lim _{\Lambda \rightarrow 0} T_{\Lambda}[0, J]=-\frac{1}{2} \int_{p} J(p) J(-p) \frac{1}{p^{2}}$

And more. . .

And more. . .

- For each critical f-p, we can find the eigenperturbations

$$
S_{t}[\varphi]=S_{\star}[\varphi]+\sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]
$$

- Every eigenperturbation, \mathcal{O}_{i} has a source-dependent extension

$$
\tilde{\mathcal{O}}_{i}[\varphi, j]=e^{\bar{j} \cdot \varrho \cdot \delta / \delta \varphi} \mathcal{O}_{i}
$$

- At the linear level

And more. . .

- For each critical f-p, we can find the eigenperturbations

$$
S_{t}[\varphi]=S_{\star}[\varphi]+\sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]
$$

- Every eigenperturbation, \mathcal{O}_{i} has a source-dependent extension

$$
\tilde{\mathcal{O}}_{i}[\varphi, j]=e^{\bar{j} \cdot \varrho \cdot \delta / \delta \varphi} \mathcal{O}_{i}
$$

- At the linear level

And more. . .

- For each critical f-p, we can find the eigenperturbations

$$
S_{t}[\varphi]=S_{\star}[\varphi]+\sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]
$$

- Every eigenperturbation, \mathcal{O}_{i} has a source-dependent extension

$$
\tilde{\mathcal{O}}_{i}[\varphi, j]=e^{\bar{j} \cdot \varrho \cdot \delta / \delta \varphi} \mathcal{O}_{i}
$$

- At the linear level

$$
T_{t}[\varphi, j]=T_{\star}[\varphi, j]+\sum_{i} \alpha_{i} e^{\tilde{\lambda}_{i} t} \tilde{\mathcal{O}}_{i}[\varphi, j]
$$

And more. . .

- For each critical f-p, we can find the eigenperturbations

$$
S_{t}[\varphi]=S_{\star}[\varphi]+\sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]
$$

- Every eigenperturbation, \mathcal{O}_{i} has a source-dependent extension

$$
\tilde{\mathcal{O}}_{i}[\varphi, j]=e^{\bar{j} \cdot \varrho \cdot \delta / \delta \varphi} \mathcal{O}_{i}
$$

- At the linear level

$$
T_{t}[\varphi, j]=T_{\star}[\varphi, j]+\sum_{i} \alpha_{i} e^{\tilde{\Lambda}_{i} t} \tilde{\mathcal{O}}_{i}[\varphi, j]
$$

where $\tilde{\lambda}_{i}=\lambda_{i}$

Interpretation

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$
\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$
\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

Conclusion

If we use the modified Polchinski equation with $\psi=-\eta \varphi / 2$

Renormalizability of S_{Λ} implies renormalizability of the standard

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$
\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

Conclusion

If we use the modified Polchinski equation with $\psi=-\eta \varphi / 2$

Renormalizability of S_{Λ} implies renormalizability of the standard

Interpretation

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$
\lim _{\Lambda \rightarrow \infty} T_{\Lambda}[\phi, J]-S_{\Lambda}[\phi]=-J \cdot \phi
$$

Conclusion

If we use the modified Polchinski equation with $\psi=-\eta \varphi / 2$
Renormalizability of S_{Λ} implies renormalizability of the standard correlation functions

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J. ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

[^0]
A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

A new perspective on QFT?

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. J• ϕ
- Analyse renormalizability of correlation functions
- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

Questions

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

- What happens for other flow equations?
- What does this imply for gauge theories?

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

- What happens for other flow equations?

- What does this imply for gauge theories?

Questions

Modified Polchinski Equation $\psi=-\eta \varphi / 2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

- What happens for other flow equations?
- What does this imply for gauge theories?

Ask not what quantum field theory can compute for you, but what you can compute for quantum field theory

Thank you for listening

[^0]: Philosophy

