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Context ERGEs Introducing a Source

Textbook renormalization

Choose an action e.g.

S [φ] =

∫

ddx
[1

2
∂µφ∂µφ+

1

2
m2φ2 +

λ

4!
φ4

]

Choose a UV regulator

Start computing the correlation functions

〈φ(x1) · · · φ(xn)〉 =
1

Z

∫

Dφφ(x1) · · · φ(xn)e−S[φ]

Adjust the action to absorb UV divergences:

S [φ] → S [φ] + δS [φ]

If δS has the same form as S , the theory is renormalizable
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In practice, this scheme is perturbative

It offers no physical intuition
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Context ERGEs Introducing a Source

Wilsonian Renormalization

Don’t try to integrate over all fluctuations at once!

Partition up the modes by introducing an effective scale

Integrate out degrees of freedom between Λ0 and Λ

The bare action evolves into the Wilsonian effective action

SΛ0
[φ] → SΛ[φ]

Demanding invariance of the partition function gives an ERGE

Λ∂ΛSΛ[φ] = . . .
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What have we gained?

Suppose we work with dimensionless variables:

x → x/Λ, φ(x) → φ(x)Λ(d−2)/2
√
Z , t = lnµ/Λ

Define a fixed-point as a scale-invariant action:

∂tS⋆[φ] = 0

Nonperturbatively renormalizable solutions follow from fixed-points

Either directly: ∂tS⋆[ϕ] = 0

Or from relevant (source-dependent) perturbations
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Flows in Theory Space

Part of the critical surface

Fixed Point
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Textbook versus Wilsonian

Merits of the latter already appreciated by this audience!

Question: What is the link?

Textbook formulation is in terms of correlation functions

Wilsonian formulation is in terms of the WEA

The Simple Answer

Suppose that SΛ obeys the Polchinski equation

Then the correlation functions are generated by limΛ→0 SΛ

My aims in this talk

To show that there is more to the answer

To convince you that the question is profound
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General ERGs

Formulation

Demand invariance of the partition function under blocking

−Λ∂Λe
−Stot

Λ [φ] =

∫

ddx
δ

δφ(x)

{

Ψ(x)e−Stot

Λ [φ]
}

Λ∂ΛZ = Λ∂Λ
∫

Dφ e−Stot

Λ [φ] =
∫

Dφ δ
δφ · · · = 0

Parametrizes the blocking procedure

Alternative point of view

Ψ corresponds to a field redefinition

Under RG step Λ → Λ− δΛ, φ→ φ−ΨδΛ/Λ

Flow Equation

−Λ∂ΛS
tot =

∫

ddx
δS tot

δφ(x)
Ψ(x)−

∫

ddx
δΨ(x)

δφ(x)
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The Modified Polchinski Equation I

Introduce UV cutoff function, K (p2/Λ2)

quasi-local, with K (0) = 1 and K (∞) = 0

Define regularized propagator CΛ(p
2) = K (p2/Λ2)/p2

Introduce regularized kinetic term:

Ŝ =
1

2

∫

p

φ(p)C−1
Λ (p2)φ(−p)

Make the split
S tot = Ŝ + S
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Ŝ =
1

2

∫

p

φ(p)C−1
Λ (p2)φ(−p)

Make the split
S tot = Ŝ + S
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Context ERGEs Introducing a Source

The Modified Polchinski Equation I

Introduce UV cutoff function, K (p2/Λ2)

quasi-local, with K (0) = 1 and K (∞) = 0

Define regularized propagator CΛ(p
2) = K (p2/Λ2)/p2

Introduce regularized kinetic term:
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Rescalings

Remove the canonical dimensions

p̃ = p/Λ, ϕ(p̃) = φ(p)Λ(d+2)/2

(Henceforth drop tildes)

Choose

ψ = −1

2
ηϕ, η ≡ Λ

d lnZ

dΛ

Since ψ is a field redefinition, this choice ensures canonical
normalization of the kinetic term

The redundant coupling, Z , is removed from the action

This process is (essentially) equivalent to
φ(p) → φ(p)Λ−(d+2)/2

√
Z
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Rescaled flow equation

(

∂t − D̂
)

St [ϕ] =
δS

δϕ
·K ′ · δS

δϕ
− δ

δϕ
·K ′ · δS

δϕ
− η

2
ϕ · C−1 · ϕ

with

D̂ =

∫

p

[(

d + 2− η

2
+ p · ∂p

)

ϕ(p)

]

δ

δϕ(p)

Fixed-points follow from ∂tS⋆[ϕ] = 0

η⋆ is quantized at critical fixed-points

Renormalizability

S does not satisfy the plain Polchinski equation

How does renormalizability of the correlation functions follow
from renormalizability of S?
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Aside: Gauge Theory

It is possible to construct a gauge invariant cutoff, using

Covariant higher derivatives
Pauli-Villars fields

Ψ can be chosen to give a

manifestly gauge invariant flow equation

No gauge fixing is required at any stage!

The formalism is very complicated

Correlation Functions

We must consider expectation values of manifestly gauge
invariant operators

The standard correlation functions play no role
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Context ERGEs Introducing a Source

Textbook

The Standard Correlation Functions

Introduce a source term in the bare action

Z[J] =

∫

Dφ e−SΛ0 [φ]+J·φ

Extract the connected correlation functions from W [J] ≡ lnZ

〈φ(x1) · · · φ(xn)〉conn =
δ

δJ(x1)
· · · δ

δJ(xn)
W [J]

∣

∣

∣

J=0

Composite Operators

Add additional source terms e.g. J2 · φ2

Take derivatives with respect to J and J2 to find

〈φ(x1) · · ·φ(xn)φ2(y1) · · · φ2(ym)〉conn

Analyse the renormalization properties
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New ERG Approach

Introduce an external field, J, with undetermined scaling
dimension, dJ

Allow for J-dependence of the action

SΛ[φ] → TΛ[φ, J]

The flow equation follows as before

−Λ∂Λe
−T tot

Λ [φ,J] =

∫

ddx
δ

δφ(x)

{

Ψ(x)e−T tot

Λ [φ,J]
}

A sensible boundary condition would be

lim
Λ→Λ0

TΛ[φ, J] − SΛ[φ] = −J · φ

But we will not implement the bc in this way
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Rescalings again

Treat φ as before

Introduce the dimensionless source

j(p̃) = j(p)Λd−dJ , p̃ = p/Λ

This gives the source-dependent flow equation

(

∂t− D̂− D̂J
)

Tt [ϕ, J] =
δT

δϕ
·K ′·δT

δϕ
− δ

δϕ
·K ′·δT

δϕ
− η

2
ϕ ·C−1 ·ϕ

D̂ =

∫

p

[(

d + 2− η

2
+ p · ∂p

)

ϕ(p)

]

δ

δϕ(p)

D̂J =

∫

p

[(

d − dJ + p · ∂p
)

J(p)

]

δ

δJ(p)

Search for renormalizable solutions
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Nonperturbatively renormalizable solutions follow from fixed-points

Either directly: ∂tT⋆[ϕ, j] = 0

Or from relevant (source-dependent) perturbations
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Context ERGEs Introducing a Source

A Source-Dependent Fixed-Point

Suppose that we have found a critical fixed-point

∂tS⋆[ϕ] = 0

Then there is always a source-dependent f-p

T⋆[ϕ, j] = S⋆[ϕ]+
[

e−j̄ ·̺·δ/δϕ−1
][

S⋆[ϕ]+
1

2
ϕ·C−1

(

1+̺−1
)

·ϕ
]

j̄(p) ≡ j(p)/p2

̺ = ̺(p2) = p2 +O
(

p4
)

(quasi-local)

Two crucial points

The solution only works if dJ = (d + 2− η⋆)/2

In dimensionful variables

lim
Λ→∞

TΛ[φ, J]− SΛ[φ] = −J · φ
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Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

Example: The Gaussian Fixed-Point

S⋆[ϕ] = 0, with η⋆ = 0

Dimensionless Variables

T⋆[ϕ, j] = −j · ϕ+
1

2

∫

p̃

j(p̃)j(−p̃)
K (p̃2)− 1

p̃2

T⋆ is quasi-local since

K (p̃2) = 1 +O
(

p̃2
)

Dimensionful Variables

TΛ[φ, J] = −J · φ+
1

2

∫

p

J(p)J(−p)
K (p2/Λ2)− 1

p2

limΛ→∞TΛ[φ, J] = −J · φ

lim
Λ→0

TΛ[0, J] = −1

2

∫

p

J(p)J(−p)
1

p2



Context ERGEs Introducing a Source

And more. . .

For each critical f-p, we can find the eigenperturbations

St [ϕ] = S⋆[ϕ] +
∑

i

αie
λi tOi [ϕ]

Every eigenperturbation, Oi has a source-dependent extension

Õi [ϕ, j] = e j̄ ·̺·δ/δϕOi

At the linear level

Tt [ϕ, j] = T⋆[ϕ, j] +
∑

i

αie
λ̃i tÕi [ϕ, j]

where λ̃i = λi
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Õi [ϕ, j] = e j̄ ·̺·δ/δϕOi

At the linear level

Tt [ϕ, j] = T⋆[ϕ, j] +
∑

i

αie
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Context ERGEs Introducing a Source

Interpretation

Every critical f-p has a particular source-dependent extension

Every renormalized trajectory has a source-dependent
extension

This source-dependence corresponds to the boundary
condition

lim
Λ→∞

TΛ[φ, J]− SΛ[φ] = −J · φ

Conclusion

If we use the modified Polchinski equation with ψ = −ηϕ/2

Renormalizability of SΛ implies renormalizability of the standard
correlation functions
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Ask not what quantum field theory can
compute for you, but what you can compute
for quantum field theory
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Thank you for listening
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